logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 9 : 1221-1229(2020) https://doi.org/10.1007/s11426-020-9793-2

Control of polymorphism in solution-processed organic thin film transistors by self-assembled monolayers

More info
  • ReceivedMay 8, 2020
  • AcceptedJun 15, 2020
  • PublishedJul 2, 2020

Abstract


Funded by

the National Natural Science Foundation of China(51603124,51703042)

the Shenzhen Sci & Tech Research Grant(JCYJ20180305124832322)

the University Grants Committee of Hong Kong(AoE/P-03/08)

the Chinese University of Hong Kong(3132678)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51603124, 51703042), the Shenzhen Sci & Tech Research Grant (JCYJ20180305124832322), the University Grants Committee of Hong Kong (AoE/P-03/08) and the Chinese University of Hong Kong (3132678). We thank Shanghai Synchrotron Radiation Facility (beamline BL14B1) for providing beam time and assistance during the experiments.


Interest statement

The authors declare no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Sekitani T, Yokota T, Zschieschang U, Klauk H, Bauer S, Takeuchi K, Takamiya M, Sakurai T, Someya T. Science, 2009, 326: 1516-1519 CrossRef PubMed ADS Google Scholar

[2] Mannsfeld SCB, Tee BCK, Stoltenberg RM, Chen CVHH, Barman S, Muir BVO, Sokolov AN, Reese C, Bao Z. Nat Mater, 2010, 9: 859-864 CrossRef PubMed ADS Google Scholar

[3] Diao Y, Shaw L, Bao Z, Mannsfeld SCB. Energy Environ Sci, 2014, 7: 2145-2159 CrossRef Google Scholar

[4] Liu K, Guo YL, Liu YQ. Sci China Tech Sci, 2019, 62: 1255-1276 CrossRef ADS Google Scholar

[5] Dong H, Fu X, Liu J, Wang Z, Hu W. Adv Mater, 2013, 25: 6158-6183 CrossRef PubMed Google Scholar

[6] Gao X, Zhao Z. Sci China Chem, 2015, 58: 947-968 CrossRef Google Scholar

[7] Zhen YG, Dong HL, Jiang L, Hu WP. Chin Chem Lett, 2016, 27: 1330-1338 CrossRef Google Scholar

[8] Chung H, Diao Y. J Mater Chem C, 2016, 4: 3915-3933 CrossRef Google Scholar

[9] Riera-Galindo S, Tamayo A, Mas-Torrent M. ACS Omega, 2018, 3: 2329-2339 CrossRef PubMed Google Scholar

[10] Giri G, Verploegen E, Mannsfeld SCB, Atahan-Evrenk S, Kim DH, Lee SY, Becerril HA, Aspuru-Guzik A, Toney MF, Bao Z. Nature, 2011, 480: 504-508 CrossRef PubMed ADS Google Scholar

[11] Diao Y, Tee BCK, Giri G, Xu J, Kim DH, Becerril HA, Stoltenberg RM, Lee TH, Xue G, Mannsfeld SCB, Bao Z. Nat Mater, 2013, 12: 665-671 CrossRef PubMed ADS Google Scholar

[12] Chen J, Shao M, Xiao K, He Z, Li D, Lokitz BS, Hensley DK, Kilbey Ii SM, Anthony JE, Keum JK, Rondinone AJ, Lee WY, Hong S, Bao Z. Chem Mater, 2013, 25: 4378-4386 CrossRef Google Scholar

[13] Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB, Chen J, Nordlund D, Toney MF, Huang J, Bao Z. Nat Commun, 2014, 5: 3005 CrossRef PubMed ADS Google Scholar

[14] Hiszpanski AM, Baur RM, Kim B, Tremblay NJ, Nuckolls C, Woll AR, Loo YL. J Am Chem Soc, 2014, 136: 15749-15756 CrossRef PubMed Google Scholar

[15] Jones AOF, Geerts YH, Karpinska J, Kennedy AR, Resel R, Röthel C, Ruzié C, Werzer O, Sferrazza M. ACS Appl Mater Interfaces, 2015, 7: 1868-1873 CrossRef PubMed Google Scholar

[16] Wang H, Zhu F, Yang J, Geng Y, Yan D. Adv Mater, 2007, 19: 2168-2171 CrossRef Google Scholar

[17] Li Z, Du J, Tang Q, Wang F, Xu JB, Yu JC, Miao Q. Adv Mater, 2010, 22: 3242-3246 CrossRef PubMed Google Scholar

[18] Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Chem Rev, 2005, 105: 1103-1170 CrossRef PubMed Google Scholar

[19] Casalini S, Bortolotti CA, Leonardi F, Biscarini F. Chem Soc Rev, 2017, 46: 40-71 CrossRef PubMed Google Scholar

[20] Liu D, Miao Q. Mater Chem Front, 2018, 2: 11-21 CrossRef Google Scholar

[21] Lee AY, Erdemir D, Myerson AS. Annu Rev Chem Biomol Eng, 2011, 2: 259-280 CrossRef PubMed Google Scholar

[22] Lee HS, Kim DH, Cho JH, Hwang M, Jang Y, Cho K. J Am Chem Soc, 2008, 130: 10556-10564 CrossRef PubMed Google Scholar

[23] Tang Q, Zhang D, Wang S, Ke N, Xu J, Yu JC, Miao Q. Chem Mater, 2009, 21: 1400-1405 CrossRef Google Scholar

[24] Takimiya K, Osaka I, Mori T, Nakano M. Acc Chem Res, 2014, 47: 1493-1502 CrossRef PubMed Google Scholar

[25] Amin AY, Khassanov A, Reuter K, Meyer-Friedrichsen T, Halik M. J Am Chem Soc, 2012, 134: 16548-16550 CrossRef PubMed Google Scholar

[26] Iino H, Usui T, Hanna JI. Nat Commun, 2015, 6: 6828 CrossRef PubMed ADS Google Scholar

[27] He K, Li W, Tian H, Zhang J, Yan D, Geng Y, Wang F. ACS Appl Mater Interfaces, 2017, 9: 35427-35436 CrossRef PubMed Google Scholar

[28] Minemawari H, Tanaka M, Tsuzuki S, Inoue S, Yamada T, Kumai R, Shimoi Y, Hasegawa T. Chem Mater, 2017, 29: 1245-1254 CrossRef Google Scholar

[29] Liu D, He Z, Su Y, Diao Y, Mannsfeld SCB, Bao Z, Xu J, Miao Q. Adv Mater, 2014, 26: 7190-7196 CrossRef PubMed Google Scholar

[30] Acton O, Acton BO, Ting GG, Shamberger PJ, Ohuchi FS, Ma H, Jen AKY. ACS Appl Mater Interfaces, 2010, 2: 511-520 CrossRef PubMed Google Scholar

[31] Hoque E, Derose JA, Hoffmann P, Mathieu HJ, Bhushan B, Cichomski M. J Chem Phys, 2006, 124: 174710 CrossRef PubMed ADS Google Scholar

[32] Dubey M, Weidner T, Gamble LJ, Castner DG. Langmuir, 2010, 26: 14747-14754 CrossRef PubMed Google Scholar

[33] Acton O, Dubey M, Weidner T, O’Malley KM, Kim TW, Ting GG, Hutchins D, Baio JE, Lovejoy TC, Gage AH, Castner DG, Ma H, Jen AKY. Adv Funct Mater, 2011, 21: 1476-1488 CrossRef Google Scholar

[34] Park JS, Vo AN, Barriet D, Shon YS, Lee TR. Langmuir, 2005, 21: 2902-2911 CrossRef PubMed Google Scholar

[35] Kwok DY, Neumann AW. Adv Colloid Interface Sci, 1999, 81: 167-249 CrossRef Google Scholar

[36] Ebata H, Izawa T, Miyazaki E, Takimiya K, Ikeda M, Kuwabara H, Yui T. J Am Chem Soc, 2007, 129: 15732-15733 CrossRef PubMed Google Scholar

[37] Yang TY, Wen W, Yin GZ, Li XL, Gao M, Gu YL, Li L, Liu Y, Lin H, Zhang XM, Zhao B, Liu TK, Yang YG, Li Z, Zhou XT, Gao XY. Nucl Sci Tech, 2015, 26: 020101. Google Scholar

[38] Chen H, Dong S, Bai M, Cheng N, Wang H, Li M, Du H, Hu S, Yang Y, Yang T, Zhang F, Gu L, Meng S, Hou S, Guo X. Adv Mater, 2015, 27: 2113-2120 CrossRef PubMed Google Scholar

[39] Mannebach EM, Spalenka JW, Johnson PS, Cai Z, Himpsel FJ, Evans PG. Adv Funct Mater, 2012, 23: 554-564 CrossRef Google Scholar

[40] Liu J, Jiang L, Hu W, Liu Y, Zhu D. Sci China Chem, 2019, 62: 313-330 CrossRef Google Scholar

[41] Deng W, Zhang X, Dong H, Jie J, Xu X, Liu J, He L, Xu L, Hu W, Zhang X. Mater Today, 2019, 24: 17-25 CrossRef Google Scholar

[42] McCulloch I, Salleo A, Chabinyc M. Science, 2016, 352: 1521-1522 CrossRef PubMed ADS Google Scholar

[43] Uemura T, Rolin C, Ke TH, Fesenko P, Genoe J, Heremans P, Takeya J. Adv Mater, 2016, 28: 151-155 CrossRef PubMed Google Scholar

[44] Sirringhaus H. Adv Mater, 2005, 17: 2411-2425 CrossRef Google Scholar

[45] Bittle EG, Basham JI, Jackson TN, Jurchescu OD, Gundlach DJ. Nat Commun, 2016, 7: 10908 CrossRef PubMed ADS Google Scholar

[46] Wu X, Jia R, Pan J, Zhang X, Jie J. Nanoscale Horiz, 2020, 5: 454-472 CrossRef PubMed ADS Google Scholar

[47] Cho J, Mori T. Phys Rev Appl, 2016, 5: 064017 CrossRef ADS Google Scholar

[48] Wang J, Deng W, Wang W, Jia R, Xu X, Xiao Y, Zhang X, Jie J, Zhang X. Nano Res, 2019, 12: 2796-2801 CrossRef Google Scholar

[49] Zhang X, Deng W, Lu B, Fang X, Zhang X, Jie J. Nanoscale Horiz, 2020, : doi: 10.1039/D0NH00096E CrossRef PubMed Google Scholar

[50] Li H, Wu J, Takahashi K, Ren J, Wu R, Cai H, Wang J, Xin HL, Miao Q, Yamada H, Chen H, Li H. J Am Chem Soc, 2019, 141: 10007-10015 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Chemical structure of the p-type semiconductor BTBT-C12; (b) chemical structures of SAM molecules; (c) schematic structure for OTFT highlighting the nanostructure of SAM (color online).

  • Figure 2

    (a) Schematic representation of ordered SAMs with different chain densties. (b) GATR-FTIR spectra taken from the SAMs of CDPA and PhDPA. (c) XPS results showing the C 1s, P 2p binding-energy peaks of SAMs-modified AlOx dielectric. The intensities of P 2p peaks are magnified ten times. (d) XPS results showing the Al 2p and O 1s binding-energy peaks of SAMs-modified AlOx dielectric. The intensities of Al 2p peaks are magnified five times (color online).

  • Figure 3

    Reflection polarized light micrograph and AFM height images of BTBT-C12 films as dip-coated from different solution concentrations on the SAMs of CDPA (a, c, e, g) and PhDPA (b, d, f, h) (color online).

  • Figure 4

    GIXD diffraction patterns of BTBT-C12 films as dip-coated from different solution concentrations on the SAMs of CDPA (a, d) and PhDPA(b, e); (c) integrated intensity for the GIXD diffraction patterns of (a) and (b); (f) integrated intensity for the GIXD diffraction patterns of (d) and (e) (color online).

  • Figure 5

    (a) Transfer I-V curves for the OTFT of BTBT-C12 on CDPA with the highest field effect mobility; (b) gate voltage dependence of the field effect mobility obtained from the local slope in the IDS1/2-VGS curve shown in (a); (c) transfer I-V curves for an OTFT of BTBT-C12 on PhDPA; (d) gate voltage dependence of the field effect mobility obtained from the local slope in the IDS1/2-VGS curve shown in (c) (color online).

  • Figure 6

    (a) AFM images and (b) GIXD diffraction patterns of vacuum-deposited thin films of BTBT-C12 on the SAMs of CDPA and PhDPA (color online).

  • Table 1   XPS determined surface composition of SAMs-modified AlOx substrate

    SAMs

    C 1s

    P 2p

    Al 2p

    O 1s

    C/P

    C/Al

    CDPA

    22.95%

    1.10%

    29.10%

    46.85%

    20.86

    0.79

    PhDPA

    20.31%

    0.98%

    30.11%

    48.60%

    20.72

    0.67

  • Table 2   Field effect mobilities of OTFTs fabricated on CDPA- and PhDPA-modified AlOx

    SAMs

    Field effect mobility (cm2 V−1 s−1)

    Dip-coated films

    Vacuum-deposited films

    Average

    Highest

    Average

    Highest

    CDPA

    18.7±4.3

    28.1

    12.3±4.7

    22.1

    PhDPA

    4.9±2.1

    9.3

    12.2±2.8

    21.0

qqqq

Contact and support