logo

SCIENCE CHINA Chemistry, Volume 63 , Issue 9 : 1208-1213(2020) https://doi.org/10.1007/s11426-020-9762-0

Pestaloamides A and B, two spiro-heterocyclic alkaloid epimers from the plant endophytic fungus Pestalotiopsis sp. HS30

More info
  • ReceivedMar 28, 2020
  • AcceptedApr 26, 2020
  • PublishedMay 19, 2020

Abstract


Funded by

the Second Tibetan Plateau Scientific Expedition and Research(STEP)

the National Natural Science Foundation of China(81874298)

the CAS “Light of West China” Program(Pema-Tenzin,Puno)

the Yunnan Science Fund for Distinguished Young Scholars(2019FJ002)


Acknowledgment

This work was supported by the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (2019QZKK0502), the National Natural Science Foundation of China (81874298), the CAS “Light of West China” Program (Pema-Tenzin Puno) and the Yunnan Science Fund for Distinguished Young Scholars (2019FJ002).


Interest statement

The authors declare that they have no conflict of interest.


Supplement

Supporting information

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Guo W, Liu L, Xiang C, Chen J, Liang XJ, Ribas A, Wolchok JD. Sci China Chem, 2019, 62: 1557-1560 CrossRef Google Scholar

[2] Orange JS, Fassett MS, Koopman LA, Boyson JE, Strominger JL. Nat Immunol, 2002, 3: 1006-1012 CrossRef PubMed Google Scholar

[3] Cifaldi L, Locatelli F, Marasco E, Moretta L, Pistoia V. Trends Mol Med, 2017, 23: 1156-1175 CrossRef PubMed Google Scholar

[4] Rönsberg D, Debbab A, Mándi A, Vasylyeva V, Böhler P, Stork B, Engelke L, Hamacher A, Sawadogo R, Diederich M, Wray V, Lin WH, Kassack MU, Janiak C, Scheu S, Wesselborg S, Kurtán T, Aly AH, Proksch P. J Org Chem, 2013, 78: 12409-12425 CrossRef PubMed Google Scholar

[5] Zhu H, Wang B, Kong L, An T, Li G, Zhou H, Gong L, Zhao Z, Gong Y, Sun H, Puno P, Li Y. Cell Chem Biol, 2019, 26: 1122-1132.e6 CrossRef PubMed Google Scholar

[6] Tang JW, Kong LM, Zu WY, Hu K, Li XN, Yan BC, Wang WG, Sun HD, Li Y, Puno PT. Org Lett, 2019, 21: 771-775 CrossRef PubMed Google Scholar

[7] Wu L, Wang S, Song Y, Wang X, Yan X. Sci China Chem, 2016, 59: 30-39 CrossRef Google Scholar

[8] Fu P, Kong F, Li X, Wang Y, Zhu W. Org Lett, 2014, 16: 3708-3711 CrossRef PubMed Google Scholar

[9] Yin WB, Grundmann A, Cheng J, Li SM. J Biol Chem, 2009, 284: 100-109 CrossRef PubMed Google Scholar

[10] Fontecave M, Ollagnier-de-Choudens S, Mulliez E. Chem Rev, 2003, 103: 2149-2166 CrossRef PubMed Google Scholar

[11] Li C, Ge B, Nicotra M, Stern JNH, Kopcow HD, Chen X, Strominger JL. Proc Natl Acad Sci USA, 2008, 105: 3017-3022 CrossRef PubMed ADS Google Scholar

[12] Bae DS, Hwang YK, Lee JK, Smyth MJ, Swann J, Cretney E, Zerafa N, Yokoyama WM, Hayakawa Y. Cell Immunol, 2012, 276: 122-127 CrossRef PubMed Google Scholar

[13] Nausch N, Cerwenka A. Oncogene, 2008, 27: 5944-5958 CrossRef PubMed Google Scholar

  • Scheme 1

    Plausible biosynthetic pathways of 1 and 2 (color online).

  • Figure 1

    Structures of pestaloamides A and B (1 and 2) (color online).

  • Figure 2

    1H-1H COSY, selected HMBC, and key LR-HSQMBC correlations of 1 and 2 (color online).

  • Figure 3

    ROESY correlations of 1 and 2 (color online).

  • Figure 4

    X-ray crystallographic structure of pestaloamide A (1) (color online).

  • Figure 5

    X-ray crystal structure of pestaloamide B (2) (color online).

  • Figure 6

    (a) HCT116 cells were treated with indicated compounds or vehicle for 24 h, and then the cell surface expression of MICA/B, ULBP1, ULBP2, and ULBP3 was detected by flow cytometry. DMSO served as negative control, and ENT served as positive control. (b) The mean fluorescence intensity of NKG2D ligands was presented as the histogram. The results were presented by the means of duplicate experiments±SD (color online).

  • 12Table 1   Table 112Table 1 1H NMR (800 MHz), 13C NMR (200 MHz) and HMBC data of 1 and 2 (δ (ppm), J (Hz)) recorded in CD3OD

    No.

    1

    2

    HMBC

    δH, mult. (J)

    δC, type

    δH, mult. (J)

    δC, type

    1

    131.5 C

    131.2 C

     

    1-SCH3

    2.83 (s)

    15.5 CH3

    2.79 (s)

    15.0 CH3

    1

    2

    116.4 C

    116.6 C

     

    3-NCH3

    2.74 (s)

    25.1 CH3

    2.76 (s)

    25.1 CH3

    2, 4

    4

    168.0 C

    168.0 C

     

    5

    5.28 (d, 11.5)

    67.3 CH

    5.26 (d, 11.5)

    67.3 CH

    4, 6, 7

    6

    5.41 (d, 11.5)

    55.5 CH

    5.42 (d, 11.5)

    55.5 CH

    4, 5, 7, 8, 12

    7

    135.3 C

    135.3 C

     

    8/12

    7.64 (d, 7.3)

    129.9 CH

    7.64 (d, 7.3)

    129.9 CH

    6, 9, 10, 11

    9/11

    7.43 (t, 7.4)

    130.3 CH

    7.43 (t, 7.4)

    130.3 CH

    7, 10

    10

    7.40 (m)

    130.4 CH

    7.39 (m)

    130.4 CH

    8, 12

    14

    170.1 C

    170.3 C

     

    1′

    178.8 C

    178.9 C

     

    2′

    136.8 C

    136.8 C

     

    3′

    4.72 (s)

    69.6 CH

    4.71 (s)

    69.2 CH

    1, 1′, 2′, 4′

    4′

    204.6 C

    204.4 C

     

    5′

    117.9 C

    117.9 C

     

    6′

    38.7 C

    38.7 C

     

    7′

    6.10 (dd, 17.4, 10.6)

    146.2 CH

    6.09 (dd, 17.4, 10.6)

    146.2 CH

    5′, 6′, 9′, 10′

    8′

    b 4.98 (dd, 17.4, 1.0)

    a 4.92 (dd, 10.6, 1.0)

    111.6 CH2

    b 4.97 (dd, 17.4, 1.0)

    a 4.92 (dd, 10.6, 1.0)

    111.6 CH2

    6′, 7′

    9′

    1.38 (overlap)

    26.8 CH3

    1.38 (overlap)

    26.8 CH3

    5′, 6′, 7′, 8′, 10′

    10′

    1.38 (overlap)

    26.7 CH3

    1.38 (overlap)

    26.7 CH3

    5′, 6′, 7′, 8′, 9′

qqqq

Contact and support