17.1%-Efficiency organic photovoltaic cell enabled with two higher-LUMO-level acceptor guests as the quaternary strategy

More info
  • ReceivedDec 9, 2019
  • AcceptedDec 20, 2019
  • PublishedMar 11, 2020


Funded by

the National Natural Science Foundation of China(91433202,21773262,21327805)


This work was supported by the National Natural Science Foundation of China (91433202, 21773262, 21327805) and Taishan Scholars Program of Shandong Province (tsqn201812101).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Yuan J, Zhang Y, Zhou L, Zhang G, Yip HL, Lau TK, Lu X, Zhu C, Peng H, Johnson PA, Leclerc M, Cao Y, Ulanski J, Li Y, Zou Y. Joule, 2019, 3: 1140-1151 CrossRef Google Scholar

[2] Fan B, Zhang D, Li M, Zhong W, Zeng Z, Ying L, Huang F, Cao Y. Sci China Chem, 2019, 62: 746-752 CrossRef Google Scholar

[3] Xu X, Feng K, Bi Z, Ma W, Zhang G, Peng Q. Adv Mater, 2019, 31: 1901872 CrossRef PubMed Google Scholar

[4] Sun H, Liu T, Yu J, Lau TK, Zhang G, Zhang Y, Su M, Tang Y, Ma R, Liu B, Liang J, Feng K, Lu X, Guo X, Gao F, Yan H. Energy Environ Sci, 2019, : 3328-3337 CrossRef Google Scholar

[5] Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, Xian K, Xu B, Zhang S, Peng J, Wei Z, Gao F, Hou J. Nat Commun, 2019, 10: 2515 CrossRef PubMed Google Scholar

[6] Hong L, Yao H, Wu Z, Cui Y, Zhang T, Xu Y, Yu R, Liao Q, Gao B, Xian K, Woo HY, Ge Z, Hou J. Adv Mater, 2019, 31: 1903441 CrossRef PubMed Google Scholar

[7] Li K, Wu Y, Tang Y, Pan M‐, Ma W, Fu H, Zhan C, Yao J. Adv Energy Mater, 2019, 9: 1901728 CrossRef Google Scholar

[8] Chang Y, Lau TK, Pan MA, Lu X, Yan H, Zhan C. Mater Horiz, 2019, 6: 2094-2102 CrossRef Google Scholar

[9] Ma Y, Zhou X, Cai D, Tu Q, Ma W, Zheng Q. Mater Horiz, 2020, 5: 117-124 CrossRef Google Scholar

[10] Yu R, Yao H, Cui Y, Hong L, He C, Hou J. Adv Mater, 2019, 31: 1902302 CrossRef PubMed Google Scholar

[11] Yan T, Song W, Huang J, Peng R, Huang L, Ge Z. Adv Mater, 2019, 31: 1902210 CrossRef PubMed Google Scholar

[12] Pan MA, Lau TK, Tang Y, Wu YC, Liu T, Li K, Chen MC, Lu X, Ma W, Zhan C. J Mater Chem A, 2019, 7: 20713-20722 CrossRef Google Scholar

[13] Honda S, Ohkita H, Benten H, Ito S. Chem Commun, 2010, 46: 6596-6598 CrossRef PubMed Google Scholar

[14] Ameri T, Min J, Li N, Machui F, Baran D, Forster M, Schottler KJ, Dolfen D, Scherf U, Brabec CJ. Adv Energy Mater, 2012, 2: 1198-1202 CrossRef Google Scholar

[15] Lu L, Xu T, Chen W, Landry ES, Yu L. Nat Photon, 2014, 8: 716-722 CrossRef Google Scholar

[16] Yang YM, Chen W, Dou L, Chang WH, Duan HS, Bob B, Li G, Yang Y. Nat Photon, 2015, 9: 190-198 CrossRef Google Scholar

[17] Zhong L, Gao L, Bin H, Hu Q, Zhang ZG, Liu F, Russell TP, Zhang Z, Li Y. Adv Energy Mater, 2017, 7: 1602215 CrossRef Google Scholar

[18] Benten H, Nishida T, Mori D, Xu H, Ohkita H, Ito S. Energy Environ Sci, 2016, 9: 135-140 CrossRef Google Scholar

[19] Cheng P, Wang J, Zhang Q, Huang W, Zhu J, Wang R, Chang SY, Sun P, Meng L, Zhao H, Cheng HW, Huang T, Liu Y, Wang C, Zhu C, You W, Zhan X, Yang Y. Adv Mater, 2018, 30: 1801501 CrossRef PubMed Google Scholar

[20] Wu W, Zhang G, Xu X, Wang S, Li Y, Peng Q. Adv Funct Mater, 2018, 28: 1707493 CrossRef Google Scholar

[21] Felekidis N, Wang E, Kemerink M. Energy Environ Sci, 2016, 9: 257-266 CrossRef Google Scholar

[22] Baran D, Ashraf RS, Hanifi DA, Abdelsamie M, Gasparini N, Röhr JA, Holliday S, Wadsworth A, Lockett S, Neophytou M, Emmott CJM, Nelson J, Brabec CJ, Amassian A, Salleo A, Kirchartz T, Durrant JR, McCulloch I. Nat Mater, 2017, 16: 363-369 CrossRef PubMed Google Scholar

[23] Chang Y, Zhang X, Tang Y, Gupta M, Su D, Liang J, Yan D, Li K, Guo X, Ma W, Yan H, Zhan C. Nano Energy, 2019, 64: 103934 CrossRef Google Scholar

[24] Chen H, Guo Y, Chao P, Liu L, Chen W, Zhao D, He F. Sci China Chem, 2019, 62: 238-244 CrossRef Google Scholar

[25] Nian L, Kan Y, Wang H, Gao K, Xu B, Rong Q, Wang R, Wang J, Liu F, Chen J, Zhou G, Russell TP, Jen AKY. Energy Environ Sci, 2018, 11: 3392-3399 CrossRef Google Scholar

[26] Su W, Fan Q, Guo X, Meng X, Bi Z, Ma W, Zhang M, Li Y. Nano Energy, 2017, 38: 510-517 CrossRef Google Scholar

[27] Hu Z, Zhang F, An Q, Zhang M, Ma X, Wang J, Zhang J, Wang J. ACS Energy Lett, 2018, 3: 555-561 CrossRef Google Scholar

[28] Jiang W, Yu R, Liu Z, Peng R, Mi D, Hong L, Wei Q, Hou J, Kuang Y, Ge Z. Adv Mater, 2018, 30: 1703005 CrossRef PubMed Google Scholar

[29] Liu T, Luo Z, Fan Q, Zhang G, Zhang L, Gao W, Guo X, Ma W, Zhang M, Yang C, Li Y, Yan H. Energy Environ Sci, 2018, 11: 3275-3282 CrossRef Google Scholar

[30] Zhang J, Zhang Y, Fang J, Lu K, Wang Z, Ma W, Wei Z. J Am Chem Soc, 2015, 137: 8176-8183 CrossRef PubMed Google Scholar

[31] Li Z, Fan B, He B, Ying L, Zhong W, Liu F, Huang F, Cao Y. Sci China Chem, 2018, 61: 427-436 CrossRef Google Scholar

[32] Zhang G, Zhang K, Yin Q, Jiang XF, Wang Z, Xin J, Ma W, Yan H, Huang F, Cao Y. J Am Chem Soc, 2017, 139: 2387-2395 CrossRef PubMed Google Scholar

[33] Chen Y, Ye P, Zhu ZG, Wang X, Yang L, Xu X, Wu X, Dong T, Zhang H, Hou J, Liu F, Huang H. Adv Mater, 2017, 29: 1603154 CrossRef PubMed Google Scholar

[34] Zhang Z, Ding Z, Jones DJ, Wong WWH, Kan B, Bi Z, Wan X, Ma W, Chen Y, Long X, Dou C, Liu J, Wang L. Sci China Chem, 2018, 61: 1025-1033 CrossRef Google Scholar

[35] Li W, Yan D, Liu F, Russell T, Zhan C, Yao J. Sci China Chem, 2018, 61: 1609-1618 CrossRef Google Scholar

[36] Yan D, Xin J, Li W, Liu S, Wu H, Ma W, Yao J, Zhan C. ACS Appl Mater Interfaces, 2019, 11: 766-773 CrossRef Google Scholar

[37] Shen F, Yan D, Li W, Meng H, Huang J, Li X, Xu J, Zhan C. Mater Chem Front, 2019, 3: 301-307 CrossRef Google Scholar

[38] Liu L, Chen H, Chen W, He F. J Mater Chem A, 2019, 7: 7815-7822 CrossRef Google Scholar

[39] Bi Z, Zhu Q, Xu X, Naveed HB, Sui X, Xin J, Zhang L, Li T, Zhou K, Liu X, Zhan X, Ma W. Adv Funct Mater, 2019, 29: 1806804 CrossRef Google Scholar

[40] Li W, Liu W, Zhang X, Yan D, Liu F, Zhan C. Macromol Rapid Commun, 2019, 40: 1900353 CrossRef PubMed Google Scholar

  • Figure 1

    Molecular structures of the donor polymer and the host and guest acceptors (color online).

  • Figure 2

    Film absorption spectra (a) and energy levels (b) of donor polymer and the host (Y6) and guest (IDIC and PC71BM) acceptors. The energy levels of PM6 and the host and guest acceptors were measured under the same experimental conditions [7,12] (color online).

  • Figure 3

    The J-V curve (a) and EQE spectrum (b) of the optimized quaternary device. The insert in (a) is the histogram of the PCEs of the quaternary solar cells (color online).

  • Figure 4

    (a) The illuminated J-V curves of the quaternary solar cells fabricated under different acceptor ratios. (b–e) The plots of the photovoltaic parameters (b), of the hole and electron mobilities (c), of the Jph,sc and Jph,sat (d), and of the values α, n, Rs and Rsh (e) versus the compositions of the three acceptor materials. (f) The dark J-V curves of the quaternary solar cells fabricated under different acceptor ratios (color online).

  • Figure 5

    Photo-fluorescence (PL) spectra of the pure donor polymer and the host and guest acceptor films (a) and binary, ternary and quaternary blended films (b) (color online).

  • Figure 6

    (a, b) fs-TA spectra of neat Y6 and PM6:Y6:IDIC:PC71BM (1:1.0:0.2:0.1) quaternary blends obtained under excitation with 832 nm wavelength light. (c, d) Comparison of the the kinetic and fitting curves at 600 nm for the binary, ternary and quaternary blends (color online).

  • Figure 7

    The TEM (a–f) and AFM height (g–l) and phase (m–r) images of the quaternary solar cell blend films fabricated under different acceptor ratios: PM6:Y6:IDIC:PC71BM=1:1:0:0.3 (a, g, m), 1:1:0.1:0.2 (b, h, n), 1:1:0.2:0.1 (c, i, o), 1:1.1:0.2:0.1 (d, j, p), 1:1.2:0.2:0.1 (e, k, q), and 1:1:0.3:0 (f, l, r) (color online).

  • Table 1   The photovoltaic data with different electron-acceptor materials. The electron-donor material is PM6 for all PSCs. All data were obtained under illumination of AM 1.5G light source


    Voca) (V)

    Jsc a) (mA/cm2)

    FF a)

    PCEave a) (%)







    0.851 (0.850±0.001)

    25.28 (25.01±0.31)

    75.15 (74.86±0.35)

    16.16 (16.01±0.18)


    0.866 (0.865±0.001)

    25.61 (25.18±0.57)

    74.72 (74.31±0.45)

    16.57 (16.41±0.22)


    0.866 (0.865±0.001)

    26.19 (25.91±0.31)

    75.29 (74.99±0.31)

    17.07 (16.98±0.11)


    0.867 (0.866±0.001)

    25.88 (25.67±0.28)

    74.15 (73.82±0.38)

    16.64 (16.49±0.19)


    0.868 (0.867±0.001)

    25.12 (24.96±0.23)

    75.02 (74.76±0.34)

    16.34 (16.21±0.15)


    0.869 (0.867±0.002)

    24.55 (24.31±0.26)

    75.59 (75.11±0.52)

    16.13 (16.04±0.14)











    Average values from 20 devices shown in parentheses. b) Data from ref. [7]. c) Data from ref. [12].


Contact and support