Covalent organic hollow nanospheres constructed by using AIE-active units for nitrophenol explosives detection

More info
  • ReceivedNov 8, 2019
  • AcceptedDec 18, 2019
  • PublishedMar 11, 2020


Funded by

the National Natural Science Foundation of China(21835001,51773080,21674041,51573068,21221063)

Program for Changbaishan Scholars of Jilin Province

Jilin Province Project(20160101305JC)

and the ‘‘Talents Cultivation Program’’ of Jilin University.


This work was supported by the National Natural Science Foundation of China (21835001, 51773080, 21674041, 51573068, 21221063), Program for Changbaishan Scholars of Jilin Province, Jilin Province Project (20160101305JC), and the ‘‘Talents Cultivation Program’’ of Jilin University.

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Lichtenstein A, Havivi E, Shacham R, Hahamy E, Leibovich R, Pevzner A, Krivitsky V, Davivi G, Presman I, Elnathan R, Engel Y, Flaxer E, Patolsky F. Nat Commun, 2014, 5: 4195 CrossRef PubMed Google Scholar

[2] Wang DH, Cui YZ, Tao FR, Niu QF, Li TD, Xu H. Sens Actuat B-Chem, 2016, 225: 319-326 CrossRef Google Scholar

[3] Wong MH, Giraldo JP, Kwak SY, Koman VB, Sinclair R, Lew TTS, Bisker G, Liu P, Strano MS. Nat Mater, 2017, 16: 264-272 CrossRef PubMed Google Scholar

[4] Sodkhomkhum R, Masik M, Watchasit S, Suksai C, Boonmak J, Youngme S, Wanichacheva N, Ervithayasuporn V. Sens Actuat B-Chem, 2017, 245: 665-673 CrossRef Google Scholar

[5] Gao K, Guo Y, Niu Q, Han L, Zhou L, Wang L. Sens Actuat B-Chem, 2018, 262: 298-305 CrossRef Google Scholar

[6] Sylvia JM, Janni JA, Klein JD, Spencer KM. Anal Chem, 2000, 72: 5834-5840 CrossRef PubMed Google Scholar

[7] Robert H, Prado PJ. Appl Magn Reson, 2004, 25: 395-410 CrossRef Google Scholar

[8] Roscioli KM, Davis E, Siems WF, Mariano A, Su W, Guharay SK, Hill Jr. HH. Anal Chem, 2011, 83: 5965-5971 CrossRef PubMed Google Scholar

[9] Harding G. Radiat Phys Chem, 2004, 71: 869-881 CrossRef Google Scholar

[10] Engel Y, Elnathan R, Pevzner A, Davidi G, Flaxer E, Patolsky F. Angew Chem Int Ed, 2010, 49: 6830-6835 CrossRef PubMed Google Scholar

[11] McQuade DT, Pullen AE, Swager TM. Chem Rev, 2000, 100: 2537-2574 CrossRef PubMed Google Scholar

[12] Rose A, Zhu Z, Madigan CF, Swager TM, Bulović V. Nature, 2005, 434: 876-879 CrossRef PubMed Google Scholar

[13] Hu Z, Deibert BJ, Li J. Chem Soc Rev, 2014, 43: 5815-5840 CrossRef PubMed Google Scholar

[14] Chen Q, Cheng J, Wang J, Li L, Liu Z, Zhou X, You Y, Huang W. Sci China Chem, 2019, 62: 205-211 CrossRef Google Scholar

[15] Li QY, Ma Z, Zhang WQ, Xu JL, Wei W, Lu H, Zhao X, Wang XJ. Chem Commun, 2016, 52: 11284-11287 CrossRef PubMed Google Scholar

[16] Kumar V, Maiti B, Chini MK, De P, Satapathi S. Sci Rep, 2019, 9: 7269 CrossRef PubMed Google Scholar

[17] Dalapati S, Jin E, Addicoat M, Heine T, Jiang D. J Am Chem Soc, 2016, 138: 5797-5800 CrossRef PubMed Google Scholar

[18] Tawfik SM, Sharipov M, Kakhkhorov S, Elmasry MR, Lee YI. Adv Sci, 2019, 6: 1801467 CrossRef PubMed Google Scholar

[19] Ma H, He C, Li X, Ablikim O, Zhang S, Zhang M. Sens Actuat B-Chem, 2016, 230: 746-752 CrossRef Google Scholar

[20] Mei J, Leung NLC, Kwok RTK, Lam JWY, Tang BZ. Chem Rev, 2015, 115: 11718-11940 CrossRef PubMed Google Scholar

[21] Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Chem Soc Rev, 2011, 40: 79-93 CrossRef PubMed Google Scholar

[22] Thomas SW, Joly GD, Swager TM. Chem Rev, 2007, 107: 1339-1386 CrossRef PubMed Google Scholar

[23] Chen J, Xie Z, Lam JWY, Law CCW, Tang BZ. Macromolecules, 2003, 36: 1108-1117 CrossRef Google Scholar

[24] Yuan WZ, Zhao H, Shen XY, Mahtab F, Lam JWY, Sun JZ, Tang BZ. Macromolecules, 2009, 42: 9400-9411 CrossRef Google Scholar

[25] Chua MH, Zhou H, Lin TT, Wu J, Xu JW. J Polym Sci Part A, 2017, 55: 672-681 CrossRef Google Scholar

[26] Liang G, Weng LT, Lam JWY, Qin W, Tang BZ. ACS Macro Lett, 2014, 3: 21-25 CrossRef Google Scholar

[27] Zhou H, Li J, Chua MH, Yan H, Tang BZ, Xu J. Polym Chem, 2014, 5: 5628-5637 CrossRef Google Scholar

[28] Chen T, Yin H, Chen ZQ, Zhang GF, Xie NH, Li C, Gong WL, Tang BZ, Zhu MQ. Small, 2016, 12: 6547-6552 CrossRef PubMed Google Scholar

[29] Liu J, Zhong Y, Lu P, Hong Y, Lam JWY, Faisal M, Yu Y, Wong KS, Tang BZ. Polym Chem, 2010, 1: 426-429 CrossRef Google Scholar

[30] Liu S, Jiang S, Xu J, Huang Z, Li F, Fan X, Luo Q, Tian W, Liu J, Xu B. Macromol Rapid Commun, 2019, 40: 1800892 CrossRef PubMed Google Scholar

[31] Fan X, Tian R, Liu S, Qiao S, Luo Q, Yan T, Fu S, Zhang X, Xu J, Liu J. Polym Chem, 2018, 9: 1160-1163 CrossRef Google Scholar

[32] Fan X, Tian R, Wang T, Liu S, Wang L, Xu J, Liu J, Ma M, Wu Z. Nanoscale, 2018, 10: 22155-22160 CrossRef PubMed Google Scholar

[33] Baek K, Hwang I, Roy I, Shetty D, Kim K. Acc Chem Res, 2015, 48: 2221-2229 CrossRef PubMed Google Scholar

[34] Pan L, Chortos A, Yu G, Wang Y, Isaacson S, Allen R, Shi Y, Dauskardt R, Bao Z. Nat Commun, 2014, 5: 3002 CrossRef PubMed Google Scholar

[35] Guo CX, Li CM. Phys Chem Chem Phys, 2010, 12: 12153-12159 CrossRef PubMed Google Scholar

[36] Huang KC, Hu CW, Tseng CY, Liu CY, Yeh MH, Wei HY, Wang CC, Vittal R, Chu CW, Ho KC. J Mater Chem, 2012, 22: 14727-14733 CrossRef Google Scholar

[37] Li W, Zhang Q, Zheng G, Seh ZW, Yao H, Cui Y. Nano Lett, 2013, 13: 5534-5540 CrossRef PubMed Google Scholar

[38] Li XL, Lou TJ, Sun XM, Li YD. Inorg Chem, 2004, 43: 5442-5449 CrossRef PubMed Google Scholar

[39] Cheng Z, Dai Z, Li J, Wang H, Huang MR, Li XG, Liao Y. Chem Eng J, 2019, 357: 776-786 CrossRef Google Scholar

[40] Das G, Skorjanc T, Sharma SK, Gándara F, Lusi M, Shankar Rao DS, Vimala S, Krishna Prasad S, Raya J, Han DS, Jagannathan R, Olsen JC, Trabolsi A. J Am Chem Soc, 2017, 139: 9558-9565 CrossRef PubMed Google Scholar

[41] Wei Z, Wan M. Adv Mater, 2002, 14: 1314-1317 CrossRef Google Scholar

[42] Hu M, Yang W, Liu S, Zhu W, Li Y, Hu B, Chen Z, Shen R, Cheong WC, Wang Y, Zhou K, Peng Q, Chen C, Li Y. Chem Sci, 2019, 10: 614-619 CrossRef PubMed Google Scholar

[43] Wang Z, Lu P, Chen S, Gao Z, Shen F, Zhang W, Xu Y, Kwok HS, Ma Y. J Mater Chem, 2011, 21: 5451-5456 CrossRef Google Scholar

[44] Wang B, Xie Z, Li Y, Yang Z, Chen L. Macromolecules, 2018, 51: 3443-3449 CrossRef Google Scholar

[45] Taylor J, Brandbyge M, Stokbro K. Phys Rev Lett, 2002, 89: 138301 CrossRef PubMed Google Scholar

[46] Perdew JP, Burke K, Ernzerhof M. Phys Rev Lett, 1996, 77: 3865-3868 CrossRef Google Scholar

[47] Cheng J, Feng S, Han S, Zhang X, Chen Y, Zhou X, Wang R, Li X, Hu H, Zhang J. ACS Nano, 2016, 10: 9957-9973 CrossRef Google Scholar

[48] Zhou X, Zhao Y, Chen S, Han S, Xu X, Guo J, Liu M, Che L, Li X, Zhang J. Biomacromolecules, 2016, 17: 2540-2554 CrossRef PubMed Google Scholar

[49] Shanmugaraju S, Dabadie C, Byrne K, Savyasachi AJ, Umadevi D, Schmitt W, Kitchen JA, Gunnlaugsson T. Chem Sci, 2017, 8: 1535-1546 CrossRef PubMed Google Scholar

[50] Feng HT, Zheng YS. Chem Eur J, 2014, 20: 195-201 CrossRef PubMed Google Scholar

[51] Xiong S, Marin L, Duan L, Cheng X. Carbohydr Polym, 2019, 225: 115253 CrossRef PubMed Google Scholar

[52] Zheng B, Li Y, Tao F, Cui Y, Li T. Sens Actuat B-Chem, 2017, 241: 357-363 CrossRef Google Scholar

[53] Valeur B. Molecular Fluorescence: Principles and Applications. Weinheim: Wiley, 2005. 47. Google Scholar

[54] Lakowicz JR. Principles of Fluorescence Spectroscopy. New York: Springer, 2006. 48. Google Scholar

[55] Sohn H, Sailor MJ, Magde D, Trogler WC. J Am Chem Soc, 2003, 125: 3821-3830 CrossRef PubMed Google Scholar

[56] Nagarkar SS, Joarder B, Chaudhari AK, Mukherjee S, Ghosh SK. Angew Chem Int Ed, 2013, 52: 2881-2885 CrossRef PubMed Google Scholar

[57] Ma XS, Cui YZ, Ding YQ, Tao FR, Zheng B, Yu RH, Huang W. Sens Actuat B-Chem, 2017, 238: 48-57 CrossRef Google Scholar

[58] Germain ME, Knapp MJ. Chem Soc Rev, 2009, 38: 2543-2555 CrossRef PubMed Google Scholar

[59] Sun X, Wang Y, Lei Y. Chem Soc Rev, 2015, 44: 8019-8061 CrossRef PubMed Google Scholar

[60] Tasci E, Aydin M, Gorur M, Gürek AG, Yilmaz F. J Appl Polym Sci, 2018, 135: 46310 CrossRef Google Scholar

  • Scheme 1

    Schematic representation of the forming process of the fluorescent hollow nanospheres and their application in the detection of nitrophenol explosives (color online).

  • Figure 1

    (a) TEM, (b) SEM and (c) AFM image of hollow spheres (inset: height profile along the line in the AFM of polymer hollow spheres). (d) Particle size distribution of hollow spheres (color online).

  • Figure 2

    Fluorescence spectra of polymer HS in ethanol phase in the presence of different concentrations of (a) TNP, (c) NP and (e) DNP; the Stern-Volmer plots of (I0/I−1) values versus the concentrations of (b) TNP, (d) NP and (f) DNP (inset: the enlarged Stern-Volmer plots at low concentrations of (b) TNP, (d) NP and (f) DNP) (color online).

  • Figure 3

    Changes in fluorescence intensity induced by different nitroaromatic analytes; the concentration of them is 17.5 µM (color online).

  • Figure 4

    (a) Fluorescence decay curves of HS before and after adding TNP in ethanol solution. (b) Pictorial representation of excited state electron transfer from the LUMO of HS to the LUMO of nitrophenol explosives (color online).

  • Figure 5

    (a) Fluorescence spectra of the hollow spheres filter paper after adding different concentrations of TNP solutions. (b) The plot of the fluorescence intensity versus concentrations of TNP. (c) Fluorescent photographs of the hollow spheres filter paper upon TNP solutions with different concentrations (color online).


Contact and support