logo

Temperature-induced Sn(II) supramolecular isomeric frameworks as promising heterogeneous catalysts for cyanosilylation of aldehydes

More info
  • ReceivedAug 27, 2019
  • AcceptedSep 20, 2019
  • PublishedDec 11, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21822107,21571115,21827801,21671172)

the Natural Science Foundation of Shandong Province(JQ201803,ZR2017MB061,ZR2017ZF003)

the Taishan Scholar Project of Shandong Province of China(tsqn201812003)

the Qilu Youth Scholar Funding of Shandong University and the Fundamental Research Funds of Shandong University(104.205.2.5)

and the State Key Laboratory of Pollution Control and Resource Reuse Foundation(PCRRF18019)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21822107, 21571115, 21827801, 21671172), the Natural Science Foundation of Shandong Province (JQ201803, ZR2017MB061, ZR2017ZF003), the Taishan Scholar Project of Shandong Province of China (tsqn201812003), the Qilu Youth Scholar Funding of Shandong University and the Fundamental Research Funds of Shandong University (104.205.2.5), and the State Key Laboratory of Pollution Control and Resource Reuse Foundation (PCRRF18019).


Interest statement

The authors declare that they have no conflict of interest.


Contributions statement

These authors contributed equally to this work.


Supplement

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Cui Y, Li B, He H, Zhou W, Chen B, Qian G. Acc Chem Res, 2016, 49: 483-493 CrossRef PubMed Google Scholar

[2] Li B, Wen HM, Cui Y, Zhou W, Qian G, Chen B. Adv Mater, 2016, 28: 8819-8860 CrossRef PubMed Google Scholar

[3] Zhou HC, Long JR, Yaghi OM. Chem Rev, 2012, 112: 673-674 CrossRef PubMed Google Scholar

[4] Tan YX, Wang F, Zhang J. Chem Soc Rev, 2018, 47: 2130-2144 CrossRef PubMed Google Scholar

[5] Zhang JP, Huang XC, Chen XM. Chem Soc Rev, 2009, 38: 2385-2396 CrossRef PubMed Google Scholar

[6] Moulton B, Zaworotko MJ. Chem Rev, 2001, 101: 1629-1658 CrossRef Google Scholar

[7] Robin AY, Fromm KM. Coord Chem Rev, 2006, 250: 2127-2157 CrossRef Google Scholar

[8] Aulakh D, Varghese JR, Wriedt M. Inorg Chem, 2015, 54: 8679-8684 CrossRef PubMed Google Scholar

[9] Cheetham AK, Rao CNR, Feller RK. Chem Commun, 2006, 216: 4780-4795 CrossRef PubMed Google Scholar

[10] Hao ZM, Zhang XM. Cryst Growth Des, 2007, 7: 64-68 CrossRef Google Scholar

[11] Masaoka S, Tanaka D, Nakanishi Y, Kitagawa S. Angew Chem Int Ed, 2004, 43: 2530-2534 CrossRef PubMed Google Scholar

[12] Fang HC, Ge YY, Jia HY, Li SS, Sun F, Zhang LG, Cai YP. CrystEngComm, 2011, 13: 67-71 CrossRef Google Scholar

[13] Dikhtiarenko A, Serra-Crespo P, Castellanos S, Pustovarenko A, Mendoza-Meroño R, García-Granda S, Gascon J. Cryst Growth Des, 2016, 16: 5636-5645 CrossRef Google Scholar

[14] Kloskowska M, Konitz A, Wojnowski W, Becker B. Z Anorg Allg Chem, 2006, 632: 2424-2428 CrossRef Google Scholar

[15] Karmakar A, Hazra S, Rúbio GMDM, Guedes da Silva MFC, Pombeiro AJL. New J Chem, 2018, 42: 17513-17523 CrossRef Google Scholar

[16] Chen GH, He YP, Zhang SH, Liang FP, Zhang L, Zhang J. Inorg Chem, 2019, 58: 12521-12525 CrossRef PubMed Google Scholar

[17] Gustafsson M, Bartoszewicz A, Martín-Matute B́, Sun J, Grins J, Zhao T, Li Z, Zhu G, Zou X. Chem Mater, 2010, 22: 3316-3322 CrossRef Google Scholar

[18] Dang D, Wu P, He C, Xie Z, Duan C. J Am Chem Soc, 2010, 132: 14321-14323 CrossRef PubMed Google Scholar

[19] Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY. Chem Soc Rev, 2014, 43: 6011-6061 CrossRef PubMed Google Scholar

[20] García-García P, Müller M, Corma A. Chem Sci, 2014, 5: 2979–3007. Google Scholar

[21] Kurono N, Ohkuma T. ACS Catal, 2016, 6: 989-1023 CrossRef Google Scholar

[22] He H, Ma H, Sun D, Zhang L, Wang R, Sun D. Cryst Growth Des, 2013, 13: 3154-3161 CrossRef Google Scholar

[23] Du JJ, Zhang X, Zhou XP, Li D. Inorg Chem Front, 2018, 5: 2772-2776 CrossRef Google Scholar

[24] Evans DA, MacMillan DWC, Campos KR. J Am Chem Soc, 1997, 119: 10859-10860 CrossRef Google Scholar

[25] Samuel PP, Shylesh S, Singh AP. J Mol Catal A-Chem, 2007, 266: 11-20 CrossRef Google Scholar

[26] Wang X, Liu L, Makarenko T, Jacobson AJ. Cryst Growth Des, 2010, 10: 1960-1965 CrossRef Google Scholar

[27] Wang X, Liu L, Makarenko T, Jacobson AJ. Cryst Growth Des, 2010, 10: 3752-3756 CrossRef Google Scholar

[28] Zhao YQ, Yu K, Wang LW, Wang Y, Wang XP, Sun D. Inorg Chem, 2014, 53: 11046-11050 CrossRef PubMed Google Scholar

[29] Yang L, Powell DR, Houser RP. Dalton Trans, 2007, 60: 955-964 CrossRef PubMed Google Scholar

[30] Li W, Du D, Liu S, Zhu C, Sakho AM, Zhu D, Xu L. J Organomet Chem, 2010, 695: 2153-2159 CrossRef Google Scholar

[31] Blatov VA, Carlucci L, Ciani G, Proserpio DM. CrystEngComm, 2004, 6: 377-395 CrossRef Google Scholar

[32] Grusenmeyer TA, King AW, Mague JT, Rack JJ, Schmehl RH. Dalton Trans, 2014, 43: 17754-17765 CrossRef PubMed Google Scholar

[33] Vogler A, Paukner A, Kunkely H. Coord Chem Rev, 1990, 97: 285-297 CrossRef Google Scholar

[34] Zhu C, Xia Q, Chen X, Liu Y, Du X, Cui Y. ACS Catal, 2016, 6: 7590-7596 CrossRef Google Scholar

[35] Wang XP, Zhao YQ, Jagličić Z, Wang SN, Lin SJ, Li XY, Sun D. Dalton Trans, 2015, 44: 11013-11020 CrossRef PubMed Google Scholar

  • Figure 1

    The asymmetric units of 1 (a) and 2 (b); the coordination environments of Sn(II) centres of 1 (c) and 2 (d). Colour code: Sn, brownish green; S, yellow; O, red; C, grey (color online).

  • Scheme 1

    Schematic illustration of synthesis of isomers 1 and 2, and the crystal images under a microscope (color online).

  • Figure 2

    The alignment of SO42– (a) 2D layered non-interpenetrated structure of 1 (c); alternate arrangement of SO42– connecting to another metal centers (b) two-fold interpenetrated 3D structure of 2 (d). Colour code: Sn, brownish green; S, yellow; O, red; C, grey (color online).

  • Figure 3

    (a) The 4-connected sql sheet for 1 and (b) the two-fold interpenetrated 4-connected dia net for 2 (color online).

  • Figure 4

    The kinetic reaction profile of the cyanosilylation catalysed by 1 mol% of 1 and 2 (based on 1H NMR integrations) (color online).

  • Table 1   Results of cyanosilylation of varied aromatic aldehydes/ketone in the presentence of Sn-CP-1-α or Sn-CP-1-β at room temperature

    Entry

    Catalyst

    Ar

    R

    Conversion b) (%)

    TOF c) (h–1)

    1

    1

    Ph

    H

    96

    48

    2

    2

    Ph

    H

    >99

    49.5

    3

    2

    o-MeC6H4

    H

    >99

    49.5

    4

    2

    m-MeC6H4

    H

    >99

    49.5

    5

    2

    p-MeC6H4

    H

    >99

    49.5

    6

    2

    p-tBuC6H4

    H

    95

    47.5

    7

    2

    1-Naphtyhyl

    H

    47 (99) d)

    23.5

    8

    2

    o-FC6H4

    H

    >99

    49.5

    9

    2

    Ph

    Me

    5

    2.5

    10

    No catalyst

    Ph

    H

    3

    1.5

    General reaction conditions: aldehyde/ketone (1 mmol), TMSCN (1.2 mmol), catalyst 1 or 2 (0.01 mmol), room temperature, 2 h. b) The conversions are calculated based on 1H NMR integration of the product peaks in comparison to those of the aldehyde/ketone. c) TOFs are calculated as moles of product formed per hour and per mole of Lewis acidic active site. d) Reaction time: 5 h.

qqqq

Contact and support