logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 12 : 1557-1560(2019) https://doi.org/10.1007/s11426-019-9588-4

Engineered nanoparticles circumvent the adaptive treatment tolerance to immune-checkpoint blockade therapy

More info
  • ReceivedJun 3, 2019
  • AcceptedAug 16, 2019
  • PublishedAug 29, 2019

Abstract

There is no abstract available for this article.


Funded by

the National Natural Science Foundation of China(31630027,31430031,81601603)

the National Distinguished Young Scholars grant(31225009)

the NSFC-DFG Project(31761133013)

and the External Cooperation Program of the Chinese Academy of Science(121D11KYSB20160066)


Acknowledgment

We appreciate Prof. Massimo Bottini from University of Rome Tor Vergata, who provided many thoughtful suggestions and kind edit to our manuscript. This work was partially supported by the National Natural Science Foundation of China (31630027, 31430031, 81601603), the National Distinguished Young Scholars Grant (31225009), the NSFC-DFG Project (31761133013), and the External Cooperation Program of the Chinese Academy of Sciences (121D11KYSB20160066).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, Engelman JA, Dranoff G. Nat Rev Cancer, 2017, 17: 286-301 CrossRef PubMed Google Scholar

[2] Keklikoglou I, Cianciaruso C, Güç E, Squadrito ML, Spring LM, Tazzyman S, Lambein L, Poissonnier A, Ferraro GB, Baer C, Cassará A, Guichard A, Iruela-Arispe ML, Lewis CE, Coussens LM, Bardia A, Jain RK, Pollard JW, De Palma M. Nat Cell Biol, 2019, 21: 190-202 CrossRef PubMed Google Scholar

[3] Wei SC, Duffy CR, Allison JP. Cancer Discov, 2018, 8: 1069-1086 CrossRef PubMed Google Scholar

[4] Gong N, Ma X, Ye X, Zhou Q, Chen X, Tan X, Yao S, Huo S, Zhang T, Chen S, Teng X, Hu X, Yu J, Gan Y, Jiang H, Li J, Liang XJ. Nat Nanotechnol, 2019, 14: 379-387 CrossRef PubMed ADS Google Scholar

[5] Motevalli SM, Eltahan AS, Liu L, Magrini A, Rosato N, Guo W, Bottini M, Liang XJ. Biophys Rep, 2019, 5: 19-30 CrossRef Google Scholar

[6] Yarchoan M, Hopkins A, Jaffee EM. N Engl J Med, 2017, 377: 2500-2501 CrossRef PubMed Google Scholar

[7] Mathios D, Kim JE, Mangraviti A, Phallen J, Park CK, Jackson CM, Garzon-Muvdi T, Kim E, Theodros D, Polanczyk M, Martin AM, Suk I, Ye X, Tyler B, Bettegowda C, Brem H, Pardoll DM, Lim M. Sci Transl Med, 2016, 8: 370ra180 CrossRef PubMed Google Scholar

[8] Min Y, Roche KC, Tian S, Eblan MJ, McKinnon KP, Caster JM, Chai S, Herring LE, Zhang L, Zhang T, DeSimone JM, Tepper JE, Vincent BG, Serody JS, Wang AZ. Nat Nanotech, 2017, 12: 877-882 CrossRef PubMed ADS Google Scholar

[9] Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K, Liu Z. Nat Biomed Eng, 2018, 2: 611-621 CrossRef PubMed Google Scholar

[10] Duan X, Chan C, Han W, Guo N, Weichselbaum RR, Lin W. Nat Commun, 2019, 10: 1899 CrossRef PubMed ADS Google Scholar

[11] Lu K, He C, Guo N, Chan C, Ni K, Lan G, Tang H, Pelizzari C, Fu YX, Spiotto MT, Weichselbaum RR, Lin W. Nat Biomed Eng, 2018, 2: 600-610 CrossRef PubMed Google Scholar

[12] Cheung AS, Zhang DKY, Koshy ST, Mooney DJ. Nat Biotechnol, 2018, 36: 160-169 CrossRef PubMed Google Scholar

[13] Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Cell, 2017, 168: 707-723 CrossRef PubMed Google Scholar

[14] Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, Yu Z, Yang J, Wang B, Sun H, Xia H, Man Q, Zhong W, Antelo LF, Wu B, Xiong X, Liu X, Guan L, Li T, Liu S, Yang R, Lu Y, Dong L, McGettigan S, Somasundaram R, Radhakrishnan R, Mills G, Lu Y, Kim J, Chen YH, Dong H, Zhao Y, Karakousis GC, Mitchell TC, Schuchter LM, Herlyn M, Wherry EJ, Xu X, Guo W. Nature, 2018, 560: 382-386 CrossRef PubMed ADS Google Scholar

[15] Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Cell, 2019, 177: 414-427.e13 CrossRef PubMed Google Scholar

[16] Zhang X, Wang J, Chen Z, Hu Q, Wang C, Yan J, Dotti G, Huang P, Gu Z. Nano Lett, 2018, 18: 5716-5725 CrossRef PubMed ADS Google Scholar

[17] Wang C, Sun W, Ye Y, Hu Q, Bomba HN, Gu Z. Nat Biomed Eng, 2017, 1: 0011 CrossRef Google Scholar

[18] Zhang X, Wang C, Wang J, Hu Q, Langworthy B, Ye Y, Sun W, Lin J, Wang T, Fine J, Cheng H, Dotti G, Huang P, Gu Z. Adv Mater, 2018, 30: 1707112 CrossRef PubMed Google Scholar

[19] Yao H, Lan J, Li C, Shi H, Brosseau JP, Wang H, Lu H, Fang C, Zhang Y, Liang L, Zhou X, Wang C, Xue Y, Cui Y, Xu J. Nat Biomed Eng, 2019, 3: 306-317 CrossRef PubMed Google Scholar

[20] Wang D, Wang T, Liu J, Yu H, Jiao S, Feng B, Zhou F, Fu Y, Yin Q, Zhang P, Zhang Z, Zhou Z, Li Y. Nano Lett, 2016, 16: 5503-5513 CrossRef PubMed ADS Google Scholar

[21] Agrawal S, Statkevich P, Bajaj G, Feng Y, Saeger S, Desai DD, Park JS, Waxman IM, Roy A, Gupta M. J Clin Pharmacol, 2017, 57: 394-400 CrossRef PubMed Google Scholar

[22] Mazor R, King EM, Onda M, Cuburu N, Addissie S, Crown D, Liu XF, Kishimoto TK, Pastan I. Proc Natl Acad Sci USA, 2018, 115: E733-E742 CrossRef PubMed Google Scholar

[23] Pitt JM, Vétizou M, Daillère R, Roberti MP, Yamazaki T, Routy B, Lepage P, Boneca IG, Chamaillard M, Kroemer G, Zitvogel L. Immunity, 2016, 44: 1255-1269 CrossRef PubMed Google Scholar

  • Scheme 1

    Engineered nanoparticles can modulate and reverse the adaptive treatment tolerance (ATT) of tumors to immune-checkpoint blockade (ICB) therapy and potentiate antitumor efficacy. CTL, cytotoxic T lymphocyte; PD-L1, programmed death-ligand 1; TME, tumor microenvironment (color online).

  • Table 1   Table of engineered nanoparticles-based strategies that can overcome ATT to ICB therapy

    Reason of ATT issue

    Types of nanoparticles

    Approaches

    Ref.

    Inadequate activation of T cells after radiotherapy.

    Antibodies decorated poly(lactic-co-glycolic acid) (PLGA) nanoparticles.

    Capture and transport the tumor-derived protein antigens.

    [8]

    Inadequate activation of T cells after radiotherapy.

    Sodium alginate nanoparticles containing catalase (Cat) labelled with the therapeutic 131I radioisotope.

    Long-term relief of tumour hypoxia and efficient activation of immune cells after low radioactivity doses.

    [9]

    Inadequate activation of T cells after radiotherapy.

    Self-assembled nanoscale coordination polymer (NCP) core-shell nanoparticles carrying OxPt in the core and DHA in the shell (OxPt/DHA).

    ROS generation is harnessed for immune activation to synergize with an anti-PD-L1 antibody for the treatment of murine colorectal cancer.

    [10]

    Inadequate activation of T cells after radiotherapy.

    Two kinds of nanoscale metal-organic framework: 5,15-di(p-benzoato) porphyrin-Hf (DBP-Hf) and 5,10,15,20-tetra(p-nzoato)porphyrin-Hf (TBP-Hf).

    In situ vaccination and indoleamine 2,3-dioxygenase inhibition by combining radiotherapy-radiodynamic therapy with checkpoint blockade immunotherapy.

    [11]

    Inefficient activation and expansion of T cells.

    Mesoporous silica nanorods decorated with antibodies for CD28 and CD3.

    Sustained IL-2 release and highly efficient expansion of primary T cells.

    [12]

    Systemic generation of PD-L1 presenting exosomes by cancer cells.

    PD-L1 antibody-presenting platelets.

    Disassemble into PD-L1 antibody-presenting nanovesicles in the wound sites post-surgery and disrupt the PD-1/PD-L1 axis.

    [16]

    Systemic generation of PD-L1 presenting exosomes by cancer cells.

    Engineered nanovesicles derived from PD-1 expressing 293T cells.

    Block the PD-1/PD-L1 at the surface of cancer cells and inhibit the indoleamine 2,3-dioxygenase.

    [18]

    Intracellular generation of PD-L1.

    Acid-activatable cationic nanoparticles (POP/siRNA).

    Transmit siRNA into cancer cells to knockdown the expression of PD-L1.

    [20]

    Generation of antidrug antibodies (ADAs) after treatments with therapeutic antibodies.

    Rapamycin-loaded PLGA nanoparticles.

    Mitigate the formation of inhibitory ADAs.

    [22]

qqqq

Contact and support