logo

Photocatalysis: an overview of recent developments and technological advancements

More info
  • ReceivedSep 26, 2019
  • AcceptedNov 19, 2019
  • PublishedDec 30, 2019

Abstract


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21425309, U1905214, 21761132002, 2170304, 21861130353), the National Key Reasearch and Development Program of China (2018YFA0209301), the Chang Jiang Scholars Program of China (T2016147), and the 111 Project (D16008). Yun Zheng thanks the support of the Scientific Research Funds of Huaqiao University (600005-Z17Y0060, 605-50Y17060), the Open Project Program of the State Key Laboratory of Photocatalysis on Energy and Environment of Fuzhou University (SKLPEE-KF201803), the Natural Science Foundation of Fujian Province (2017J01014) and the Graphene Power and Composite Research Center of Fujian Province (2017H2001).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Lewis NS, Nocera DG. Proc Natl Acad Sci USA, 2006, 103: 15729-15735 CrossRef PubMed Google Scholar

[2] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW. Chem Rev, 2014, 114: 9919-9986 CrossRef PubMed Google Scholar

[3] Fujishima A, Honda K. Nature, 1972, 238: 37-38 CrossRef PubMed Google Scholar

[4] Wang S, Lin J, Wang X. Phys Chem Chem Phys, 2014, 16: 14656-14660 CrossRef PubMed Google Scholar

[5] Zhang G, Lan ZA, Wang X. ChemCatChem, 2015, 7: 1422-1423 CrossRef Google Scholar

[6] Wang S, Wang X. Appl Catal B-Environ, 2015, 162: 494-500 CrossRef Google Scholar

[7] Wang S, Wang X. Angew Chem Int Ed, 2016, 55: 2308-2320 CrossRef PubMed Google Scholar

[8] Zheng M, Ghosh I, König B, Wang X. ChemCatChem, 2019, 11: 703-706 CrossRef Google Scholar

[9] Yang C, Huang W, da Silva LC, Zhang KAI, Wang X. Chem Eur J, 2018, 24: 17454-17458 CrossRef PubMed Google Scholar

[10] Zheng M, Shi J, Yuan T, Wang X. Angew Chem Int Ed, 2018, 57: 5487-5491 CrossRef PubMed Google Scholar

[11] Ravelli D, Dondi D, Fagnoni M, Albini A. Chem Soc Rev, 2009, 38: 1999-2011 CrossRef PubMed Google Scholar

[12] Ong WJ, Tan LL, Ng YH, Yong ST, Chai SP. Chem Rev, 2016, 116: 7159-7329 CrossRef PubMed Google Scholar

[13] Lang X, Chen X, Zhao J. Chem Soc Rev, 2014, 43: 473-486 CrossRef PubMed Google Scholar

[14] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M. Nat Mater, 2009, 8: 76-80 CrossRef PubMed Google Scholar

[15] Zhang G, Zhang M, Ye X, Qiu X, Lin S, Wang X. Adv Mater, 2014, 26: 805-809 CrossRef PubMed Google Scholar

[16] Zhang J, Zhang M, Yang C, Wang X. Adv Mater, 2014, 26: 4121-4126 CrossRef PubMed Google Scholar

[17] Hou Y, Zheng C, Zhu Z, Wang X. Chem Commun, 2016, 52: 6888-6891 CrossRef PubMed Google Scholar

[18] Bardeen J. Phys Rev, 1947, 71: 717-727 CrossRef Google Scholar

[19] Klahr B, Gimenez S, Fabregat-Santiago F, Hamann T, Bisquert J. J Am Chem Soc, 2012, 134: 4294-4302 CrossRef PubMed Google Scholar

[20] Cummings CY, Marken F, Peter LM, Tahir AA, Wijayantha KGU. Chem Commun, 2012, 48: 2027-2029 CrossRef PubMed Google Scholar

[21] Klahr B, Hamann T. J Phys Chem C, 2014, 118: 10393-10399 CrossRef Google Scholar

[22] Iandolo B, Hellman A. Angew Chem Int Ed, 2014, 53: 13404-13408 CrossRef PubMed Google Scholar

[23] Yatom N, Neufeld O, Caspary Toroker M. J Phys Chem C, 2015, 119: 24789-24795 CrossRef Google Scholar

[24] Zandi O, Hamann TW. Nat Chem, 2016, 8: 778-783 CrossRef PubMed Google Scholar

[25] Li C, Luo Z, Wang T, Gong J. Adv Mater, 2018, 30: 1707502 CrossRef PubMed Google Scholar

[26] Le Formal F, Sivula K, Grätzel M. J Phys Chem C, 2012, 116: 26707-26720 CrossRef Google Scholar

[27] Kuang Y, Yamada T, Domen K. Joule, 2017, 1: 290-305 CrossRef Google Scholar

[28] Le Formal F, Tétreault N, Cornuz M, Moehl T, Grätzel M, Sivula K. Chem Sci, 2011, 2: 737-743 CrossRef Google Scholar

[29] Ulman K, Nguyen MT, Seriani N, Gebauer R. J Chem Phys, 2016, 144: 094701 CrossRef PubMed Google Scholar

[30] Xi L, Bassi PS, Chiam SY, Mak WF, Tran PD, Barber J, Chye Loo JS, Wong LH. Nanoscale, 2012, 4: 4430-4433 CrossRef PubMed Google Scholar

[31] Ahn HJ, Yoon KY, Kwak MJ, Jang JH. Angew Chem Int Ed, 2016, 55: 9922-9926 CrossRef PubMed Google Scholar

[32] Jang JW, Du C, Ye Y, Lin Y, Yao X, Thorne J, Liu E, McMahon G, Zhu J, Javey A, Guo J, Wang D. Nat Commun, 2015, 6: 7447 CrossRef PubMed Google Scholar

[33] Zandi O, Hamann TW. J Phys Chem Lett, 2014, 5: 1522-1526 CrossRef PubMed Google Scholar

[34] Zhang M, Luo W, Zhang N, Li Z, Yu T, Zou Z. Electrochem Commun, 2012, 23: 41-43 CrossRef Google Scholar

[35] Yang Y, Forster M, Ling Y, Wang G, Zhai T, Tong Y, Cowan AJ, Li Y. Angew Chem Int Ed, 2016, 55: 3403-3407 CrossRef PubMed Google Scholar

[36] Tilley SD, Cornuz M, Sivula K, Grätzel M. Angew Chem Int Ed, 2010, 49: 6405-6408 CrossRef PubMed Google Scholar

[37] Tamirat AG, Su WN, Dubale AA, Chen HM, Hwang BJ. J Mater Chem A, 2015, 3: 5949-5961 CrossRef Google Scholar

[38] Xi L, Tran PD, Chiam SY, Bassi PS, Mak WF, Mulmudi HK, Batabyal SK, Barber J, Loo JSC, Wong LH. J Phys Chem C, 2012, 116: 13884-13889 CrossRef Google Scholar

[39] Deng J, Zhong J, Pu A, Zhang D, Li M, Sun X, Lee ST. J Appl Phys, 2012, 112: 084312 CrossRef Google Scholar

[40] Cao D, Luo W, Li M, Feng J, Li Z, Zou Z. CrystEngComm, 2013, 15: 2386-2391 CrossRef Google Scholar

[41] Lian X, Yang X, Liu S, Xu Y, Jiang C, Chen J, Wang R. Appl Surf Sci, 2012, 258: 2307-2311 CrossRef Google Scholar

[42] Ling Y, Wang G, Wheeler DA, Zhang JZ, Li Y. Nano Lett, 2011, 11: 2119-2125 CrossRef PubMed Google Scholar

[43] Zandi O, Hamann TW. Phys Chem Chem Phys, 2015, 17: 22485-22503 CrossRef PubMed Google Scholar

[44] Guo X, Wang L, Tan Y. Nano Energy, 2015, 16: 320-328 CrossRef Google Scholar

[45] Xie J, Liu W, Xin J, Lei F, Gao L, Qu H, Zhang X, Xie Y. ChemSusChem, 2017, 10: 4465-4471 CrossRef PubMed Google Scholar

[46] Yoon KY, Ahn HJ, Kwak MJ, Kim SI, Park J, Jang JH. J Mater Chem A, 2016, 4: 18730-18736 CrossRef Google Scholar

[47] Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS. Sci Rep, 2013, 3: 2681 CrossRef PubMed Google Scholar

[48] Zhang Y, Jiang S, Song W, Zhou P, Ji H, Ma W, Hao W, Chen C, Zhao J. Energy Environ Sci, 2015, 8: 1231-1236 CrossRef Google Scholar

[49] Kaouk A, Ruoko TP, Pyeon M, Gönüllü Y, Kaunisto K, Lemmetyinen H, Mathur S. J Phys Chem C, 2016, 120: 28345-28353 CrossRef Google Scholar

[50] Ling YC, Wang GM, Reddy J, Wang CC, Zhang JZ, Li Y. Angew Chem Int Ed, 2012, 124: 4150-4155 CrossRef Google Scholar

[51] Peerakiatkhajohn P, Yun JH, Chen H, Lyu M, Butburee T, Wang L. Adv Mater, 2016, 28: 6405-6410 CrossRef PubMed Google Scholar

[52] Wang Y, Yu T, Chen X, Zhang H, Ouyang S, Li Z, Ye J, Zou Z. J Phys D-Appl Phys, 2007, 40: 3925-3930 CrossRef Google Scholar

[53] Hou Y, Zuo F, Dagg A, Feng P. Angew Chem Int Ed, 2013, 52: 1248-1252 CrossRef PubMed Google Scholar

[54] Miao C, Ji S, Xu G, Liu G, Zhang L, Ye C. ACS Appl Mater Interfaces, 2012, 4: 4428-4433 CrossRef PubMed Google Scholar

[55] Sivula K, Formal FL, Grätzel M. Chem Mater, 2009, 21: 2862-2867 CrossRef Google Scholar

[56] Fang T, Guo Y, Cai S, Zhang N, Hu Y, Zhang S, Li Z, Zou Z. Nanotechnology, 2017, 28: 394003 CrossRef PubMed Google Scholar

[57] Li J, Meng F, Suri S, Ding W, Huang F, Wu N. Chem Commun, 2012, 48: 8213-8215 CrossRef PubMed Google Scholar

[58] Zhang N, Guo Y, Wang X, Zhang S, Li Z, Zou Z. Dalton Trans, 2017, 46: 10673-10677 CrossRef PubMed Google Scholar

[59] Zhang Y, Zhang N, Wang T, Huang H, Chen Y, Li Z, Zou Z. Appl Catal B-Environ, 2019, 245: 410-419 CrossRef Google Scholar

[60] Christoforidis KC, Montini T, Bontempi E, Zafeiratos S, Jaén JJD, Fornasiero P. Appl Catal B-Environ, 2016, 187: 171-180 CrossRef Google Scholar

[61] Guo Y, Fu Y, Liu Y, Shen S. RSC Adv, 2014, 4: 36967-36972 CrossRef Google Scholar

[62] Cai J, Li S, Qin G. Appl Surf Sci, 2019, 466: 92-98 CrossRef Google Scholar

[63] Guo Y, Zhang N, Wang X, Qian Q, Zhang S, Li Z, Zou Z. J Mater Chem A, 2017, 5: 7571-7577 CrossRef Google Scholar

[64] Zhu X, Guijarro N, Liu Y, Schouwink P, Wells RA, Le Formal F, Sun S, Gao C, Sivula K. Adv Mater, 2018, 30: 1801612 CrossRef PubMed Google Scholar

[65] Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M. J CO Utiliz, 2018, 26: 98-122 CrossRef Google Scholar

[66] Kočí K, Obalová L, Matějová L, Plachá D, Lacný Z, Jirkovský J, Šolcová O. Appl Catal B-Environ, 2009, 89: 494-502 CrossRef Google Scholar

[67] Hu J, Odom TW, Lieber CM. Acc Chem Res, 1999, 32: 435-445 CrossRef Google Scholar

[68] Yuan YJ, Yu ZT, Chen XY, Zhang JY, Zou ZG. Chem Eur J, 2011, 17: 12891-12895 CrossRef PubMed Google Scholar

[69] Ping G, Wang C, Chen D, Liu S, Huang X, Qin L, Huang Y, Shu K. J Solid State Electrochem, 2013, 17: 2503-2510 CrossRef Google Scholar

[70] Xu H, Ouyang S, Li P, Kako T, Ye J. ACS Appl Mater Interfaces, 2013, 5: 1348-1354 CrossRef PubMed Google Scholar

[71] Cao S, Low J, Yu J, Jaroniec M. Adv Mater, 2015, 27: 2150-2176 CrossRef PubMed Google Scholar

[72] Wang T, Meng X, Liu G, Chang K, Li P, Kang Q, Liu L, Li M, Ouyang S, Ye J. J Mater Chem A, 2015, 3: 9491-9501 CrossRef Google Scholar

[73] Li C, Xue F, Ding E, He X. Appl Surf Sci, 2015, 356: 852-861 CrossRef Google Scholar

[74] Nasution H, Purnama E, Kosela S, Gunlazuardi J. Catal Commun, 2005, 6: 313-319 CrossRef Google Scholar

[75] Tahir M, Amin NAS. Appl Catal B-Environ, 2015, 162: 98-109 CrossRef Google Scholar

[76] Di Valentin C, Pacchioni G. Catal Today, 2013, 206: 12-18 CrossRef Google Scholar

[77] Zhou W, Fu H. ChemCatChem, 2013, 5: 885-894 CrossRef Google Scholar

[78] Zhao Z, Fan J, Wang J, Li R. Catal Commun, 2012, 21: 32-37 CrossRef Google Scholar

[79] Zhang Z, Huang Z, Cheng X, Wang Q, Chen Y, Dong P, Zhang X. Appl Surf Sci, 2015, 355: 45-51 CrossRef Google Scholar

[80] Zhang Q, Li Y, Ackerman EA, Gajdardziska-Josifovska M, Li H. Appl Catal A-General, 2011, 400: 195-202 CrossRef Google Scholar

[81] Liu L, Jiang Y, Zhao H, Chen J, Cheng J, Yang K, Li Y. ACS Catal, 2016, 6: 1097-1108 CrossRef Google Scholar

[82] Pan J, Liu G, Lu GQM, Cheng HM. Angew Chem Int Ed, 2011, 50: 2133-2137 CrossRef PubMed Google Scholar

[83] Ye L, Mao J, Peng T, Zan L, Zhang Y. Phys Chem Chem Phys, 2014, 16: 15675-15680 CrossRef PubMed Google Scholar

[84] Xie K, Umezawa N, Zhang N, Reunchan P, Zhang Y, Ye J. Energy Environ Sci, 2011, 4: 4211-4219 CrossRef Google Scholar

[85] Zhou H, Guo J, Li P, Fan T, Zhang D, Ye J. Sci Rep, 2013, 3: 1667 CrossRef PubMed Google Scholar

[86] Kwak BS, Kang M. Appl Surf Sci, 2015, 337: 138-144 CrossRef Google Scholar

[87] Hernández-Uresti DB, Sánchez-Martínez D, Vallejo-Márquez J, Obregón S, Vázquez A. Res Chem Intermed, 2019, 45: 2855-2867 CrossRef Google Scholar

[88] Park Y, McDonald KJ, Choi KS. Chem Soc Rev, 2013, 42: 2321-2337 CrossRef PubMed Google Scholar

[89] Luo W, Li Z, Yu T, Zou Z. J Phys Chem C, 2012, 116: 5076-5081 CrossRef Google Scholar

[90] Luo W, Wang Z, Wan L, Li Z, Yu T, Zou Z. J Phys D-Appl Phys, 2010, 43: 405402 CrossRef Google Scholar

[91] Ng YH, Iwase A, Kudo A, Amal R. J Phys Chem Lett, 2010, 1: 2607-2612 CrossRef Google Scholar

[92] Hong SJ, Lee S, Jang JS, Lee JS. Energy Environ Sci, 2011, 4: 1781-1787 CrossRef Google Scholar

[93] Jo WJ, Jang JW, Kong K, Kang HJ, Kim JY, Jun H, Parmar KPS, Lee JS. Angew Chem Int Ed, 2012, 51: 3147-3151 CrossRef PubMed Google Scholar

[94] Luo W, Wang J, Zhao X, Zhao Z, Li Z, Zou Z. Phys Chem Chem Phys, 2013, 15: 1006-1013 CrossRef PubMed Google Scholar

[95] Chakthranont P, Hellstern TR, McEnaney JM, Jaramillo TF. Adv Energy Mater, 2017, 7: 1701515 CrossRef Google Scholar

[96] Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH, Lee J, Lee JS. J Catal, 2014, 317: 126-134 CrossRef Google Scholar

[97] Hu Y, Wu Y, Feng J, Huang H, Zhang C, Qian Q, Fang T, Xu J, Wang P, Li Z, Zou Z. J Mater Chem A, 2018, 6: 2568-2576 CrossRef Google Scholar

[98] Wang S, He T, Yun JH, Hu Y, Xiao M, Du A, Wang L. Adv Funct Mater, 2018, 28: 1802685 CrossRef Google Scholar

[99] Hu Y, Su Y, Huang H, Qian Q, Guan Z, Feng J, Li Z, Zou Z. ChemCatChem, 2015, 7: 2979-2985 CrossRef Google Scholar

[100] Kim TW, Choi KS. Science, 2014, 343: 990-994 CrossRef PubMed Google Scholar

[101] Bae D, Seger B, Vesborg PCK, Hansen O, Chorkendorff I. Chem Soc Rev, 2017, 46: 1933-1954 CrossRef PubMed Google Scholar

[102] Lee DK, Choi KS. Nat Energy, 2018, 3: 53-60 CrossRef Google Scholar

[103] Kuang Y, Jia Q, Ma G, Hisatomi T, Minegishi T, Nishiyama H, Nakabayashi M, Shibata N, Yamada T, Kudo A, Domen K. Nat Energy, 2017, 2: 16191 CrossRef Google Scholar

[104] Luo W, Yang Z, Li Z, Zhang J, Liu J, Zhao Z, Wang Z, Yan S, Yu T, Zou Z. Energy Environ Sci, 2011, 4: 4046-4051 CrossRef Google Scholar

[105] Yourey JE, Pyper KJ, Kurtz JB, Bartlett BM. J Phys Chem C, 2013, 117: 8708-8718 CrossRef Google Scholar

[106] Nam KM, Cheon EA, Shin WJ, Bard AJ. Langmuir, 2015, 31: 10897-10903 CrossRef PubMed Google Scholar

[107] Ye W, Chen F, Zhao F, Han N, Li Y. ACS Appl Mater Interfaces, 2016, 8: 9211-9217 CrossRef Google Scholar

[108] Gao Y, Hamann TW. Chem Commun, 2017, 53: 1285-1288 CrossRef PubMed Google Scholar

[109] Gaillard N, Chang Y, DeAngelis A, Higgins S, Braun A. Int J Hydrogen Energy, 2013, 38: 3166-3176 CrossRef Google Scholar

[110] Pilli SK, Deutsch TG, Furtak TE, Brown LD, Turner JA, Herring AM. Phys Chem Chem Phys, 2013, 15: 3273-3278 CrossRef PubMed Google Scholar

[111] Zhang H, Yilmaz P, Ansari JO, Khan FF, Binions R, Krause S, Dunn S. J Mater Chem A, 2015, 3: 9638-9644 CrossRef Google Scholar

[112] Valenti M, Dolat D, Biskos G, Schmidt-Ott A, Smith WA. J Phys Chem C, 2015, 119: 2096-2104 CrossRef Google Scholar

[113] Davi M, Drichel A, Mann M, Scholz T, Schrader F, Rokicinska A, Kustrowski P, Dronskowski R, Slabon A. J Phys Chem C, 2017, 121: 26265-26274 CrossRef Google Scholar

[114] Hill JC, Ping Y, Galli GA, Choi KS. Energy Environ Sci, 2013, 6: 2440-2446 CrossRef Google Scholar

[115] Liang Q, Guo Y, Zhang N, Qian Q, Hu Y, Hu J, Li Z, Zou Z. Sci China Mater, 2018, 61: 1297-1304 CrossRef Google Scholar

[116] Kalyanasundaram K, Borgarello E, Duonghong D, Grätzel M. Angew Chem Int Ed Engl, 1981, 20: 987-988 CrossRef Google Scholar

[117] Kim YK, Park H. Energy Environ Sci, 2011, 4: 685-694 CrossRef Google Scholar

[118] Wakerley DW, Kuehnel MF, Orchard KL, Ly KH, Rosser TE, Reisner E. Nat Energy, 2017, 2: 17021 CrossRef Google Scholar

[119] Li H, Zhou Y, Chen L, Luo W, Xu Q, Wang X, Xiao M, Zou Z. Nanoscale, 2013, 5: 11933-11939 CrossRef PubMed Google Scholar

[120] Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C. Chem Commun, 2003, 17): 2142-2143 CrossRef PubMed Google Scholar

[121] Shen S, Zhao L, Zhou Z, Guo L. J Phys Chem C, 2008, 112: 16148-16155 CrossRef Google Scholar

[122] Mei Z, Ouyang S, Tang DM, Kako T, Golberg D, Ye J. Dalton Trans, 2013, 42: 2687-2690 CrossRef PubMed Google Scholar

[123] Shen S, Chen X, Ren F, Kronawitter CX, Mao SS, Guo L. Nanoscale Res Lett, 2011, 6: 290 CrossRef PubMed Google Scholar

[124] Ding N, Fan Y, Luo Y, Li D, Meng Q. APL Mater, 2015, 3: 104417 CrossRef Google Scholar

[125] Wen X, Luo W, Guan Z, Huang W, Zou Z. Nano Energy, 2017, 41: 18-26 CrossRef Google Scholar

[126] Wang J, Zhang P, Song X, Gao L. RSC Adv, 2014, 4: 27805-27810 CrossRef Google Scholar

[127] Guan Z, Luo W, Xu Y, Tao Q, Wen X, Zou Z. ACS Appl Mater Interfaces, 2016, 8: 5432-5438 CrossRef Google Scholar

[128] Hu JS, Ren LL, Guo YG, Liang HP, Cao AM, Wan LJ, Bai CL. Angew Chem Int Ed, 2005, 44: 1269-1273 CrossRef PubMed Google Scholar

[129] Chen D, Huang F, Ren G, Li D, Zheng M, Wang Y, Lin Z. Nanoscale, 2010, 2: 2062-2064 CrossRef PubMed Google Scholar

[130] Wu CC, Cho HF, Chang WS, Lee TC. Chem Eng Sci, 2010, 65: 141-147 CrossRef Google Scholar

[131] Huang D, Persson C. Chem Phys Lett, 2014, 591: 189-192 CrossRef Google Scholar

[132] Li Z, Luo W, Zhang M, Feng J, Zou Z. Energy Environ Sci, 2013, 6: 347-370 CrossRef Google Scholar

[133] Wang J, Fang T, Zhang L, Feng J, Li Z, Zou Z. J Catal, 2014, 309: 291-299 CrossRef Google Scholar

[134] Fan G, Fang T, Wang X, Zhu Y, Fu H, Feng J, Li Z, Zou Z. iScience, 2019, 13: 432-439 CrossRef PubMed Google Scholar

[135] Wang X, Huang H, Fan G, Li Z, Zou Z. J Phys Chem C, 2018, 122: 489-494 CrossRef Google Scholar

[136] Hara M, Hitoki G, Takata T, Kondo JN, Kobayashi H, Domen K. Catal Today, 2003, 78: 555-560 CrossRef Google Scholar

[137] Chun WJ, Ishikawa A, Fujisawa H, Takata T, Kondo JN, Hara M, Kawai M, Matsumoto Y, Domen K. J Phys Chem B, 2003, 107: 1798-1803 CrossRef Google Scholar

[138] Ishikawa A, Takata T, Kondo JN, Hara M, Domen K. J Phys Chem B, 2004, 108: 11049-11053 CrossRef Google Scholar

[139] Higashi M, Domen K, Abe R. Energy Environ Sci, 2011, 4: 4138-4147 CrossRef Google Scholar

[140] Feng J, Cao D, Wang Z, Luo W, Wang J, Li Z, Zou Z. Chem Eur J, 2014, 20: 16384-16390 CrossRef PubMed Google Scholar

[141] Chen S, Shen S, Liu G, Qi Y, Zhang F, Li C. Angew Chem Int Ed, 2015, 54: 3047-3051 CrossRef PubMed Google Scholar

[142] Li M, Luo W, Cao D, Zhao X, Li Z, Yu T, Zou Z. Angew Chem Int Ed, 2013, 52: 11016-11020 CrossRef PubMed Google Scholar

[143] Zhen C, Wang L, Liu G, Lu GQM, Cheng HM. Chem Commun, 2013, 49: 3019-3021 CrossRef PubMed Google Scholar

[144] Su Z, Wang L, Grigorescu S, Lee K, Schmuki P. Chem Commun, 2014, 50: 15561-15564 CrossRef PubMed Google Scholar

[145] Cong Y, Park HS, Wang S, Dang HX, Fan FF, Mullins CB, Bard AJ. J Phys Chem C, 2012, 116: 14541-14550 CrossRef Google Scholar

[146] Shi Z, Feng J, Shan H, Wang X, Xu Z, Huang H, Qian Q, Yan S, Zou Z. Appl Catal B-Environ, 2018, 237: 665-672 CrossRef Google Scholar

[147] Suzuki S, Teshima K, Yubuta K, Ito S, Moriya Y, Takata T, Shishido T, Domen K, Oishi S. CrystEngComm, 2012, 14: 7178-7183 CrossRef Google Scholar

[148] Liu G, Shi J, Zhang F, Chen Z, Han J, Ding C, Chen S, Wang Z, Han H, Li C. Angew Chem Int Ed, 2014, 53: 7295-7299 CrossRef PubMed Google Scholar

[149] Fang T, Huang H, Feng J, Hu Y, Guo Y, Zhang S, Li Z, Zou Z. Sci Bull, 2018, 63: 1404-1410 CrossRef Google Scholar

[150] Kerlau M, Merdrignac-Conanec O, Guilloux-Viry M, Perrin A. Solid State Sci, 2004, 6: 101-107 CrossRef Google Scholar

[151] Narkeviciute I, Chakthranont P, Mackus AJM, Hahn C, Pinaud BA, Bent SF, Jaramillo TF. Nano Lett, 2016, 16: 7565-7572 CrossRef PubMed Google Scholar

[152] Ritala M, Kalsi P, Riihelä D, Kukli K, Leskelä M, Jokinen J. Chem Mater, 1999, 11: 1712-1718 CrossRef Google Scholar

[153] Hajibabaei H, Zandi O, Hamann TW. Chem Sci, 2016, 7: 6760-6767 CrossRef PubMed Google Scholar

[154] Yokoyama D, Hashiguchi H, Maeda K, Minegishi T, Takata T, Abe R, Kubota J, Domen K. Thin Solid Films, 2011, 519: 2087-2092 CrossRef Google Scholar

[155] Abe R, Takata T, Sugihara H, Domen K. Chem Lett, 2005, 34: 1162-1163 CrossRef Google Scholar

[156] Abe R, Higashi M, Domen K. J Am Chem Soc, 2010, 132: 11828-11829 CrossRef PubMed Google Scholar

[157] Allam NK, Shaheen BS, Hafez AM. ACS Appl Mater Interfaces, 2014, 6: 4609-4615 CrossRef PubMed Google Scholar

[158] Pei L, Xu Z, Yan S, Zou Z. J Mater Chem A, 2017, 5: 12848-12855 CrossRef Google Scholar

[159] Gao H, Zhao M, Yan S, Zhou P, Li Z, Zou Z, Liu Q. RSC Adv, 2016, 6: 86240-86244 CrossRef Google Scholar

[160] Higashi M, Domen K, Abe R. J Am Chem Soc, 2012, 134: 6968-6971 CrossRef PubMed Google Scholar

[161] Feng J, Huang H, Fang T, Wang X, Yan S, Luo W, Yu T, Zhao Y, Li Z, Zou Z. Adv Funct Mater, 2019, 29: 1808389 CrossRef Google Scholar

[162] Balaz S, Porter SH, Woodward PM, Brillson LJ. Chem Mater, 2013, 25: 3337-3343 CrossRef Google Scholar

[163] Kim YI. Ceram Int, 2014, 40: 5275-5281 CrossRef Google Scholar

[164] Kim YI, Woodward PM, Baba-Kishi KZ, Tai CW. Chem Mater, 2004, 16: 1267-1276 CrossRef Google Scholar

[165] Higashi M, Abe R, Teramura K, Takata T, Ohtani B, Domen K. Chem Phys Lett, 2008, 452: 120-123 CrossRef Google Scholar

[166] Kim YI. Ceram Int, 2012, 38: 2609-2612 CrossRef Google Scholar

[167] Günther E, Hagenmayer R, Jansen M. Z Anorg Allg Chem, 2000, 626: 1519-1525 CrossRef Google Scholar

[168] Mizuno Y, Wagata H, Yubuta K, Zettsu N, Oishi S, Teshima K. CrystEngComm, 2013, 15: 8133-8138 CrossRef Google Scholar

[169] Park NY, Kim YI. J Mater Sci, 2012, 47: 5333-5340 CrossRef Google Scholar

[170] Zhang L, Song Y, Feng J, Fang T, Zhong Y, Li Z, Zou Z. Int J Hydrogen Energy, 2014, 39: 7697-7704 CrossRef Google Scholar

[171] Higashi M, Domen K, Abe R. J Am Chem Soc, 2013, 135: 10238-10241 CrossRef PubMed Google Scholar

[172] Feng J, Luo W, Fang T, Lv H, Wang Z, Gao J, Liu W, Yu T, Li Z, Zou Z. Adv Funct Mater, 2014, 24: 3535-3542 CrossRef Google Scholar

[173] Zhong Y, Li Z, Zhao X, Fang T, Huang H, Qian Q, Chang X, Wang P, Yan S, Yu Z, Zou Z. Adv Funct Mater, 2016, 26: 7156-7163 CrossRef Google Scholar

[174] Li Z, Feng J, Yan S, Zou Z. Nano Today, 2015, 10: 468-486 CrossRef Google Scholar

[175] Eisenberg D, Ahn HS, Bard AJ. J Am Chem Soc, 2014, 136: 14011-14014 CrossRef PubMed Google Scholar

[176] Huang H, Feng J, Fu H, Zhang B, Fang T, Qian Q, Huang Y, Yan S, Tang J, Li Z, Zou Z. Appl Catal B-Environ, 2018, 226: 111-116 CrossRef Google Scholar

[177] Haydous F, Si W, Guzenko VA, Waag F, Pomjakushina E, El Kazzi M, Sévery L, Wokaun A, Pergolesi D, Lippert T. J Phys Chem C, 2019, 123: 1059-1068 CrossRef Google Scholar

[178] Zheng Y, Pan Z, Wang X. Chin J Catal, 2013, 34: 524-535 CrossRef Google Scholar

[179] Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Chem Soc Rev, 2014, 43: 5234-5244 CrossRef PubMed Google Scholar

[180] Zhang J, Zhang M, Lin S, Fu X, Wang X. J Catal, 2014, 310: 24-30 CrossRef Google Scholar

[181] Zhang J, Chen Y, Wang X. Energy Environ Sci, 2015, 8: 3092-3108 CrossRef Google Scholar

[182] Li XH, Wang X, Antonietti M. Chem Sci, 2012, 3: 2170-2174 CrossRef Google Scholar

[183] Lei Y, Jia H, He W, Zhang Y, Mi L, Hou H, Zhu G, Zheng Z. J Am Chem Soc, 2012, 134: 17392-17395 CrossRef PubMed Google Scholar

[184] Zhang J, Grzelczak M, Hou Y, Maeda K, Domen K, Fu X, Antonietti M, Wang X. Chem Sci, 2012, 3: 443-446 CrossRef Google Scholar

[185] Zhang J, Zhang M, Sun RQ, Wang X. Angew Chem Int Ed, 2012, 51: 10145-10149 CrossRef PubMed Google Scholar

[186] Chen Y, Zhang J, Zhang M, Wang X. Chem Sci, 2013, 4: 3244-3248 CrossRef Google Scholar

[187] Lin Z, Wang X. ChemSusChem, 2014, 7: 1547-1550 CrossRef PubMed Google Scholar

[188] Zhang J, Chen  X, Takanabe K, Maeda K, Domen K, Epping J , Fu X, Antonietti M, Wang  X. Angew Chem Int Ed, 2010, 49: 441-444 CrossRef PubMed Google Scholar

[189] Zheng H-R, Zhang J-S, Wang X-C, Fu X-Z. Acta Physico-Chim Sin, 2012, 28: 2336–2342. Google Scholar

[190] Niu P, Yin LC, Yang YQ, Liu G, Cheng HM. Adv Mater, 2014, 26: 8046-8052 CrossRef PubMed Google Scholar

[191] Lin L, Yu Z, Wang X. Angew Chem Int Ed, 2019, 58: 6164-6175 CrossRef PubMed Google Scholar

[192] Zhou M, Wang S, Yang P, Luo Z, Yuan R, Asiri AM, Wakeel M, Wang X. Chem Eur J, 2018, 24: 18529-18534 CrossRef PubMed Google Scholar

[193] Liu P, Sun N, Liang Y, Chen F. Res Chem Intermed, 2018, 44: 843-857 CrossRef Google Scholar

[194] Zheng D, Pang C, Liu Y, Wang X. Chem Commun, 2015, 51: 9706-9709 CrossRef PubMed Google Scholar

[195] Maeda K, Kuriki R, Zhang M, Wang X, Ishitani O. J Mater Chem A, 2014, 2: 15146-15151 CrossRef Google Scholar

[196] Lin L, Ou H, Zhang Y, Wang X. ACS Catal, 2016, 6: 3921-3931 CrossRef Google Scholar

[197] Zhang H, Lin J, Li Z, Li T, Jia X, Wu XL, Hu S, Lin H, Chen J, Zhu J. Catal Sci Technol, 2019, 9: 502-508 CrossRef Google Scholar

[198] Ou H, Lin L, Zheng Y, Yang P, Fang Y, Wang X. Adv Mater, 2017, 29: 1700008 CrossRef PubMed Google Scholar

[199] Yu Y, Yan W, Wang X, Li P, Gao W, Zou H, Wu S, Ding K. Adv Mater, 2018, 30: 1705060 CrossRef PubMed Google Scholar

[200] Ou H, Chen X, Lin L, Fang Y, Wang X. Angew Chem Int Ed, 2018, 57: 8729-8733 CrossRef PubMed Google Scholar

[201] Yu H, Shi R, Zhao Y, Bian T, Zhao Y, Zhou C, Waterhouse GIN, Wu LZ, Tung CH, Zhang T. Adv Mater, 2017, 29: 1605148 CrossRef PubMed Google Scholar

[202] Yang P, Zhuzhang H, Wang R, Lin W, Wang X. Angew Chem Int Ed, 2019, 58: 1134-1137 CrossRef PubMed Google Scholar

[203] Yang P, Wang R, Zhou M, Wang X. Angew Chem Int Ed, 2018, 57: 8674-8677 CrossRef PubMed Google Scholar

[204] Mane GP, Talapaneni SN, Lakhi KS, Ilbeygi H, Ravon U, Al-Bahily K, Mori T, Park DH, Vinu A. Angew Chem Int Ed, 2017, 56: 8481-8485 CrossRef PubMed Google Scholar

[205] Ou H, Yang P, Lin L, Anpo M, Wang X. Angew Chem Int Ed, 2017, 56: 10905-10910 CrossRef PubMed Google Scholar

[206] Yang P, Ou H, Fang Y, Wang X. Angew Chem Int Ed, 2017, 56: 3992-3996 CrossRef PubMed Google Scholar

[207] Xiao Y, Tian G, Li W, Xie Y, Jiang B, Tian C, Zhao D, Fu H. J Am Chem Soc, 2019, 141: 2508-2515 CrossRef Google Scholar

[208] Yang C, Wang B, Zhang L, Yin L, Wang X. Angew Chem Int Ed, 2017, 56: 6627-6631 CrossRef PubMed Google Scholar

[209] Fang Y, Li X, Wang X. ACS Catal, 2018, 8: 8774-8780 CrossRef Google Scholar

[210] Fang Y, Li X, Wang X. ChemSusChem, 2019, 12: 2605-2608 CrossRef PubMed Google Scholar

[211] Ruan Q, Luo W, Xie J, Wang Y, Liu X, Bai Z, Carmalt CJ, Tang J. Angew Chem Int Ed, 2017, 56: 8221-8225 CrossRef PubMed Google Scholar

[212] Fang Y, Xu Y, Li X, Ma Y, Wang X. Angew Chem Int Ed, 2018, 57: 9749-9753 CrossRef PubMed Google Scholar

[213] Bojdys MJ, Müller JO, Antonietti M, Thomas A. Chem Eur J, 2008, 14: 8177-8182 CrossRef PubMed Google Scholar

[214] Lin L, Wang C, Ren W, Ou H, Zhang Y, Wang X. Chem Sci, 2017, 8: 5506-5511 CrossRef PubMed Google Scholar

[215] Lin L, Ren W, Wang C, Asiri AM, Zhang J, Wang X. Appl Catal B-Environ, 2018, 231: 234-241 CrossRef Google Scholar

[216] Zhang G, Li G, Lan ZA, Lin L, Savateev A, Heil T, Zafeiratos S, Wang X, Antonietti M. Angew Chem, 2017, 129: 13630-13634 CrossRef Google Scholar

[217] Zhang G, Li G, Heil T, Zafeiratos S, Lai F, Savateev A, Antonietti M, Wang X. Angew Chem Int Ed, 2019, 58: 3433-3437 CrossRef PubMed Google Scholar

[218] Chen Z, Savateev A, Pronkin S, Papaefthimiou V, Wolff C, Willinger MG, Willinger E, Neher D, Antonietti M, Dontsova D. Adv Mater, 2017, 29: 1700555 CrossRef PubMed Google Scholar

[219] Peng G, Albero J, Garcia H, Shalom M. Angew Chem Int Ed, 2018, 57: 15807-15811 CrossRef PubMed Google Scholar

[220] Navarro-Aguilar AI, Obregón S, Hernández-Uresti DB, Suárez-de la Cruz J. Res Chem Intermed, 2019, 45: 3865-3878 CrossRef Google Scholar

[221] Zheng D, zhang G, Wang X. Appl Catal B-Environ, 2015, 179: 479-488 CrossRef Google Scholar

[222] Wang Y, Liu X, Liu J, Han B, Hu X, Yang F, Xu Z, Li Y, Jia S, Li Z, Zhao Y. Angew Chem Int Ed, 2018, 57: 5765-5771 CrossRef PubMed Google Scholar

[223] Yu J, Lei J, Wang L, Guillard C, Zhang J, Liu Y, Anpo M. Res Chem Intermed, 2019, 45: 4237-4247 CrossRef Google Scholar

[224] Huang P, Huang J, Pantovich SA, Carl AD, Fenton TG, Caputo CA, Grimm RL, Frenkel AI, Li G. J Am Chem Soc, 2018, 140: 16042-16047 CrossRef PubMed Google Scholar

[225] Pan Z, Zhang G, Wang X. Angew Chem Int Ed, 2019, 58: 7102-7106 CrossRef PubMed Google Scholar

[226] Wang X. ChemSusChem, 2018, 11: 327-329 CrossRef PubMed Google Scholar

[227] Jiang Z, Wan W, Li H, Yuan S, Zhao H, Wong PK. Adv Mater, 2018, 30: 1706108 CrossRef PubMed Google Scholar

[228] Qiu P, Xu C, Zhou N, Chen H, Jiang F. Appl Catal B-Environ, 2018, 221: 27-35 CrossRef Google Scholar

[229] Wang Y, Bai L, Zhang Z, Qu Y, Jing L. Res Chem Intermed, 2019, 45: 249-259 CrossRef Google Scholar

[230] Zhang M, Luo Z, Zhou M, Zhang G, Alamry KA, Taib LA, Asiri AM, Wang X. Appl Catal B-Environ, 2017, 210: 454-461 CrossRef Google Scholar

[231] Yang J, Wang D, Han H, Li C. Acc Chem Res, 2013, 46: 1900-1909 CrossRef PubMed Google Scholar

[232] Indra A, Acharjya A, Menezes PW, Merschjann C, Hollmann D, Schwarze M, Aktas M, Friedrich A, Lochbrunner S, Thomas A, Driess M. Angew Chem Int Ed, 2017, 56: 1653-1657 CrossRef PubMed Google Scholar

[233] Cao Y, Chen S, Luo Q, Yan H, Lin Y, Liu W, Cao L, Lu J, Yang J, Yao T, Wei S. Angew Chem Int Ed, 2017, 56: 12191-12196 CrossRef PubMed Google Scholar

[234] Zhang L, Yang C, Xie Z, Wang X. Appl Catal B-Environ, 2018, 224: 886-894 CrossRef Google Scholar

[235] Zheng D, Cao XN, Wang X. Angew Chem Int Ed, 2016, 55: 11512-11516 CrossRef PubMed Google Scholar

[236] Zhou Y, Zhang L, Wang W. Nat Commun, 2019, 10: 506 CrossRef PubMed Google Scholar

[237] Cai J, Huang J, Wang S, Iocozzia J, Sun Z, Sun J, Yang Y, Lai Y, Lin Z. Adv Mater, 2019, 31: 1806314 CrossRef PubMed Google Scholar

[238] Chen R, Pang S, An H, Zhu J, Ye S, Gao Y, Fan F, Li C. Nat Energy, 2018, 3: 655-663 CrossRef Google Scholar

[239] Lang X, Ma W, Chen C, Ji H, Zhao J. Acc Chem Res, 2014, 47: 355-363 CrossRef PubMed Google Scholar

[240] Migliore A, Polizzi NF, Therien MJ, Beratan DN. Chem Rev, 2014, 114: 3381-3465 CrossRef PubMed Google Scholar

[241] Huynh MHV, Meyer TJ. Chem Rev, 2007, 107: 5004-5064 CrossRef PubMed Google Scholar

[242] Weinberg DR, Gagliardi CJ, Hull JF, Murphy CF, Kent CA, Westlake BC, Paul A, Ess DH, McCafferty DG, Meyer TJ. Chem Rev, 2012, 112: 4016-4093 CrossRef PubMed Google Scholar

[243] Li Y, Wen B, Ma W, Chen C, Zhao J. Environ Sci Technol, 2012, 46: 5093-5099 CrossRef PubMed Google Scholar

[244] Bui TD, Kimura A, Ikeda S, Matsumura M. J Am Chem Soc, 2010, 132: 8453-8458 CrossRef PubMed Google Scholar

[245] Czili H, Horváth A. Appl Catal B-Environ, 2008, 81: 295-302 CrossRef Google Scholar

[246] Li Y, Wen B, Yu C, Chen C, Ji H, Ma W, Zhao J. Chem Eur J, 2012, 18: 2030-2039 CrossRef PubMed Google Scholar

[247] Hoffmann MR, Martin ST, Choi W, Bahnemann DW. Chem Rev, 1995, 95: 69-96 CrossRef Google Scholar

[248] Carraway ER, Hoffman AJ, Hoffmann MR. Environ Sci Technol, 1994, 28: 786-793 CrossRef PubMed Google Scholar

[249] Schwitzgebel J, Ekerdt JG, Gerischer H, Heller A. J Phys Chem, 1995, 99: 5633-5638 CrossRef Google Scholar

[250] Fox MA, Chen CC, Younathan JNN. J Org Chem, 1984, 49: 1969-1974 CrossRef Google Scholar

[251] Pang X, Chang W, Chen C, Ji H, Ma W, Zhao J. J Am Chem Soc, 2014, 136: 8714-8721 CrossRef PubMed Google Scholar

[252] Valdez CN, Braten M, Soria A, Gamelin DR, Mayer JM. J Am Chem Soc, 2013, 135: 8492-8495 CrossRef PubMed Google Scholar

[253] Schrauben JN, Hayoun R, Valdez CN, Braten M, Fridley L, Mayer JM. Science, 2012, 336: 1298-1301 CrossRef PubMed Google Scholar

[254] Sheng H, Ji H, Ma W, Chen C, Zhao J. Angew Chem Int Ed, 2013, 52: 9686-9690 CrossRef PubMed Google Scholar

[255] Zhao Y, Ma W, Li Y, Ji H, Chen C, Zhu H, Zhao J. Angew Chem Int Ed, 2012, 51: 3188-3192 CrossRef PubMed Google Scholar

[256] Li YF, Liu ZP, Liu LL, Gao W. J Am Chem Soc, 2010, 132: 13008-13015 CrossRef PubMed Google Scholar

[257] Lazzeri M, Vittadini A, Selloni A. Phys Rev B, 2001, 63: 155409 CrossRef Google Scholar

[258] Blomquist J, Walle LE, Uvdal P, Borg A, Sandell A. J Phys Chem C, 2008, 112: 16616-16621 CrossRef Google Scholar

[259] Sumita M, Hu C, Tateyama Y. J Phys Chem C, 2010, 114: 18529-18537 CrossRef Google Scholar

[260] Yang D, Liu H, Zheng Z, Yuan Y, Zhao JC, Waclawik ER, Ke X, Zhu H. J Am Chem Soc, 2009, 131: 17885-17893 CrossRef PubMed Google Scholar

[261] Liu LM, McAllister B, Ye HQ, Hu P. J Am Chem Soc, 2006, 128: 4017-4022 CrossRef PubMed Google Scholar

[262] Tang J, Durrant JR, Klug DR. J Am Chem Soc, 2008, 130: 13885-13891 CrossRef PubMed Google Scholar

[263] Woodhouse M, Parkinson BA. Chem Soc Rev, 2009, 38: 197-210 CrossRef PubMed Google Scholar

[264] Qu Y, Duan X. Chem Soc Rev, 2013, 42: 2568-2580 CrossRef PubMed Google Scholar

[265] Youngblood WJ, Lee SHA, Maeda K, Mallouk TE. Acc Chem Res, 2009, 42: 1966-1973 CrossRef PubMed Google Scholar

[266] Minero C, Mariella G, Maurino V, Pelizzetti E. Langmuir, 2000, 16: 2632-2641 CrossRef Google Scholar

[267] Bahnemann DW, Hilgendorff M, Memming R. J Phys Chem B, 1997, 101: 4265-4275 CrossRef Google Scholar

[268] Nakamura R, Nakato Y. J Am Chem Soc, 2004, 126: 1290-1298 CrossRef PubMed Google Scholar

[269] Salvador P. J Phys Chem C, 2007, 111: 17038-17043 CrossRef Google Scholar

[270] Wang Q, Chen C, Zhao D, Ma W, Zhao J. Langmuir, 2008, 24: 7338-7345 CrossRef PubMed Google Scholar

[271] Sheng H, Li Q, Ma W, Ji H, Chen C, Zhao J. Appl Catal B-Environ, 2013, 138-139: 212-218 CrossRef Google Scholar

[272] Sivula K, Le Formal F, Grätzel M. ChemSusChem, 2011, 4: 432-449 CrossRef PubMed Google Scholar

[273] Zhang Y, Zhou Z, Chen C, Che Y, Ji H, Ma W, Zhang J, Song D, Zhao J. ACS Appl Mater Interfaces, 2014, 6: 12844-12851 CrossRef PubMed Google Scholar

[274] Sheng H, Zhang H, Song W, Ji H, Ma W, Chen C, Zhao J. Angew Chem Int Ed, 2015, 54: 5905-5909 CrossRef PubMed Google Scholar

[275] Zhang H, Zhou P, Chen Z, Song W, Ji H, Ma W, Chen C, Zhao J. J Phys Chem C, 2017, 121: 2251-2257 CrossRef Google Scholar

[276] Klahr B, Gimenez S, Fabregat-Santiago F, Bisquert J, Hamann TW. Energy Environ Sci, 2012, 5: 7626-7636 CrossRef Google Scholar

[277] Upul Wijayantha KG, Saremi-Yarahmadi S, Peter LM. Phys Chem Chem Phys, 2011, 13: 5264-5270 CrossRef PubMed Google Scholar

[278] Zhang Y, Zhang H, Ji H, Ma W, Chen C, Zhao J. J Am Chem Soc, 2016, 138: 2705-2711 CrossRef PubMed Google Scholar

[279] Shaffer DW, Xie Y, Concepcion JJ. Chem Soc Rev, 2017, 46: 6170-6193 CrossRef PubMed Google Scholar

[280] Romain S, Vigara L, Llobet A. Acc Chem Res, 2009, 42: 1944-1953 CrossRef PubMed Google Scholar

[281] Zhang M, de Respinis M, Frei H. Nat Chem, 2014, 6: 362-367 CrossRef PubMed Google Scholar

[282] Zhang Y, Zhang H, Liu A, Chen C, Song W, Zhao J. J Am Chem Soc, 2018, 140: 3264-3269 CrossRef PubMed Google Scholar

[283] Chen C, Shi T, Chang W, Zhao J. ChemCatChem, 2015, 7: 724-731 CrossRef Google Scholar

  • Figure 1

    The number of scientific publications on topics related to (a) sustainability and (b) photocatalysis. Source: Web of Science (color online).

  • Figure 2

    Evidence that surface states were directly involved in the OER mechanism with chemical origin as Fe(IV)=O groups. (a) J-V curve (green line), Ctrap (the surface states capacitance, orange triangles), and Rct,trap (the resistance that was transferred through carriers via surface states, red circles) values under different bias; (b) DFT+U calculations confirmed that the surface state’s chemical identity was Fe(IV)=O; (c) operando IR spectra conducted with/without a hole scavenger (KI) suggested that the peak at 898 cm−1 was an intermediate species involved in the water oxidation process; (d) using isotope labeling, the peaks at 898 and 857 cm−1 were assigned to Fe=16O and Fe=18O, respectively, as the chemical origin of the surface states participating in the OER mechanism. Reproduced with permission from Ref. [19]. Copyright (2008) American Chemical Society (color online).

  • Figure 3

    Passivating surface states and reducing Fermi-level pinning through regrowth treatment and the application of a NiFeOx overlayer. (a) J-V curves of hematite photoanodes with various surface modifications; (b) band diagram of the unmodified hematite photoanode (gray line) and the NiFeOx/rgH II hematite photoanode (red line) under flat-band, quasi-equilibrium conditions; (c) open circuit potential tests of various hematite photoanodes under 8-sun (red, triangle), 1-sun (blue, square), and dark (black, circle) conditions; (d) Raman shift spectra of various hematite photoanodes showing reduction of the surface states after being subjected to the regrowth treatment. Reprinted from Ref. [32] with permission. Copyright (2015) Springer Nature (color online).

  • Figure 4

    (a) Schematic of vertically grown hematite nanosheets modified with Ag nanoparticles and Co-Pi; (b) SEM surface view of this Fe2O3 film; (c) J-V curves of various hematite photoanodes under chopped light illumination in 1 M NaOH. Reprinted from Ref. [51] with permission. Copyright (2016) Wiley-VCH (color online).

  • Figure 5

    (a) Morphologies of BiOI films, (b) top-view, and (c) side-view SEM images of BiVO4 films prepared using NH4OH/V2O5. (d) Top-view and (e) side-view SEM images of BiVO4 films prepared using DMSO/VO(acac)2, and (f) magnified image of the side view of BiVO4 films. Reprinted from Ref. [95] with permission. Copyright (2014) AAAS.

  • Figure 6

    (a) Structural illustration of lignocellulose which is comprised of cellulose surrounded by the less crystalline polymers, hemicellulose and lignin. (b) CdS coated with CdOx and applied for photoreform reactions of lignocellulose to H2. (c) As a highly robust photocatalyst, CdS/CdOx can be used to generate H2 from crude sources of lignocellulose when suspended in alkaline solution and irradiated with sunlight. Reprinted from Ref. [118] with permission. Copyright (2017) Spring Nature (color online).

  • Figure 7

    Illustration of melon-based PCN photocatalysis (color online).

  • Figure 8

    Formation of a carbon vacancy via steam etching. Reproduced with permission from Ref. [202]. Copyright (2019) Wiley-VCH (color online).

  • Figure 9

    (a) Synthesis of the PCN aerogel. (b) Photographs of colloidal solutions of PCN nanoparticles (inset: tyndall effect of PCN nanoparticle in aqueous solution), PCN hydrogels, and PCN aerogels. Reproduced with permission from Ref. [205]. Copyright (2017) Wiley-VCH (color online).

  • Figure 10

    Transmission electron microscopy (TEM) images of (a) bulk PCN-U and (b) PCN-U nanosheets. Atomic force microscopy images of (c) bulk PCN-U (inset is the height image) and (d) PCN-U nanosheets (inset is the height image). Reproduced with permission from Ref. [206]. Copyright (2017) Wiley-VCH.

  • Figure 11

    (a) Illustration of the doctor blade preparation method, (b–e) scanning electron microscope images of supramolecular precursors films prepared from (b) CMBA(0), (c) CMBA(0.05), (d) CMBA(0.1), and (e) CMBA(0.15). The cross-sectional scanning electron microscope images of the corresponding films are shown in the inset. Reproduced with permission from Ref. [208]. Copyright (2018) Wiley-VCH (color online).

  • Figure 12

    The scanning transmission electron microscopy of single 0.8% Y:ZnO@PCN core-shell nanorod. Reproduced with permission from Ref. [212]. Copyright (2018) Wiley-VCH (color online).

  • Figure 13

    (a) Powder X-Ray diffraction patterns and (b) Fourier transform infrared spectra of CN, CN-LiNa, CN-LiK, and CN-NaK; (c, d) TEM images of CN-NaK (inset: enlargement of the selected area); (e) electron energy loss spectrum of CN-NaK; (f) N 1s high-resolution XPS spectra of CN, CN-LiNa, CN-LiK, and CN-NaK polymers. Reproduced with permission from Ref. [216]. Copyright (2017) Wiley-VCH (color online).

  • Figure 14

    (a, b) TEM images of CN-ATZ-NaK; (c) electron energy loss spectra, and (d) N-K edge X-ray absorption near edge structure analysis results of CN-ATZ-LiK and CN-ATZ-NaK samples. Reproduced with permission from Ref. [217]. Copyright (2019) Wiley-VCH (color online).

  • Figure 15

    (a) Photocatalytic overall water-splitting activity of PCN, Fe2O3/PCN, and Fe2O3/RGO/PCN under full arc irradiation from a Xenon light source. (b) Photocatalytic overall water-splitting activity of WO3, WO3/reduced graphene oxide (RGO), BiVO4, and BiVO4/RGO-modified PCN under full arc irradiation. (c) Overall water-splitting activity of Fe2O3/RGO/PCN under visible-light irradiation (>400 nm). (d) Wavelength dependence of the rate of water-splitting for Fe2O3/RGO/PCN. Reproduced with permission from Ref. [225]. Copyright (2019) Wiley-VCH (color online).

  • Figure 16

    Stepwise representation of the route to Ag nanoparticles impregnated with ultrathin PCN nanosheets (last column) and homologous molecular structures as well as photographs of the corresponding resultants for each step. Reproduced with permission from Ref. [237]. Copyright (2019) Wiley-VCH (color online).

  • Figure 17

    (A) The three pathways and their respective products of the primary degradation of DTBC. (B) O-isotope distribution of the four primary ring-opening products under various isotope conditions, M, M2+, and M4+ denote products that include 0, 1, and 2 atoms, respectively, of substituted 18O in place of 16O. Reproduced with permission from Ref. [251]. Copyright (2014) American Chemical Society (color online).

  • Figure 18

    Proposed mechanism for individually incorporated O atoms during the photocatalytic cleavage of DTBC by TiO2. (a) Auto-oxidation via ·OH/hvb+ on terrace, (b) intradiol cleavage via the anchored DTBC radicals for active dioxygen at the step or edge, (c) extradiol cleavage via Ti-site active O2 on the corner of the interface. Reproduced with permission from Ref [251]. Copyright (2014) American Chemical Society (color online).

  • Figure 19

    (A) Effect of organic acids on the Faradaic efficiency (FE) for H2O2 formation on TiO2 film during steady-state electrolysis. (B) Mechanism of O2 reduction on TiO2 surface with (a) or without (b) pendant proton relays. Reproduced with permission from Ref. [254]. Copyright (2013) Wiley-VCH (color online).

  • Figure 20

    The ratio of O2-incorporation in the hydroxylation products of TPTA-OH corresponding to the TiO2 photocatalysts with different ratios of exposed {001} facets. Reproduced with permission from Ref. [255]. Copyright (2012) Wiley-VCH.

  • Figure 21

    The surface structures of (a) pristine TiO2 and (b–d) TiO2 with different fluorination configurations. (A) Change in IR spectra of pristine TiO2 (a) and TiO2 with different fluorination configurations. Inset: linear relationship between the area of the negative peak at 1635 cmSCPENC-41-1 (δH2O) and absorbance at 2000 cm−1 (I2000) on sample (c) (both OHt and OHb are substituted). (B) Spectra (υOH and δH2O regions) of TiO2 and the corresponding sample (c) under conditions of water saturation (dashed line) or dehydration at different temperatures. Reproduced with permission from Ref. [274]. Copyright (2015) Wiley-VCH.

  • Figure 22

    (A) J-V scans (50 mV/s) under AM 1.5 G illumination in unbuffered electrolytes (0.5 M NaClO4) at various pH levels. (B) KIE values calculated from the steady photocurrent ratio in H2O and D2O for a hematite photoanode in unbuffered electrolyte at various electrolyte pH levels and potentials and under illumination. (C) The mechanism of the electron and proton transfer during interfacial hole transfer for oxidation of (a) H2O and (b) OH. Reproduced with permission from Ref. [278]. Copyright (2013) Wiley-VCH (color online).

  • Figure 23

    (A) (a) WNA and (b) I2M mechanisms for O–O bond formation on hematite surfaces. (B) FTIR spectra on the hematite photoanode under AM 1.5 G illumination in unbuffered pH 8 electrolyte (0.5 M NaClO4) with applied potentials from 0.6 to 1.6 V vs. RHE. Reproduced with permission from Ref. [282]. Copyright (2018) American Chemical Society (color online).

  • Table 1   Hematite photoanodes generated using substitutional doping

    Synthesis

    Photoanode structure

    Vona) (V vs. RHE)

    J1.23 Vb) (mA/cm2)

    Jplateau (mA/cm2)

    Ref.

    APCVD

    fractal-like cauliflower Si:Fe2O3/IrO2

    0.85

    3.2

    3.6

    [36]

    Hydrothermal

    urchin-like Ti:Fe2O3 nanorods

    1.00

    1.9

    3.6

    [39]

    Hydrothermal

    porous Ti:Fe2O3/SiOx/Ti-FeOOH

    0.85

    4.1

    5.8

    [46]

    Hydrothermal

    Sn:Fe2O3 nanocorals

    0.90

    2.0

    2.9

    [42]

    Hydrothermal

    Ru:Fe2O3 nanorods

    0.71

    5.7

    6.4

    [44]

    Hydrothermal

    wormlike Pt:Fe2O3/Co-Pi

    0.70

    4.3

    6.5

    [47]

    Hydrothermal

    P:Fe2O3 nanowires/ Co-Pi

    0.80

    3.1

    4.5

    [48]

    PECVD

    coarse-grained In-Sn:Fe2O3

    0.80

    2.5

    3.8

    [49]

    Hydrothermal

    F:Fe2O3 nanocrystals

    0.70

    2.5

    3.1

    [45]

    Hydrothermal

    Fe2O3 nanowires with O vacancies

    1.00

    1.8

    3.5

    [50]

    The potential at which the tangent to the J-V curve with a maximum slope intersected the horizontal axis. b) The photocurrent under the applied bias of 1.23 V vs. RHE. All readings were performed under pH 13.6 and at an irradiation intensity of 100 mW/cm2.

qqqq

Contact and support