logo

Elaboration of phosphoramidite ligands enabling palladium-catalyzed diastereo- and enantioselective all carbon [4+3] cycloaddition

More info
  • ReceivedFeb 10, 2020
  • AcceptedMar 7, 2020
  • PublishedApr 3, 2020

Abstract


Funded by

This work is supported by the National Natural Science Foundation of China(21772038,21971062)


Acknowledgment

This work is supported by the National Natural Science Foundation of China (21772038, 21971062). We greatly appreciate the Research Center of Analysis and Test of East China University of Science and Technology for the assistance with the MS and NMR analysis.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Trost BM, Chan DMT. J Am Chem Soc, 1979, 101: 6429-6432 CrossRef Google Scholar

[2] Yamamoto A, Ito Y, Hayashi T, Trost BM, Stambuli JP, Silverman SM, Schwörer U, Trost BM, Cramer N, Silverman SM, Trost BM, Silverman SM, Stambuli JP, Trost BM, Lam TM, Trost BM, Bringley DA, Seng PS, Trost BM, Maruniak A, Trost BM, Bringley DA, Zhang T, Cramer N, Trost BM, Bringley DA, O'Keefe BM, Trost BM, Ehmke V, O'Keefe BM, Bringley DA, Trost BM, Ehmke V, Trost BM, Wang Y, Trost BM, Zell D, Hohn C, Mata G, Maruniak A, Trost BM, Zhang L, Lam TM, Trost BM, Jiao Z, Hung CIJ. Tetrahedron Lett, 1989, 30: 375-378 CrossRef Google Scholar

[3] Trost BM, Bringley DA, Silverman SM. J Am Chem Soc, 2011, 133: 7664-7667 CrossRef PubMed Google Scholar

[4] Trost BM, Bringley DA, Trost BM, Mata G. Angew Chem Int Ed, 2013, 52: 4466-4469 CrossRef PubMed Google Scholar

[5] Trost BM, Silverman SM, Stambuli JP, Trost BM, Silverman SM, Trost BM, Silverman SM, Trost BM, Lam TM, Herbage MA. J Am Chem Soc, 2007, 129: 12398-12399 CrossRef PubMed Google Scholar

[6] Shintani R, Park S, Duan WL, Hayashi T. Angew Chem Int Ed, 2007, 46: 5901-5903 CrossRef PubMed Google Scholar

[7] Trost BM, McDougall PJ, Hartmann O, Wathen PT. J Am Chem Soc, 2008, 130: 14960-14961 CrossRef PubMed Google Scholar

[8] Trost BM, Zuo Z. Angew Chem Int Ed, 2020, 59: 1243-1247 CrossRef PubMed Google Scholar

[9] Kumari P, Liu W, Wang CJ, Dai J, Wang MX, Yang QQ, Deng YH, Shao Z. Chin J Chem, 2020, 38: 151-157 CrossRef Google Scholar

[10] Liu YZ, Wang Z, Huang Z, Zheng X, Yang WL, Deng WP. Angew Chem Int Ed, 2020, 59: 1238-1242 CrossRef PubMed Google Scholar

[11] Trost BM, Nanninga TN, Chan DMT, Trost BM, MacPherson DT, Trost BM, Schneider S. Organometallics, 1982, 1: 1543-1545 CrossRef Google Scholar

[12] Gu BQ, Yang WL, Wu SX, Wang YB, Deng WP. Org Chem Front, 2018, 5: 3430-3434 CrossRef Google Scholar

[13] de Vries AHM, Meetsma A, Feringa BL. Angew Chem Int Ed Engl, 1996, 35: 2374-2376 CrossRef Google Scholar

[14] Stempel E, Gaich T, Xu G, Chen L, Sun J, Gelis C, Levitre G, Merad J, Retailleau P, Neuville L, Masson G. Acc Chem Res, 2016, 49: 2390-2402 CrossRef PubMed Google Scholar

[15] Wu SX, Gu BQ, Xu H, Zheng X, Luo X, Deng WP. Adv Synth Catal, 2019, 361: 4302-4313 CrossRef Google Scholar

[16] CCDC 1951450 (compound 3a) and CCDC 1971932 (compound 5g) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre. Google Scholar

[17] Filipuzzi S, Pregosin PS, Albinati A, Rizzato S. Organometallics, 2006, 25: 5955-5964 CrossRef Google Scholar

  • Scheme 1

    Background of TMM chemistry (color online).

  • Scheme 2

    Trost’s efforts and our strategy in challenging [4+3] cycloaddition of TMM with dienes (color online).

  • Scheme 3

    Ligands and model reaction employed for condition optimization (color online).

  • Scheme 4

    Asymmetric [4+3] cycloaddition of TMM with pyrrolidone-3,4-dienes 4 (color online).

  • Scheme 5

    Demonstration of the synthetic utility (color online).

  • Scheme 6

    Proposed configurations and transition states for [4+3] cycloaddition (color online).

  • Table 1   Table 1 Substrate scope of indole-2,3-quinodimethanes 1a)

    Entry

    R1/R2

    Yield (%)b)

    dr c)

    ee (%)d)

    1

    H/Ph (1a)

    93 (3a)

    17:1

    >99

    2

    5-Me/Ph (1b)

    94 (3b)

    16:1

    >99

    3

    5-MeO/Ph (1c)

    94 (3c)

    17:1

    >99

    4

    5-Cl/Ph (1d)

    94 (3d)

    16:1

    >99

    5

    5-Br/Ph (1e)

    93 (3e)

    17:1

    95

    6

    6-Me/Ph (1f)

    94 (3f)

    15:1

    >99

    7

    6-Cl/Ph (1g)

    93 (3g)

    14:1

    >99

    8

    H/4-ClC6H4 (1h)

    92 (3h)

    13:1

    >99

    9

    H/4-MeC6H4 (1i)

    93 (3i)

    13:1

    >99

    10

    H/4-MeOC6H4 (1j)

    98 (3j)

    >20:1

    >99

    11

    H/3-ClC6H4 (1k)

    92 (3k)

    12:1

    >99

    12

    H/3-MeOC6H4 (1l)

    98 (3l)

    >20:1

    99

    13

    H/2-ClC6H4 (1m)

    92 (3m)

    15:1

    99

    14

    H/2-MeOC6H4 (1n)

    92 (3n)

    16:1

    >99

    15

    H/3,4-diClC6H3 (1o)

    92 (3o)

    15:1

    >99

    16

    H/3,4-diMeOC6H3 (1p)

    98 (3p)

    >20:1

    >99

    17

    H/1-naphthyl (1q)

    93 (3q)

    18:1

    99

    18e)

    H/2-thienyl (1r)

    89 (3r)

    10:1

    99

    19

    H/2-furyl (1s)

    78 (3s)

    3:1

    98/93

    Unless otherwise specified, the reaction was conducted on a 0.10 mmol scale with 1 (0.10 mmol, 1.0 equiv) and 2a (0.12 mmol, 1.2 equiv) in 1.0 mL of mesitylene at −30 °C for 24−96 h. b) Isolated yield of major diastereoisomer 3. c) The diastereomeric ratio (dr) was determined by 1H NMR spectroscopy of the crude reaction mixture. d) The ee value was determined by HPLC analysis on a chiral stationary phase. e) The reaction was conducted at 0 °C.

  • Table 2   Table 2 Substrate scope of pyrrolidone-3,4-dienes 4a)

    Entry

    PG/R

    Yield (%)b)

    drc)

    ee (%)d)

    rre)

    1f)

    Bn/Ph (4b)

    82 (5b)

    5:1

    99/96

    12:1

    2g)

    Bn/4-MeOC6H4 (4c)

    78 (5c)

    4:1

    98/77

    8:1

    3

    Bn/4-FC6H4 (4d)

    75 (5d)

    >20:1

    >99

    17:1

    4

    Bn/4-ClC6H4 (4e)

    85 (5e)

    >20:1

    98

    17:1

    5

    Ph/4-ClC6H4 (4f)

    48 (5f)

    >20:1

    >99

    15:1

    6

    PMB/4-ClC6H4 (4g)

    62 (5g)

    >20:1

    >99

    >20:1

    7f)

    PMB/Ph (4h)

    65 (5h)

    18:1

    99

    15:1

    8

    PMB/4-FC6H4 (4i)

    63 (5i)

    >20:1

    >99

    17:1

    9

    PMB/4-BrC6H4 (4j)

    65 (5j)

    >20:1

    >99

    >20:1

    10

    PMB/4-CF3C6H4 (4k)

    58 (5k)

    >20:1

    >99

    >20:1

    11f)

    PMB/4-MeC6H4 (4l)

    63 (5l)

    12:1

    98

    16:1

    12

    PMB/3-ClC6H4 (4m)

    67 (5m)

    >20:1

    99

    >20:1

    13g)

    PMB/2-ClC6H4 (4n)

    28 (5n)

    2:1

    94/71

    5:1

    14

    PMB/3,4-diClC6H3 (4o)

    68 (5o)

    >20:1

    >99

    >20:1

    15f)

    PMB/1-naphthyl (4p)

    58 (5p)

    3:1

    97/98

    >20:1

    16f)

    PMB/2-thienyl (4q)

    75 (5q)

    >20:1

    >99

    19:1

    17f)

    PMB/2-styryl (4r)

    64 (5r)

    10:1

    >99

    >20:1

    Unless otherwise specified, the reaction was conducted on a 0.10 mmol scale with 4 (0.10 mmol, 1.0 equiv) and 2a (0.12 mmol, 1.2 equiv) in 1.0 mL of toluene at −20 °C for 24−96 h. b) Isolated yield of [4+3] cycloadducts 5. c) The diastereomeric ratio (dr) was determined by 1H NMR spectroscopy of the crude reaction mixture. d) The ee value was determined by HPLC analysis on a chiral stationary phase. e) The regioselectivity ratio (rr, 5/6) was determined by 1H NMR spectroscopy of the crude reaction mixture. f) The reaction was conducted at 0 °C. g) The reaction was conducted at 40 °C.

qqqq

Contact and support