logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 8 : 1082-1090(2020) https://doi.org/10.1007/s11426-020-9768-x

Silicon-mediated enantioselective synthesis of structurally diverse α-amino acid derivatives

More info
  • ReceivedJan 20, 2020
  • AcceptedMay 7, 2020
  • PublishedMay 27, 2020

Abstract


Funding

the National Natural Science Foundation of China(21773051,21702211,21703051)

Zhejiang Provincial Natural Science Foundation of China(LZ18B020001,LQ19B040001,LY18B020013)

and the Hangzhou Science and Technology Bureau of China(20180432B05)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21773051, 21702211, 21703051), Zhejiang Provincial Natural Science Foundation of China (LZ18B020001, LQ19B040001, LY18B020013), and the Hangzhou Science and Technology Bureau of China (20180432B05). The authors thank K.Z. Jiang and X.Q. Xiao for their assistance on the MS and X-ray analysis, the technicians of our group, and the members of our NMR, MS and HPLC departments for their excellent service. L.-W. Xu also thank Prof. X.Q. Hu (Zhejiang University of Technology) and Prof. Y. Lu (National University of Singapore) for their help and discussion in this work.


Interest statement

The authors declare no conflict of interest.


Supplementary data

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Paquette LA. Science, 1982, 217793-800 CrossRef PubMed ADS Google Scholar

[2] Li L, Wei YL, Xu LW. Synlett, 2020, 3121-34 CrossRef Google Scholar

[3] Reich HJ, Rusek JJ, Olson RE. J Am Chem Soc, 1979, 1012225-2227 CrossRef Google Scholar

[4] Zhang HJ, Priebbenow DL, Bolm C. Chem Soc Rev, 2013, 428540-8571 CrossRef PubMed Google Scholar

[5] Schmink JR, Krska SW. J Am Chem Soc, 2011, 13319574-19577 CrossRef PubMed Google Scholar

[6] Smirnov P, Mathew J, Nijs A, Katan E, Karni M, Bolm C, Apeloig Y, Marek I. Angew Chem Int Ed, 2013, 5213717-13721 CrossRef PubMed Google Scholar

[7] Becker P, Pirwerdjan R, Bolm C. Angew Chem Int Ed, 2015, 5415493-15496 CrossRef PubMed Google Scholar

[8] Becker P, Priebbenow DL, Pirwerdjan R, Bolm C. Angew Chem Int Ed, 2014, 53269-271 CrossRef PubMed Google Scholar

[9] González J, Santamaría J, Ballesteros A. Angew Chem Int Ed, 2015, 5413678-13681 CrossRef PubMed Google Scholar

[10] Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal, 2018, 8304-309 CrossRef Google Scholar

[11] Ito K, Tamashima H, Iwasawa N, Kusama H. J Am Chem Soc, 2011, 1333716-3719 CrossRef PubMed Google Scholar

[12] Zhang FG, Eppe G, Marek I. Angew Chem Int Ed, 2016, 55714-718 CrossRef PubMed Google Scholar

[13] Tugny C, Zhang FG, Marek I. Chem Eur J, 2019, 25205-209 CrossRef PubMed Google Scholar

[14] Feng JJ, Oestreich M. Angew Chem Int Ed, 2019, 588211-8215 CrossRef PubMed Google Scholar

[15] Sasaki M, Oyamada K, Takeda K. J Org Chem, 2010, 753941-3943 CrossRef PubMed Google Scholar

[16] Takeda K, Nakajima A, Takeda M, Okamoto Y, Sato T, Yoshii E, Koizumi T, Shiro M. J Am Chem Soc, 1998, 1204947-4959 CrossRef Google Scholar

[17] Cao W, Tan D, Lee R, Tan CH. J Am Chem Soc, 2018, 1401952-1955 CrossRef PubMed Google Scholar

[18] Arai N, Suzuki K, Sugizaki S, Sorimachi H, Ohkuma T. Angew Chem Int Ed, 2008, 471770-1773 CrossRef PubMed Google Scholar

[19] Rong J, Oost R, Desmarchelier A, Minnaard AJ, Harutyunyan SR. Angew Chem Int Ed, 2015, 543038-3042 CrossRef PubMed Google Scholar

[20] Leibeling M, Shurrush KA, Werner V, Perrin L, Marek I. Angew Chem Int Ed, 2016, 556057-6061 CrossRef PubMed Google Scholar

[21] Nagy A, Collard L, Indukuri K, Leyssens T, Riant O. Chem Eur J, 2019, 25chem.201901785 CrossRef PubMed Google Scholar

[22] Maruoka K, Imoto H, Yamamoto H. J Am Chem Soc, 1994, 11612115-12116 CrossRef Google Scholar

[23] Takeda K, Sawada Y, Sumi K. Org Lett, 2012, 41031-1033 CrossRef PubMed Google Scholar

[24] Bi J, Ma R, Yang J. Chin J Org Chem, 2018, 382553-2570 CrossRef Google Scholar

[25] Patel N, Sood R, Bharatam PV. Chem Rev, 2018, 1188770-8785 CrossRef PubMed Google Scholar

[26] Yang J, Zhao J. Sci China Chem, 2018, 6197-112 CrossRef Google Scholar

[27] Chen X, Luo W, Ma H, Peng Q, Yuan WZ, Zhang Y. Sci China Chem, 2018, 61351-359 CrossRef Google Scholar

[28] Nájera C, Sansano JM. Pure Appl Chem, 2019, 91575-596 CrossRef Google Scholar

[29] Pellissier H. Chem Rev, 2016, 11614868-14917 CrossRef PubMed Google Scholar

[30] Wei L, Xiao L, Hu Y, Wang Z, Tao H, Wang C. Chin J Org Chem, 2019, 392119-2130 CrossRef Google Scholar

[31] Bai XF, Song T, Xu Z, Xia CG, Huang WS, Xu LW. Angew Chem Int Ed, 2015, 545255-5259 CrossRef PubMed Google Scholar

[32] Bai XF, Xu Z, Xia CG, Zheng ZJ, Xu LW. ACS Catal, 2015, 56016-6020 CrossRef Google Scholar

[33] Zhao Q, Vuong TMH, Bai XF, Pannecoucke X, Xu LW, Bouillon JP, Jubault P. Chem Eur J, 2018, 245644-5651 CrossRef PubMed Google Scholar

[34] Yu B, Yang KF, Bai XF, Cao J, Zheng ZJ, Cui YM, Xu Z, Li L, Xu LW. Org Lett, 2018, 202551-2554 CrossRef PubMed Google Scholar

[35] Yuan Y, Zheng ZJ, Li L, Bai XF, Xu Z, Cui YM, Cao J, Yang KF, Xu LW. Adv Synth Catal, 2018, 3603002-3008 CrossRef Google Scholar

[36] Yuan Y, Zheng ZJ, Ye F, Ma JH, Xu Z, Bai XF, Li L, Xu LW. Org Chem Front, 2018, 52759-2764 CrossRef Google Scholar

[37] Stergiades IA, Tius MA. J Org Chem, 1999, 647547-7551 CrossRef Google Scholar

[38] Nikolaev A, Orellana A. Org Lett, 2015, 175796-5799 CrossRef PubMed Google Scholar

[39] Degl’Innocenti A, Pike S, Walton DRM. Chem Commun, 1980, 24: 1201–1202. Google Scholar

[40] Capperucci A, Degl’Innocenti A, Dondoli P, Nocentini T, Reginato G, Ricci A. Tetrahedron, 2001, 576267-6276 CrossRef Google Scholar

[41] Mattson AE, Bharadwaj AR, Scheidt KA. J Am Chem Soc, 2004, 1262314-2315 CrossRef PubMed Google Scholar

[42] Nicewicz DA, Satterfield AD, Schmitt DC, Johnson JS. J Am Chem Soc, 2008, 13017281-17283 CrossRef PubMed Google Scholar

[43] Liang T, Zhao H, Gong L, Jiang H, Zhang M. iScience, 2019, 15127-135 CrossRef PubMed ADS Google Scholar

[44] Bai XF, Deng WH, Xu Z, Li FW, Deng Y, Xia CG, Xu LW. Chem Asian J, 2014, 91108-1115 CrossRef PubMed Google Scholar

[45] Cai YF, Li L, Luo MX, Yang KF, Lai GQ, Jiang JX, Xu LW. Chirality, 2011, 23397-403 CrossRef PubMed Google Scholar

[46] Wang CY, Qin ZY, Huang YL, Jin RX, Lan Q, Wang XS. iScience, 2019, 21490-498 CrossRef PubMed Google Scholar

[47] Kong L, Biletskyi B, Nuel D, Clavier H. Org Chem Front, 2018, 51600-1603 CrossRef Google Scholar

[48] Decostanzi M, Godemert J, Oudeyer S, Levacher V, Campagne JM, Leclerc E. Adv Synth Catal, 2016, 358526-531 CrossRef Google Scholar

  • Figure 1

    Catalytic asymmetric synthesis of structurally diverse amino acid derivatives from glycine aldimino esters: from (A) catalytic asymmetric (3+2) cycloaddition (metal catalysis) to (B) silicon-mediated synthesis of amino acid derivatives by fluoride-catalyzed desilylation and ring-opening processes of acylsilane-containing pyrrolidines (color online).

  • Figure 2

    A proposed mechanism of copper-catalyzed (3+2) cycloaddition reaction for the synthesis of acylsilane-substituted pyrrolidines (color online).

  • Figure 3

    Synthesis of structurally diverse amino aldehydes and corresponding amino alcohol based on the desilylation transformations of acylsilane-substituted pyrrolidines 4 in THF/H2O. The diatereoselectivities of all the products 5 were >99:1 d.r. that confirmed by 1H NMR (color online).

  • Figure 4

    The reaction of chiral acylsilane-containing pyrrolidines 4 with MeI promoted by TBAF in anhydrous DMSO. Synthesis of cinnamaldehyde-substituted linear amino ester derivatives 7 initiated by an unexpected and concerted fluoride anion-catalyzed desilylation of 4 via C–X (X=Si, N) bond cleavage. The ratio of Z/E is >99:1 for all the products (color online).

  • Figure 5

    The desilylation reaction of chiral acylsilane-containing pyrrolidines 4 promoted by TBAF in anhydrous DMSO (without MeI). Catalytic synthesis of alkene-substituted linear amino ester derivatives 8 in anhydrous DMSO initiated by an unexpected and concerted fluoride anion-promoted desilylation of 4 via C–X (X=Si, N, C) bond cleavage (color online).

  • Figure 6

    The transformation of D-4a and related experiment on the catalytic transformation of 4d in the presence of D-labeled water or DMSO (DMSO-d6). The determination of the unexpected 1,2-hydrogen transfer process (color online).

  • Figure 7

    Proposed pathways for the acylsilanes as anion equivalents in the transformations of 4 to aldehyde-substituted pyrrolidines or its derivatives under different reaction conditions. Path A: the desilylation transformations of acylsilane-substituted pyrrolidines 4 in THF/H2O; path B: the reaction of chiral acylsilane-containing pyrrolidines 4 with MeI promoted by TBAF in anhydrous DMSO; path C: the desilylation reaction of chiral acylsilane-containing pyrrolidines 4 promoted by TBAF in anhydrous DMSO (without MeI) (color online).

  • Table 1   Table 1 Optimization of catalytic asymmetric (3+2) cycloaddition of 3-phenyl-1-(trimethylsilyl)prop-2-en-1-one (1a) and methyl 2-(benzylideneamino)acetate (2a)a)

    Entry

    Variation from standard condition

    Yield(%)b)

    d.r.c)

    eed)

    1

    none

    82

    >98:2

    98

    2

    L1 instead of L10

    70

    88:12

    86

    3

    L2 instead of L10

    60

    56:44

    86(72)

    4

    L3 instead of L10

    60

    95:5

    68

    5

    L4 instead of L10

    87

    48:52

    62(32)

    6

    L5 instead of L10

    32

    97:3

    64(28)

    7

    L6 instead of L10

    43

    41:58

    34(22)

    8

    L7 instead of L10

    42

    41:58

    0(6)

    9

    L8 instead of L10

    39

    79:21

    86(30)

    10

    L9 instead of L10

    58

    86:14

    92(28)

    11

    K3PO4 instead of K2CO3

    62

    73:27

    96

    12

    Et3N instead of K2CO3

    80

    75:25

    98

    The standard reaction was carried out at 0.2 mmol scale with 3 mol% Cu(CH3CN)PF6, 5 mol% P-ligand, 10 mol% base in 2 mL THF at room temperature for 24 h. b) Determined by 1H NMR. c) Determined by 1H NMR and confirmed by HPLC. d) Determined by chiral HPLC, and the number in parentheses is the ee value of minor isomer.

  • Table 2   Table 2 Copper-catalyzed asymmetric cycloaddition of α,β-unsaturated acylsilanesa)

    Entry

    R

    Ar

    Yield(%)b)

    ee (%)c)

    d.r.d)

    1

    Ph

    Ph

    3a: 82

    98

    >98:2

    2

    p-CF3Ph

    Ph

    3b: 50

    92

    >98:2

    3

    p-ClPh

    Ph

    3c: 71

    96

    >98:2

    4

    p-MePh

    Ph

    3d: 83

    98

    >98:2

    5e)

    p-BrPh

    Ph

    3e: 60

    98

    >98:2

    6

    p-EtPh

    Ph

    3f: 40

    98

    95:5

    7

    o-FPh

    Ph

    3g: 74

    96

    >98:2

    8

    o-ClPh

    Ph

    3h: 67

    96

    >98:2

    9

    o-BrPh

    Ph

    3i: 77

    96

    >98:2

    10

    o-CF3Ph

    Ph

    3j: 53

    92

    >98:2

    11

    m-ClPh

    Ph

    3k: 52

    98

    95:5

    12

    Ph

    p-FPh

    3l: 65

    96

    >98:2

    13

    Ph

    p-ClPh

    3m: 65

    92

    >98:2

    14

    Ph

    p-BrPh

    3n: 76

    92

    >98:2

    15

    Ph

    p-MePh

    3o: 72

    98

    98:2

    16

    Ph

    p-MeOPh

    3p: 62

    96

    92:8

    17

    Ph

    o-MePh

    3q: 56

    92

    >98:2

    18

    Ph

    2-naphthyl

    3r: 72

    92

    >98:2

    19

    Ph

    m-MePh

    3s: 64

    98

    >98:2

    20

    Ph

    m-BrPh

    3t: 54

    94

    >98:2

    21f)

    Ph

    Ph

    3u: 82

    94

    >98:2

    22

    n-Pr

    Ph

    3v: 59

    0

    >98:2

    Unless otherwise noted, the reactions were carried out with 0.2 mmol of 1 and 2 (1.5 equiv.), catalyst (3 mol%), ligand (5 mol%) and base (10 mol%) in 2.0 mL of THF (2 mL) under room temperature for 24 h. b) Isolated yield. c) Determined by HPLC. d) Determined by 1H NMR. e) Gram scale catalytic cycloaddition reaction (7 mmol substrate) led to 1.91 g product 3e with 62% yield, 93% ee, and >98:2 d.r. f) For the silicon-based group [Si], the use of SiMe2Ph instead of SiMe3.

qqqq

Contact and support