logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 9 : 1214-1220(2020) https://doi.org/10.1007/s11426-020-9778-9

Monoradically luminescent polymers by a super acid-catalyzed polymerization and deep-red electroluminescence

More info
  • ReceivedApr 2, 2020
  • AcceptedMay 21, 2020
  • PublishedJul 20, 2020

Abstract


Funded by

the National Key Research and Development Program(2016YFB0401002)

the National Natural Science Foundation of China(51873159,61575146,21721005,91833304)

the Shenzhen Science and Technology Program(KQTD20170330110107046)

the Key Technological Innovation Program of Hubei Province(2018AAA013)

the Fundamental Research Funds for the Central Universities of China(2042019kf0234)

and the Funding Support from Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.


Acknowledgment

This work was supported by the National Key Research and Development Program (2016YFB0401002), the National Natural Science Foundation of China (51873159, 61575146, 21721005, 91833304), the Shenzhen Science and Technology Program (KQTD20170330110107046), the Key Technological Innovation Program of Hubei Province (2018AAA013), the Fundamental Research Funds for the Central Universities of China (2042019kf0234), and the Funding Support from Large-scale Instrument and Equipment Sharing Foundation of Wuhan University. The numerical calculations in this paper have been done on the supercomputing system in the Supercomputing Center of Wuhan University.


Interest statement

The authors declare no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Tang CW, VanSlyke SA. Appl Phys Lett, 1987, 51: 913-915 CrossRef ADS Google Scholar

[2] Ma Y, Zhang H, Shen J, Che C. Synth Met, 1998, 94: 245-248 CrossRef Google Scholar

[3] Baldo MA, O'Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR. Nature, 1998, 395: 151-154 CrossRef ADS Google Scholar

[4] Adachi C, Baldo MA, Forrest SR, Thompson ME. Appl Phys Lett, 2000, 77: 904-906 CrossRef ADS Google Scholar

[5] Jiang B, Ning X, Gong S, Jiang N, Zhong C, Lu ZH, Yang C. J Mater Chem C, 2017, 5: 10220-10224 CrossRef Google Scholar

[6] Li W, Pan Y, Xiao R, Peng Q, Zhang S, Ma D, Li F, Shen F, Wang Y, Yang B, Ma Y. Adv Funct Mater, 2014, 24: 1609-1614 CrossRef Google Scholar

[7] Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C. Adv Mater, 2009, 21: 4802-4806 CrossRef Google Scholar

[8] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature, 2012, 492: 234-238 CrossRef ADS Google Scholar

[9] Zeng W, Lai HY, Lee WK, Jiao M, Shiu YJ, Zhong C, Gong S, Zhou T, Xie G, Sarma M, Wong KT, Wu CC, Yang C. Adv Mater, 2018, 30: 1704961 CrossRef Google Scholar

[10] Pope M, Swenberg CE. Electronic Processes in Organic Crystals and Polymers. Oxford: Oxford University Press, 1999. Google Scholar

[11] Segal M, Baldo MA, Holmes RJ, Forrest SR, Soos ZG. Phys Rev B, 2003, 68: 075211 CrossRef ADS Google Scholar

[12] Namai H, Ikeda H, Hoshi Y, Kato N, Morishita Y, Mizuno K. J Am Chem Soc, 2007, 129: 9032-9036 CrossRef Google Scholar

[13] Ikeda H. J Photopol Sci Technol, 2008, 21: 327-332 CrossRef Google Scholar

[14] Namai H, Ikeda H, Kato N, Mizuno K. J Phys Chem A, 2007, 111: 4436-4442 CrossRef ADS Google Scholar

[15] Matsui Y, Kawahara D, Ohta E, Ikeda H. Phys Chem Chem Phys, 2013, 15: 7064-7069 CrossRef ADS Google Scholar

[16] Matsui Y, Usui K, Ikeda H, Irle S. RSC Adv, 2016, 6: 83668-83672 CrossRef Google Scholar

[17] Gamero V, Velasco D, Latorre S, López-Calahorra F, Brillas E, Juliá L. Tetrahedron Lett, 2006, 47: 2305-2309 CrossRef Google Scholar

[18] Castellanos S, Gaidelis V, Jankauskas V, Grazulevicius JV, Brillas E, López-Calahorra F, Juliá L, Velasco D. Chem Commun, 2010, 46: 5130-5132 CrossRef Google Scholar

[19] Fajarí L, Papoular R, Reig M, Brillas E, Jorda JL, Vallcorba O, Rius J, Velasco D, Juliá L. J Org Chem, 2014, 79: 1771-1777 CrossRef Google Scholar

[20] Velasco D, Castellanos S, López M, López-Calahorra F, Brillas E, Juliá L. J Org Chem, 2007, 72: 7523-7532 CrossRef Google Scholar

[21] Heckmann A, Dümmler S, Pauli J, Margraf M, Köhler J, Stich D, Lambert C, Fischer I, Resch-Genger U. J Phys Chem C, 2009, 113: 20958-20966 CrossRef Google Scholar

[22] Heckmann A, Lambert C, Goebel M, Wortmann R. Angew Chem Int Ed, 2004, 43: 5851-5856 CrossRef Google Scholar

[23] Hattori Y, Kusamoto T, Nishihara H. Angew Chem Int Ed, 2014, 53: 11845-11848 CrossRef Google Scholar

[24] Hattori Y, Kusamoto T, Nishihara H. Angew Chem Int Ed, 2015, 54: 3731-3734 CrossRef Google Scholar

[25] Hattori Y, Kusamoto T, Sato T, Nishihara H. Chem Commun, 2016, 52: 13393-13396 CrossRef Google Scholar

[26] Ai X, Chen Y, Feng Y, Li F. Angew Chem Int Ed, 2018, 57: 2869-2873 CrossRef Google Scholar

[27] Obolda A, Ai X, Zhang M, Li F. ACS Appl Mater Interfaces, 2016, 8: 35472-35478 CrossRef Google Scholar

[28] Peng Q, Obolda A, Zhang M, Li F. Angew Chem Int Ed, 2015, 54: 7091-7095 CrossRef Google Scholar

[29] Obolda A, Zhang M, Li F. Chin Chem Lett, 2016, 27: 1345-1349 CrossRef Google Scholar

[30] Gao Y, Obolda A, Zhang M, Li F. Dyes Pigments, 2017, 139: 644-650 CrossRef Google Scholar

[31] Gao Y, Xu W, Ma H, Obolda A, Yan W, Dong S, Zhang M, Li F. Chem Mater, 2017, 29: 6733-6739 CrossRef Google Scholar

[32] Dong S, Obolda A, Peng Q, Zhang Y, Marder S, Li F. Mater Chem Front, 2017, 1: 2132-2135 CrossRef Google Scholar

[33] Abdurahman A, Chen Y, Ai X, Ablikim O, Gao Y, Dong S, Li B, Yang B, Zhang M, Li F. J Mater Chem C, 2018, 6: 11248-11254 CrossRef Google Scholar

[34] Cui Z, Ye S, Wang L, Guo H, Obolda A, Dong S, Chen Y, Ai X, Abdurahman A, Zhang M, Wang L, Li F. J Phys Chem Lett, 2018, 9: 6644-6648 CrossRef Google Scholar

[35] Ai X, Evans EW, Dong S, Gillett AJ, Guo H, Chen Y, Hele TJH, Friend RH, Li F. Nature, 2018, 563: 536-540 CrossRef ADS Google Scholar

[36] Lee SY, Yasuda T, Komiyama H, Lee J, Adachi C. Adv Mater, 2016, 28: 4019-4024 CrossRef Google Scholar

[37] Wei Q, Kleine P, Karpov Y, Qiu X, Komber H, Sahre K, Kiriy A, Lygaitis R, Lenk S, Reineke S, Voit B. Adv Funct Mater, 2017, 27: 1605051 CrossRef Google Scholar

[38] Abdurahman A, Peng Q, Ablikim O, Ai X, Li F. Mater Horiz, 2019, 6: 1265-1270 CrossRef Google Scholar

[39] Hernández MCG, Zolotukhin MG, Maldonado JL, Rehmann N, Meerholz K, King S, Monkman AP, Fröhlich N, Kudla CJ, Scherf U. Macromolecules, 2009, 42: 9225-9230 CrossRef ADS Google Scholar

[40] Chen B, Xiao Z, Li Y, Yu L, Yang W, Feng J. RSC Adv, 2014, 4: 50027-50034 CrossRef Google Scholar

[41] Kasi B, Murugesan V, Kaliaperumal N. Appl Petrochem Res, 2019, 9: 91-100 CrossRef Google Scholar

[42] Xie G, Luo J, Huang M, Chen T, Wu K, Gong S, Yang C. Adv Mater, 2017, 29: 1604223 CrossRef Google Scholar

[43] Zeng X, Luo J, Zhou T, Chen T, Zhou X, Wu K, Zou Y, Xie G, Gong S, Yang C. Macromolecules, 2018, 51: 1598-1604 CrossRef ADS Google Scholar

[44] Guo H, Peng Q, Chen XK, Gu Q, Dong S, Evans EW, Gillett AJ, Ai X, Zhang M, Credgington D, Coropceanu V, Friend RH, Brédas JL, Li F. Nat Mater, 2019, 18: 977-984 CrossRef ADS Google Scholar

[45] Song X, Zhang D, Huang T, Cai M, Duan L. Sci China Chem, 2018, 61: 836-843 CrossRef Google Scholar

[46] Baysec S, Minotto A, Klein P, Poddi S, Zampetti A, Allard S, Cacialli F, Scherf U. Sci China Chem, 2018, 61: 932-939 CrossRef Google Scholar

[47] Fang X, Yan D. Sci China Chem, 2018, 61: 397-401 CrossRef Google Scholar

[48] Hua L, Yan S, Ren Z. Acta Polym Sin, 2020, 51: 457–461. Google Scholar

  • Figure 1

    (a) ESR spectra for the radical polymers in chloroform (10−3 M) at room temperature. B: magnetic field. (b) UV-vis absorption spectra of TTM-1Cz and radical polymers in neat film. (c) PL spectra of TTM-1Cz and radical polymers in 10 wt% doped mCP films. Excitation: 280 nm. (d) Transient PL spectra of the radical polymers at a time scale of 500 ns measured from 10 wt% doped mCP films (color online).

  • Scheme 1

    Synthetic route of the target polymers (color online).

  • Figure 2

    Ground state frontier orbitals of a segment fraction of PCzR-30 using DFT methods (B3LYP-D3(BJ)/def2-SVP) (color online).

  • Figure 3

    Images of (1) TTM, (2) PCzR-30, (3) PCzR-50 and (4) PCzR-70 in toluene (∼1×10−5 mol L−1) at room temperature under degassed conditions after UV irradiation (365 nm) with an UV lamp for (a) 0 min, (b) 1 min, (c) 2 min, (d) 3 min. (e) Emission intensity vs. time under the continuous/steady-state UV excitation at 365 nm (color online).

  • Figure 4

    (a) Energy level diagrams of the devices A1–A3. (b) Chemical structures of the materials used. (c) Current density-voltage-luminance curves of the devices A1–A3. (d) External quantum efficiency versus current density curves (inset: normalized EL spectra) (color online).

  • Table 1   The photophysical properties of the radical polymers

    polymers

    λema) (nm)

    PLQYa)

    τa),b) (ns)

    kra),c)(106 s−1)

    knra),d)(107 s−1)

    PCzR-30

    685

    0.25

    63

    4.0

    1.2

    PCzR-50

    696

    0.26

    56

    4.7

    1.3

    PCzR-70

    699

    0.28

    54

    5.2

    1.3

    Peak wavelength measured in 10 wt% doped mCP films. b) The lifetime of fluorescence. c) The radiative rate constants. d) The nonradiative rate constants.

qqqq

Contact and support