logo

Cobalt-containing covalent organic frameworks for visible light-driven hydrogen evolution

More info
  • ReceivedSep 16, 2019
  • AcceptedNov 25, 2019
  • PublishedDec 12, 2019

Abstract


Funded by

the National Research Foundation Singapore(NRF2018-NRF-ANR007,POCEMON)

the Ministry of Education-Singapore(MOE,AcRF,Tier,1,R-279-000-540-114,Tier,2,MOE2018-T2-2-148)

the Agency for Science

Technology and Research(IRG,A1783c0015,IAF-PP,A1789a0024)

and the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-Aged Teachers and Presidents.


Acknowledgment

This work was supported by the National Research Foundation of Singapore (NRF2018-NRF-ANR007 POCEMON), the Ministry of Education-Singapore (MOE AcRF Tier 1 R-279-000-540-114, Tier 2 MOE2018-T2-2-148), the Agency for Science, Technology and Research (IRG A1783c0015, IAF-PP A1789a0024), and the Jiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-Aged Teachers and Presidents.


Interest statement

The authors declare that they have no conflict of interest.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Côté AP, Benin AI, Ockwig NW, O'Keeffe M, Matzger AJ, Yaghi OM. Science, 2005, 310: 1166-1170 CrossRef PubMed Google Scholar

[2] Cooper AI. Adv Mater, 2009, 21: 1291-1295 CrossRef Google Scholar

[3] Jin E, Asada M, Xu Q, Dalapati S, Addicoat MA, Brady MA, Xu H, Nakamura T, Heine T, Chen Q, Jiang D. Science, 2017, 357: 673-676 CrossRef PubMed Google Scholar

[4] Ma T, Kapustin EA, Yin SX, Liang L, Zhou Z, Niu J, Li LH, Wang Y, Su J, Li J, Wang X, Wang WD, Wang W, Sun J, Yaghi OM. Science, 2018, 361: 48-52 CrossRef PubMed Google Scholar

[5] Furukawa H, Yaghi OM. J Am Chem Soc, 2009, 131: 8875-8883 CrossRef PubMed Google Scholar

[6] Huang N, Chen X, Krishna R, Jiang D. Angew Chem Int Ed, 2015, 54: 2986-2990 CrossRef PubMed Google Scholar

[7] Banerjee T, Gottschling K, Savasci G, Ochsenfeld C, Lotsch BV. ACS Energy Lett, 2018, 3: 400-409 CrossRef Google Scholar

[8] Lu M, Li Q, Liu J, Zhang FM, Zhang L, Wang JL, Kang ZH, Lan YQ. Appl Catal B-Environ, 2019, 254: 624-633 CrossRef Google Scholar

[9] Wang X, Han X, Zhang J, Wu X, Liu Y, Cui Y. J Am Chem Soc, 2016, 138: 12332-12335 CrossRef PubMed Google Scholar

[10] Sun Q, Aguila B, Perman J, Ivanov AS, Bryantsev VS, Earl LD, Abney CW, Wojtas L, Ma S. Nat Commun, 2018, 9: 1644 CrossRef PubMed Google Scholar

[11] Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W. J Am Chem Soc, 2016, 138: 3031-3037 CrossRef PubMed Google Scholar

[12] Lin G, Ding H, Yuan D, Wang B, Wang C. J Am Chem Soc, 2016, 138: 3302-3305 CrossRef PubMed Google Scholar

[13] Chandra S, Kundu T, Kandambeth S, Babarao R, Marathe Y, Kunjir SM, Banerjee R. J Am Chem Soc, 2014, 136: 6570-6573 CrossRef PubMed Google Scholar

[14] DeBlase CR, Silberstein KE, Truong TT, Abruña HD, Dichtel WR. J Am Chem Soc, 2013, 135: 16821-16824 CrossRef PubMed Google Scholar

[15] Cai P, Peng X, Huang J, Jia J, Hu X, Wen Z. Sci China Chem, 2019, 62: 385-392 CrossRef Google Scholar

[16] Vyas VS, Vishwakarma M, Moudrakovski I, Haase F, Savasci G, Ochsenfeld C, Spatz JP, Lotsch BV. Adv Mater, 2016, 28: 8749-8754 CrossRef PubMed Google Scholar

[17] Zhang K, Guo W, Liang Z, Zou R. Sci China Chem, 2019, 62: 417-429 CrossRef Google Scholar

[18] Diercks CS, Yaghi OM. Science, 2017, 355: eaal1585 CrossRef PubMed Google Scholar

[19] Huang N, Wang P, Jiang D. Nat Rev Mater, 2016, 1: 16068 CrossRef Google Scholar

[20] Zhang T, Lin W. Chem Soc Rev, 2014, 43: 5982-5993 CrossRef PubMed Google Scholar

[21] Wang S, Wang X. Small, 2015, 11: 3097-3112 CrossRef PubMed Google Scholar

[22] Eckenhoff WT. Coord Chem Rev, 2018, 373: 295-316 CrossRef Google Scholar

[23] Artero V, Chavarot-Kerlidou M, Fontecave M. Angew Chem Int Ed, 2011, 50: 7238-7266 CrossRef PubMed Google Scholar

[24] Vyas VS, Haase F, Stegbauer L, Savasci G, Podjaski F, Ochsenfeld C, Lotsch BV. Nat Commun, 2015, 6: 8508 CrossRef PubMed Google Scholar

[25] Banerjee T, Haase F, Savasci G, Gottschling K, Ochsenfeld C, Lotsch BV. J Am Chem Soc, 2017, 139: 16228-16234 CrossRef PubMed Google Scholar

[26] Romero J, Rodriguez-San-Miguel D, Ribera A, Mas-Ballesté R, Otero TF, Manet I, Licio F, Abellán G, Zamora F, Coronado E. J Mater Chem A, 2017, 5: 4343-4351 CrossRef Google Scholar

[27] Shinde DB, Aiyappa HB, Bhadra M, Biswal BP, Wadge P, Kandambeth S, Garai B, Kundu T, Kurungot S, Banerjee R. J Mater Chem A, 2016, 4: 2682-2690 CrossRef Google Scholar

[28] Sun Q, Aguila B, Perman J, Nguyen N, Ma S. J Am Chem Soc, 2016, 138: 15790-15796 CrossRef PubMed Google Scholar

[29] Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Chem Mater, 2016, 28: 4375-4379 CrossRef Google Scholar

[30] Bhadra M, Sasmal HS, Basu A, Midya SP, Kandambeth S, Pachfule P, Balaraman E, Banerjee R. ACS Appl Mater Interfaces, 2017, 9: 13785-13792 CrossRef Google Scholar

[31] Ma X, Zhao Y. Chem Rev, 2015, 115: 7794-7839 CrossRef PubMed Google Scholar

[32] Dong J, Wang M, Zhang P, Yang S, Liu J, Li X, Sun L. J Phys Chem C, 2011, 115: 15089-15096 CrossRef Google Scholar

[33] Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC. Adv Mater, 2011, 23: 2367-2371 CrossRef PubMed Google Scholar

[34] Stegbauer L, Schwinghammer K, Lotsch BV. Chem Sci, 2014, 5: 2789-2793 CrossRef Google Scholar

[35] Zou Z, Ye J, Sayama K, Arakawa H. Nature, 2001, 414: 625-627 CrossRef PubMed Google Scholar

[36] Liu J, Liu Y, Liu N, Han Y, Zhang X, Huang H, Lifshitz Y, Lee ST, Zhong J, Kang Z. Science, 2015, 347: 970-974 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Synthetic scheme of NUS-55; (b) powder X-ray diffraction (PXRD) patterns of NUS-55, with the simulated crystal structure of NUS-55 shown on the right; (c) left: TEM images of NUS-55 (inset: the corresponding selected-area electron diffraction (SAED) patterns). Right: HR-TEM images of NUS-55 (color online).

  • Figure 2

    (a) Schematic representation of the synthesis of NUS-55(Co) via Co(II) impregnation. (b) Comparison of the FTIR spectra of NUS-55 and NUS-55(Co). (c) N2 sorption isotherms of NUS-55 before and after Co-treatments, and NUS-55 after adsorbing [Co(bpy)3]Cl2 (filled, adsorption; open, desorption). (d) Deconvoluted XPS N 1s spectra of NUS-55 and cobalt-impregnated NUS-55(Co). (e) TEM and energy dispersive X-ray (EDX) elemental mapping images of NUS-55(Co) (color online).

  • Figure 3

    (a) Emission spectra of NUS-55 (2.65 μM) suspension in 1:1 EtOH/H2O upon addition of [Co(bpy)3]Cl2. (b) PXRD patterns of NUS-55 before and after 3 and 5 cycles of catalytic reactions. (c) Comparison of H2 generation between NUS-55(Co) and NUS-55 suspension containing 8.4 μM of [Co(bpy)3]Cl2. (d) Time dependence of H2 production of the system with NUS-55(Co) upon adding a fresh solution of TEA (5%, v/v) every 2.5 h or NUS-55/[Co(bpy)3]Cl2 upon adding a fresh solution of [Co(bpy)3]Cl2 (8.4 μM) and TEA (5%, v/v) every 4 h, respectively. (e) FTIR spectra of [Co(bpy)3]Cl2 (top), NUS-55 obtained after the absorption of [Co(bpy)3]Cl2 (middle), and pure NUS-55 (bottom). (f) Scheme of the interaction between NUS-55 and [Co(bpy)3]Cl2 computed using density functional theory (DFT) calculations (color online).

qqqq

Contact and support