We thank Sorbonne Université, CNRS and Servier for funding. The authors wish to acknowledge the analytical department of IDRS - Servier for the compounds analyses (IR, NMR, HR-MS) and the SRIMC department for the syntheses on big scale. This work was granted access to the high performance computing (HPC) resources of the HPCaVe Centre at Sorbonne Université
The authors declare that they have no conflict of interest.
Supporting information The supporting information is available online at
[1]
Albert M, Fensterbank L, Lacôte E, Malacria M. Tandem radical reactions. In: Gansäuer A, Ed.
[2]
Baralle A, Baroudi A, Daniel M, Fensterbank L, Goddard JP, Lacôte E, Larraufie MH, Maestri G, Malacria M, Ollivier C. Radical cascade reactions. In: Chatgilialoglu C, Studer A, Eds.
[3] Godineau E, Landais Y. Chem Eur J, 2009, 15: 3044-3055 CrossRef PubMed Google Scholar
[4]
Liautard V, Landais Y. Free-radical multicomponent processes. In: Zhu J, Wang Q, Wang MX, Eds.
[5] Chen JR, Yu XY, Xiao WJ. Synthesis, 2015, 47: 604-629 CrossRef Google Scholar
[6] Zhang Y, Sun K, Lv Q, Chen X, Qu L, Yu B. Chin Chem Lett, 2019, 30: 1361-1368 CrossRef Google Scholar
[7] Xuan J, Studer A. Chem Soc Rev, 2017, 46: 4329-4346 CrossRef PubMed Google Scholar
[8] Huang HM, Garduño-Castro MH, Morrill C, Procter DJ. Chem Soc Rev, 2019, 48: 4626-4638 CrossRef PubMed Google Scholar
[9] Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Angew Chem Int Ed, 2019, 58: 2289-2294 CrossRef PubMed Google Scholar
[10] Wang J, Sánchez-Roselló M, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem Rev, 2014, 114: 2432-2506 CrossRef PubMed Google Scholar
[11]
Dagousset G, Carboni A, Masson G, Magnier E. Visible light-induced (per)fluoroalkylation by photoredox catalysis. In: Groult H, Leroux FR, Tressaud A, Eds.
[12] Oh E, Kim H, Han S. Synthesis, 2018, 50: 3346-3358 CrossRef Google Scholar
[13] Fuentes N, Kong W, Fernández-Sánchez L, Merino E, Nevado C. J Am Chem Soc, 2015, 137: 964-973 CrossRef PubMed Google Scholar
[14] Zheng J, Deng Z, Zhang Y, Cui S. Adv Synth Catal, 2016, 358: 746-751 CrossRef Google Scholar
[15] Li Y, Lu Y, Qiu G, Ding Q. Org Lett, 2014, 16: 4240-4243 CrossRef PubMed Google Scholar
[16] Noto N, Miyazawa K, Koike T, Akita M. Org Lett, 2015, 17: 3710-3713 CrossRef PubMed Google Scholar
[17] Banerjee B, Litvinov DN, Kang J, Bettale JD, Castle SL. Org Lett, 2010, 12: 2650-2652 CrossRef PubMed Google Scholar
[18]
Sato A, Yorimitsu H, Oshima K.
[19] Marion F, Courillon C, Malacria M. Org Lett, 2003, 5: 5095-5097 CrossRef PubMed Google Scholar
[20] Marion F, Coulomb J, Servais A, Courillon C, Fensterbank L, Malacria M. Tetrahedron, 2006, 62: 3856-3871 CrossRef Google Scholar
[21] Balieu S, Toutah K, Carro L, Chamoreau LM, Rousselière H, Courillon C. Tetrahedron Lett, 2011, 52: 2876-2880 CrossRef Google Scholar
[22] Baguia H, Deldaele C, Romero E, Michelet B, Evano G. Synthesis, 2018, 50: 3022-3030 CrossRef Google Scholar
[23] Wang CS, Dixneuf PH, Soulé JF. Chem Rev, 2018, 118: 7532-7585 CrossRef PubMed Google Scholar
[24] Staveness D, Bosque I, Stephenson CRJ. Acc Chem Res, 2016, 49: 2295-2306 CrossRef PubMed Google Scholar
[25] Shaw MH, Twilton J, MacMillan DWC. J Org Chem, 2016, 81: 6898-6926 CrossRef PubMed Google Scholar
[26] Pawlowski R, Stanek F, Stodulski M. Molecules, 2019, 24: 1533-1566 CrossRef PubMed Google Scholar
[27] Festa AA, Voskressensky LG, Van der Eycken EV. Chem Soc Rev, 2019, 48: 4401-4423 CrossRef PubMed Google Scholar
[28] Chen JR, Hu XQ, Lu LQ, Xiao WJ. Acc Chem Res, 2016, 49: 1911-1923 CrossRef PubMed Google Scholar
[29] Tanoury G. Synthesis, 2016, 48: 2009-2025 CrossRef Google Scholar
[30] Cook AM, Wolf C. Tetrahedron Lett, 2015, 56: 2377-2392 CrossRef PubMed Google Scholar
[31] Evano G, Coste A, Jouvin K. Angew Chem Int Ed, 2010, 49: 2840-2859 CrossRef PubMed Google Scholar
[32] Zhang Y, Hsung RP, Tracey MR, Kurtz KCM, Vera EL. Org Lett, 2004, 6: 1151-1154 CrossRef PubMed Google Scholar
[33] Charpentier J, Früh N, Togni A. Chem Rev, 2015, 115: 650-682 CrossRef PubMed Google Scholar
[34] Eisenberger P, Gischig S, Togni A. Chem Eur J, 2006, 12: 2579-2586 CrossRef PubMed Google Scholar
[35] Jiang Y, Yu H, Fu Y, Liu L. Sci China Chem, 2015, 58: 673-683 CrossRef Google Scholar
[36] Prier CK, Rankic DA, MacMillan DWC. Chem Rev, 2013, 113: 5322-5363 CrossRef PubMed Google Scholar
[37] Luo J, Zhang J. ACS Catal, 2016, 6: 873-877 CrossRef Google Scholar
[38] Lévêque C, Chenneberg L, Corcé V, Ollivier C, Fensterbank L. Chem Commun, 2016, 52: 9877-9880 CrossRef PubMed Google Scholar
[39] Shang TY, Lu LH, Cao Z, Liu Y, He WM, Yu B. Chem Commun, 2019, 55: 5408-5419 CrossRef PubMed Google Scholar
[40] Le Vaillant F, Garreau M, Nicolai S, Gryn’ova G, Corminboeuf C, Waser J. Chem Sci, 2018, 9: 5883-5889 CrossRef PubMed Google Scholar
[41] Jacquet J, Blanchard S, Derat E, Desage-El Murr M, Fensterbank L. Chem Sci, 2016, 7: 2030-2036 CrossRef PubMed Google Scholar
[42] Singh K, Staig SJ, Weaver JD. J Am Chem Soc, 2014, 136: 5275-5278 CrossRef PubMed Google Scholar
[43] Lin QY, Xu XH, Qing FL. J Org Chem, 2014, 79: 10434-10446 CrossRef PubMed Google Scholar
[44] Larraufie MH́̀, Courillon C, Ollivier C, Lacôte E, Malacria M, Fensterbank L. J Am Chem Soc, 2010, 132: 4381-4387 CrossRef PubMed Google Scholar
[45] Bogen S, Gulea M, Fensterbank L, Malacria M. J Org Chem, 1999, 64: 4920-4925 CrossRef PubMed Google Scholar
Scheme 1
Ynamides as radical acceptors: context and objective of the work (color online).
Figure 1
DFT-computed structure of
Scheme 2
Synthesis route for the ynamide
Scheme 3
By-products formed from the use of the Togni II reagent.
Scheme 4
Scope of the process (
Scheme 5
Energetic profile for the cyclisation of the ynamide: energies given are Δ
Entry | Catalyst | CF3 reagent | Solvent | Time | Yield (%), |
1 | Ru(bpy)3Cl2 | Togni II | MeCN | 36, 97:3 | |
2 | Ir(ppy)2(dtbpy)·PF6 | Togni II b) | MeCN | 45, 50:50 | |
3 | Ir(ppy)3 | Togni II | MeCN | 71, 86:14 | |
4 | 4CzIPN b) | Togni II | MeCN | 50, 92:8 | |
5 | Ir(ppy)3 b) | Umemoto | MeCN | 14 c), 100:0 | |
6 | Ir(ppy)3 | Togni I | MeCN | 64 d), 81:19 | |
7 | Ir(ppy)3 | Togni II | Acetone | 54, 85:15 | |
8 | Ir(ppy)3 | Togni II | DMF | 51, 62:38 | |
9 | Ir(ppy)3 | Togni II | 55, 75:25 | ||
10 | Ir(ppy)3 | Togni II | AcOEt | 62, 92:8 |
Reaction conditions: