Organic solar cells based on chlorine functionalized benzo[1,2-b:4,5-b′]difuran-benzo[1,2-c:4,5-c′]dithiophene-4,8-dione copolymer with efficiency exceeding 13%

More info
  • ReceivedNov 27, 2019
  • AcceptedJan 10, 2020
  • PublishedMar 11, 2020


Funded by

the National Natural Science Foundation of China(21674007,51825301,21975012,21875204,21875204,21734001)


This work was supported by the National Natural Science Foundation of China (21674007, 51825301, 21975012, 21875204, 21875204, 21734001). HYW is grateful for the financial support from the National Research Foundation (NRF) of Korea (NRF-2019R1A2C2085290, 2019R1A6A1A11044070).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Heeger AJ. Adv Mater, 2014, 26: 10-28 CrossRef PubMed Google Scholar

[2] Inganäs O. Adv Mater, 2018, 30: 1800388 CrossRef PubMed Google Scholar

[3] Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Chem Rev, 2015, 115: 12666-12731 CrossRef PubMed Google Scholar

[4] Li G, Zhu R, Yang Y. Nat Photon, 2012, 6: 153-161 CrossRef Google Scholar

[5] Cai Y, Huo L, Sun Y. Adv Mater, 2017, 29: 1605437 CrossRef PubMed Google Scholar

[6] Blom P  , Mihailetchi V , Koster L  , Markov D . Adv Mater, 2007, 19: 1551-1566 CrossRef Google Scholar

[7] Lee H, Park C, Sin DH, Park JH, Cho K. Adv Mater, 2018, : 1800453 CrossRef PubMed Google Scholar

[8] Dai S, Zhan X. Adv Energy Mater, 2018, 8: 1800002 CrossRef Google Scholar

[9] Dennler G, Scharber MC, Brabec CJ. Adv Mater, 2009, 21: 1323-1338 CrossRef Google Scholar

[10] Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Chem Rev, 2017, 117: 6467-6499 CrossRef PubMed Google Scholar

[11] Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, Zhang J, Huang F, Yan H. Chem Rev, 2018, 118: 3447-3507 CrossRef Google Scholar

[12] Hou J, Inganäs O, Friend RH, Gao F. Nat Mater, 2018, 17: 119-128 CrossRef PubMed Google Scholar

[13] Zhang J, Tan HS, Guo X, Facchetti A, Yan H. Nat Energy, 2018, 3: 720-731 CrossRef Google Scholar

[14] Fu H, Wang Z, Sun Y. Angew Chem Int Ed, 2019, 58: 4442-4453 CrossRef PubMed Google Scholar

[15] Lin Y, Wang J, Zhang ZG, Bai H, Li Y, Zhu D, Zhan X. Adv Mater, 2015, 27: 1170-1174 CrossRef PubMed Google Scholar

[16] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[17] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[18] Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, : 1903441 CrossRef PubMed Google Scholar

[19] Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872 CrossRef PubMed Google Scholar

[20] Zhang S, Qin Y, Zhu J, Hou J. Adv Mater, 2018, 30: 1800868 CrossRef PubMed Google Scholar

[21] Liu T, Huo L, Chandrabose S, Chen K, Han G, Qi F, Meng X, Xie D, Ma W, Yi Y, Hodgkiss JM, Liu F, Wang J, Yang C, Sun Y. Adv Mater, 2018, 30: 1707353 CrossRef PubMed Google Scholar

[22] Su W, Li G, Fan Q, Zhu Q, Guo X, Chen J, Wu J, Ma W, Zhang M, Li Y. J Mater Chem A, 2019, 7: 2351-2359 CrossRef Google Scholar

[23] Liao Z, Xie Y, Chen L, Tan Y, Huang S, An Y, Ryu HS, Meng X, Liao X, Huang B, Xie Q, Woo HY, Sun Y, Chen Y. Adv Funct Mater, 2019, 29: 1808828 CrossRef Google Scholar

[24] Pan X, Huo L. Chin J Org Chem, 2016, 36: 687 CrossRef Google Scholar

[25] Bin H, Zhong L, Yang Y, Gao L, Huang H, Sun C, Li X, Xue L, Zhang ZG, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1700746 CrossRef Google Scholar

[26] Warnan J, Cabanetos C, El Labban A, Hansen MR, Tassone C, Toney MF, Beaujuge PM. Adv Mater, 2014, 26: 4357-4362 CrossRef PubMed Google Scholar

[27] Gao Y, Wang Z, Zhang J, Zhang H, Lu K, Guo F, Yang Y, Zhao L, Wei Z, Zhang Y. J Mater Chem A, 2018, 6: 4023-4031 CrossRef Google Scholar

[28] Huo L, Liu T, Fan B, Zhao Z, Sun X, Wei D, Yu M, Liu Y, Sun Y. Adv Mater, 2015, 27: 6969-6975 CrossRef PubMed Google Scholar

[29] Qiao S, Li X, Wang H, Zhang B, Li Z, Zhao J, Chen W, Yang R. Sol RRL, 2019, : 1900159 CrossRef Google Scholar

[30] Li X, Weng K, Ryu HS, Guo J, Zhang X, Xia T, Fu H, Wei D, Min J, Zhang Y, Woo HY, Sun Y. Adv Funct Mater, 2020, : 1906809 CrossRef Google Scholar

[31] Sun J, Ma X, Zhang Z, Yu J, Zhou J, Yin X, Yang L, Geng R, Zhu R, Zhang F, Tang W. Adv Mater, 2018, 30: 1707150 CrossRef PubMed Google Scholar

[32] Zhang ZG, Yang Y, Yao J, Xue L, Chen S, Li X, Morrison W, Yang C, Li Y. Angew Chem Int Ed, 2017, 56: 13503-13507 CrossRef PubMed Google Scholar

[33] Cui Y, Wang Y, Bergqvist J, Yao H, Xu Y, Gao B, Yang C, Zhang S, Inganäs O, Gao F, Hou J. Nat Energy, 2019, 4: 768-775 CrossRef Google Scholar

[34] Yu ZP, Liu ZX, Chen FX, Qin R, Lau TK, Yin JL, Kong X, Lu X, Shi M, Li CZ, Chen H. Nat Commun, 2019, 10: 2152 CrossRef PubMed Google Scholar

[35] Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, Lu X, Yip HL, So SK, Beaupré S, Mainville M, Johnson PA, Leclerc M, Chen H, Peng H, Li Y, Zou Y. Adv Mater, 2019, 31: 1807577 CrossRef PubMed Google Scholar

[36] Zhao W, Qian D, Zhang S, Li S, Inganäs O, Gao F, Hou J. Adv Mater, 2016, 28: 4734-4739 CrossRef PubMed Google Scholar

[37] Ye L, Xie Y, Weng K, Ryu HS, Li C, Cai Y, Fu H, Wei D, Woo HY, Tan S, Sun Y. Nano Energy, 2019, 58: 220-226 CrossRef Google Scholar

[38] Kyaw AKK, Wang DH, Gupta V, Leong WL, Ke L, Bazan GC, Heeger AJ. ACS Nano, 2013, 7: 4569-4577 CrossRef PubMed Google Scholar

[39] Xia T, Cai Y, Fu H, Sun Y. Sci China Chem, 2019, 62: 662-668 CrossRef Google Scholar

  • Figure 1

    (a) Molecular structures of PBF1-C, PBF1-C-2Cl, and Y6. (b) Normalized absorption of PBF1-C, PBF1-C-2Cl, and Y6 films. Absorption of PBF1-C (c) and PBF1-C-2Cl (d) in chlorobenzene solutions at different temperature. (e) Energy level diagram of PBF1-C, PBF1-C-2Cl, and Y6 obtained from cyclic voltammetry measurements. 2D GIWAXS patterns for PBF1-C (f) and PBF1-C-2Cl (g) neat film (color online).

  • Figure 2

    (a) Current density-voltage (J-V) curves and (b) the corresponding EQE spectra of PBF1-C:Y6 and PBF1-C-2Cl:Y6 devices. (c) Jph versus Veff curves and (d) Jsc versus light intensity of PBF1-C:Y6 and PBF1-C-2Cl:Y6 devices (color online).

  • Figure 3

    AFM and TEM images of PBF1-C:Y6 (a–c) and PBF1-C-2Cl:Y6 (d–f) (color online).

  • Figure 4

    2D GIWAXS patterns for (a) PBF1-C:Y6 blend film, (b) PBF1-C-2Cl:Y6 blend film, and (c) the corresponding out-of-plane and in-plane line-cut profiles (the dashed line represents the in-plane direction, and the solid line shows the out-of-plane direction) (color online).

  • Table 1   Optical and electrochemical data of PBF1-C, PBF1-C-2Cl, and Y6

    λmax a) (nm)

    λmaxb) (nm)

    λonsetb) (nm)

    Egopt c) (eV)

    Eox (V)

    HOMO (eV)

    Ered (V)

    LUMO (eV)



























    In dilute chloroform solution. b) In thin film drop cast from chloroform solution. c) Estimated from empirical formula: Egopt=1240/λonset.

  • Table 2   The photovoltaic parameters of OSCs with PBF1-C:Y6 and PBF1-C-2Cl:Y6 as active layers

    Active layer

    Voc (V)

    Jsc(mA cm−2)

    Jsc,cal(mA cm−2)

    FF (%)

    PCEa) (%)





















    The average values with standard deviations were obtained from ten devices and the maximum values are shown in parenthesis.


Contact and support