logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 8 : 1100-1111(2020) https://doi.org/10.1007/s11426-020-9772-0

Bioactive polypeptide hydrogels modified with RGD and N-cadherin mimetic peptide promote chondrogenic differentiation of bone marrow mesenchymal stem cells

More info
  • ReceivedApr 7, 2020
  • AcceptedMay 9, 2020
  • PublishedJun 8, 2020

Abstract


Funding

the National Natural Science Foundation of China(51973218,51622307,21574127,51520105004)

the Youth Innovation Promotion Association

Chinese Academy of Sciences.


Acknowledgment

This work was supported by the National Natural Science Foundation of China (51973218, 51622307, 21574127, 51520105004) and the Youth Innovation Promotion Association, Chinese Academy of Sciences.


Interest statement

The authors declare no conflict of interest.


Supplementary data

Supporting Information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Langer R. Mol Ther, 2000, 1: 12–15. Google Scholar

[2] Lee KY, Mooney DJ. Chem Rev, 2001, 1011869-1880 CrossRef PubMed Google Scholar

[3] Moon HJ, Ko DY, Park MH, Joo MK, Jeong B. Chem Soc Rev, 2012, 414860 CrossRef PubMed Google Scholar

[4] Tsou YH, Khoneisser J, Huang PC, Xu X. Bioactive Mater, 2016, 139-55 CrossRef PubMed Google Scholar

[5] Zhong L, Qu Y, Shi K, Chu B, Lei M, Huang K, Gu Y, Qian Z. Sci China Chem, 2018, 611553-1567 CrossRef Google Scholar

[6] Yu L, Ding J. Chem Soc Rev, 2008, 371473 CrossRef PubMed Google Scholar

[7] Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Adv Healthc Mater, 2013, 257-71 CrossRef PubMed Google Scholar

[8] Annabi N, Tamayol A, Uquillas JA, Akbari M, Bertassoni LE, Cha C, Camci-Unal G, Dokmeci MR, Peppas NA, Khademhosseini A. Adv Mater, 2015, 2685-124 CrossRef PubMed Google Scholar

[9] Xue K, Wang X, Yong PW, Young DJ, Wu YL, Li Z, Loh XJ. Adv Therap, 2019, 21800088 CrossRef Google Scholar

[10] Lv J, Wu G, Liu Y, Li C, Huang F, Zhang Y, Liu J, An Y, Ma R, Shi L. Sci China Chem, 2019, 62637-648 CrossRef Google Scholar

[11] Deming TJ. Prog Polym Sci, 2007, 32858-875 CrossRef Google Scholar

[12] He C, Zhuang X, Tang Z, Tian H, Chen X. Adv Healthc Mater, 2012, 148-78 CrossRef PubMed Google Scholar

[13] Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Biomacromolecules, 2016, 172981-2991 CrossRef PubMed Google Scholar

[14] Hu C, Liu X, Ran W, Meng J, Zhai Y, Zhang P, Yin Q, Yu H, Zhang Z, Li Y. Biomaterials, 2017, 14460-72 CrossRef PubMed Google Scholar

[15] Ren K, He C, Xiao C, Li G, Chen X. Biomaterials, 2015, 51238-249 CrossRef PubMed Google Scholar

[16] Ren K, Cui H, Xu Q, He C, Li G, Chen X. Biomacromolecules, 2016, 173862-3871 CrossRef PubMed Google Scholar

[17] Xu Q, He C, Zhang Z, Ren K, Chen X. ACS Appl Mater Interfaces, 2016, 830692-30702 CrossRef Google Scholar

[18] Zhou X, Li Z. Adv Healthc Mater, 2018, 71800020 CrossRef PubMed Google Scholar

[19] Patel M, Park S, Lee HJ, Jeong B. Tissue Eng Regen Med, 2018, 15521-530 CrossRef PubMed Google Scholar

[20] Liu R, Shi Z, Sun J, Li Z. Sci China Chem, 2018, 61: 1414–1319. Google Scholar

[21] Yan S, Zhang X, Zhang K, Di H, Feng L, Li G, Fang J, Cui L, Chen X, Yin J. J Mater Chem B, 2016, 4947-961 CrossRef PubMed Google Scholar

[22] Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 12615046-15047 CrossRef PubMed Google Scholar

[23] Kim E, Koo H. Chem Sci, 2019, 107835-7851 CrossRef PubMed Google Scholar

[24] Madl CM, Katz LM, Heilshorn SC. Adv Funct Mater, 2016, 263612-3620 CrossRef PubMed Google Scholar

[25] Xu J, Filion TM, Prifti F, Song J. Chem Asian J, 2011, 62730-2737 CrossRef PubMed Google Scholar

[26] DeForest CA, Anseth KS. Annu Rev Chem Biomol Eng, 2012, 3421-444 CrossRef PubMed Google Scholar

[27] Tibbitt MW, Rodell CB, Burdick JA, Anseth KS. Proc Natl Acad Sci USA, 2015, 11214444-14451 CrossRef PubMed ADS Google Scholar

[28] Shi S, Yu SJ, Li G, He CL, Chen XS. Sci China Technol Sci, 2020, CrossRef Google Scholar

[29] Hersel U, Dahmen C, Kessler H. Biomaterials, 2003, 244385-4415 CrossRef Google Scholar

[30] Leahy DJ, Aukhil I, Erickson HP. Cell, 1996, 84155-164 CrossRef Google Scholar

[31] Yao X, Peng R, Ding J. Adv Mater, 2013, 255257-5286 CrossRef PubMed Google Scholar

[32] DeLise AM, Tuan RS. J Cell Biochem, 2002, 87342-359 CrossRef PubMed Google Scholar

[33] Delise AM, Tuan RS. Dev Dyn, 2002, 225195-204 CrossRef PubMed Google Scholar

[34] Gumbiner BM. Nat Rev Mol Cell Biol, 2005, 6622-634 CrossRef PubMed Google Scholar

[35] Blaschuk OW, Sullivan R, David S, Pouliot Y. Dev Biol, 1990, 139227-229 CrossRef Google Scholar

[36] Williams E, Williams G, Gour BJ, Blaschuk OW, Doherty P. J Biol Chem, 2000, 2754007-4012 CrossRef PubMed Google Scholar

[37] Li R, Xu J, Wong DSH, Li J, Zhao P, Bian L. Biomaterials, 2017, 14533-43 CrossRef PubMed Google Scholar

[38] Bian L, Guvendiren M, Mauck RL, Burdick JA. Proc Natl Acad Sci USA, 2013, 11010117-10122 CrossRef PubMed ADS Google Scholar

[39] Cosgrove BD, Mui KL, Driscoll TP, Caliari SR, Mehta KD, Assoian RK, Burdick JA, Mauck RL. Nat Mater, 2016, 151297-1306 CrossRef PubMed ADS Google Scholar

[40] Kwon MY, Vega SL, Gramlich WM, Kim M, Mauck RL, Burdick JA. Adv Healthc Mater, 2018, 71701199 CrossRef PubMed Google Scholar

[41] Zhao C, Zhuang X, He C, Chen X, Jing X. Macromol Rapid Commun, 2008, 291810-1816 CrossRef Google Scholar

[42] Cheng Y, He C, Xiao C, Ding J, Zhuang X, Chen X. Polym Chem, 2011, 22627 CrossRef Google Scholar

[43] Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ. ACS Nano, 2012, 64530-4539 CrossRef PubMed Google Scholar

[44] Mann T, Leone E. Biochem J, 1953, 53140-148 CrossRef PubMed Google Scholar

[45] Chung C, Anderson E, Pera RR, Pruitt BL, Heilshorn SC. Soft Matter, 2012, 810141 CrossRef PubMed ADS Google Scholar

[46] Bian L, Hou C, Tous E, Rai R, Mauck RL, Burdick JA. Biomaterials, 2013, 34413-421 CrossRef PubMed Google Scholar

[47] M. Jonker A, A. Bode S, H. Kusters A, van Hest JCM, Löwik DWPM. Macromol Biosci, 2015, 151338-1347 CrossRef PubMed Google Scholar

[48] Even-Ram S, Artym V, Yamada KM. Cell, 2006, 126645-647 CrossRef PubMed Google Scholar

[49] Sridhar BV, Brock JL, Silver JS, Leight JL, Randolph MA, Anseth KS. Adv Healthc Mater, 2015, 4702-713 CrossRef PubMed Google Scholar

[50] Ren K, He C, Cheng Y, Li G, Chen X. Polym Chem, 2014, 55069-5076 CrossRef Google Scholar

[51] Park H, Choi B, Hu J, Lee M. Acta Biomater, 2013, 94779-4786 CrossRef PubMed Google Scholar

[52] Qu C, Bao Z, Zhang X, Wang Z, Ren J, Zhou Z, Tian M, Cheng X, Chen X, Feng C. Int J Biol Macromolecules, 2019, 12578-86 CrossRef PubMed Google Scholar

[53] Lueckgen A, Garske DS, Ellinghaus A, Mooney DJ, Duda GN, Cipitria A. Biomaterials, 2019, 217119294 CrossRef PubMed Google Scholar

[54] Ansari S, Chen C, Xu X, Annabi N, Zadeh HH, Wu BM, Khademhosseini A, Shi S, Moshaverinia A. Ann Biomed Eng, 2016, 441908-1920 CrossRef PubMed Google Scholar

[55] Hong KH, Song SC. Biomaterials, 2019, 218119338 CrossRef PubMed Google Scholar

[56] Yang J, Zhang YS, Yue K, Khademhosseini A. Acta Biomater, 2017, 571-25 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Schematic diagram of the formation of click-crosslinked polypeptide hydrogels from PLG-N3 and PLG-ADIBO for use as a cell delivery vehicle. (b) Bioactive c(RGDfK) and N-cadherin mimetic peptides introduced into the PLG backbone to construct bioactive polypeptide hydrogels (color online).

  • Scheme 1

    Routes of synthesis of PLG-ADIBO, PLG-N3 and PLG-N3/RGD/N-Cad (color online).

  • Figure 2

    1H NMR spectra of PLG (a), PLG-ADIBO (b), PLG-N3/RGD/N-Cad (c) in D2O (color online).

  • Figure 3

    (a) Photographs of the sol-gel transition of 3% (w/v) PLG. (b) Gelation time of different concentrations of PLG hydrogels at 37 °C. (c) SEM image of lyophilized 3% (w/v) PLG hydrogels. Scale bar: 100 μm. (d) Storage modulus (G′) and loss modulus (G″) of PLG hydrogels with different concentrations as a function of time. (e) In vitro degradation profiles for the 3% (w/v) hydrogels incubated in 0.01 M PBS (pH 7.4) containing 5 U/mL proteinase K, 5 U/mL elastase, and PBS without any proteinase as control, respectively (n=3) (color online).

  • Figure 4

    (a) Viability of BMSCs after exposure to the supernatant of 3% (w/v) PLG hydrogels for 24 h. PEI 25K was used as a positive control (n=3). (b, c) Confocal images of BMSCs after encapsulation in 3% (w/v) PLG hydrogels for 48 h: (b) cells were stained with Alexa Fluor 488-Phalloidin (F-actin, green) and DAPI (cell nuclei, blue). Scale bar: 50 μm; (c) cells were stained with calcein-AM and PI. Scale bar: 100 μm. (d) Live-dead cell staining of BMSCs in 3% (w/v) PLG hydrogels after incubation for 7 or 14 days. Cells were stained with calcein-AM (green, live) and PI (red, dead). Scale bar: 100 μm (color online).

  • Figure 5

    (a) In vivo implantation of 3% (w/v) PLG hydrogels after various time intervals. (b) H&E staining images of tissues surrounding the injection sites at different time periods. Scale bar: 100 μm (color online).

  • Figure 6

    (a) Proliferation of chondrocytes encapsulated in 3% (w/v) PLG hydrogels as a function of time. (b) Proliferation of BMSCs within the three types of hydrogel: 3% (w/v) PLG hydrogels, 3% (w/v) PLG+RGD/Scram hydrogels, 3% (w/v) PLG+RGD/N-Cad hydrogels (n=3), (**p<0.01, ***p<0.001) (color online).

  • Figure 7

    Chondrogenic differentiation of BMSCs in response to N-Cad-modified 3D hydrogels. (a) Quantification of GAG in hydrogels containing BMSCs after induction of chondrogenesis in culture for 3 weeks (normalized to DNA content). (b, c) Quantitative RT-PCR of aggrecan (b) and collagen II (c) in BMSCs within hydrogels during the first week of induced differentiation (normalized to the housekeeping gene GAPDH). (d, e) Representative Western blots for aggrecan and collagen II of BMSCs after induction of differentiation for 10 days (n=3), (*p<0.05, **p<0.01) (color online).

  • Table 1   Table 1 Reaction feeds, grafting ratios and grafting efficiencies of the PLG graft copolymers

    Sample

    Molecules to begrafted (X)a)

    Reaction feed ratio: X/–COOH (mol/mol)

    Grafting ratiob)

    Grafting efficiencyb)

    PLG-ADIBO

    ADIBO

    1:10

    6%

    60%

    PLG-N3

    N3

    1:10

    9%

    90%

    PLG-N3/RGD/Scram

    RGD, Scram

    1:100, 1:100

    0.52%, 0.32%

    52%, 32%

    PLG-N3/RGD/N-Cad

    RGD, N-Cad

    1:100, 1:100

    0.49%, 0.3%

    49%, 30%

    X represents the molecule to be grafted; b) calculated by 1H NMR.

qqqq

Contact and support