logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 12 : 1601-1618(2019) https://doi.org/10.1007/s11426-019-9585-5

Recent advances of multidimensional sensing: from design to applications

More info
  • ReceivedJun 19, 2019
  • AcceptedAug 14, 2019
  • PublishedSep 26, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21607160,51872300,U1832110)

the Zhejiang Provincial Natural Science Foundation of China(LY16B050005)

Ningbo Science and Technology Bureau(2016C50009)

and the W. C. Wong Education Foundation(rczx0800)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21607160, 51872300, U1832110), the Zhejiang Provincial Natural Science Foundation of China (LY16B050005), Ningbo Science and Technology Bureau (2016C50009), and the W. C. Wong Education Foundation (rczx0800).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Anzenbacher P Jr., Lubal P, Buček P, Palacios MA, Kozelkova ME, Askim JR, Mahmoudi M, Suslick KS, Diehl KL, Anslyn EV, Li Z, Askim JR, Suslick KS, Ma Y, Li Y, Ma K, Wang Z. Chem Soc Rev, 2010, 39: 3954-3979 CrossRef PubMed Google Scholar

[2] Rakow NA, Suslick KS, Zhang C, Suslick KS, Folmer-Andersen JF, Kitamura M, Anslyn EV, Janzen MC, Ponder JB, Bailey DP, Ingison CK, Suslick KS, Lim SH, Musto CJ, Park E, Zhong W, Suslick KS, Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS, Shabbir SH, Joyce LA, da Cruz GM, Lynch VM, Sorey S, Anslyn EV. Nature, 2000, 406: 710-713 CrossRef PubMed Google Scholar

[3] Schmittel M, Lin HW, Wu P, Miao LN, Wang HF, Shao XG, Yan XP, Magri DC, Camilleri Fava M, Mallia CJ, Chen K, Shu Q, Schmittel M, Li X, Zhang F, Zhao D. Angew Chem Int Ed, 2007, 46: 893-896 CrossRef PubMed Google Scholar

[4] Hagleitner C, Hierlemann A, Lange D, Kummer A, Kerness N, Brand O, Baltes H, Gutierrez-Osuna R, Hierlemann A. Nature, 2001, 414: 293-296 CrossRef PubMed Google Scholar

[5] Heilig A, Bârsan N, Weimar U, Schweizer-Berberich M, Gardner JW, Göpel W, Kunt TA, McAvoy TJ, Cavicchi RE, Semancik S, Lee A, Reedy BJ, Hierlemann A, Gutierrez-Osuna R. Sens Actuat B-Chem, 1997, 43: 45-51 CrossRef Google Scholar

[6] Baumes LA, Buaki Sogo M, Montes-Navajas P, Corma A, Garcia H, Feng L, Musto CJ, Kemling JW, Lim SH, Suslick KS, Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS, Musto CJ, Suslick KS, Rochat S, Gao J, Qian X, Zaubitzer F, Severin K, Steiner MS, Meier RJ, Duerkop A, Wolfbeis OS. Chem Eur J, 2010, 16: 4489-4495 CrossRef PubMed Google Scholar

[7] Massart DL, Kaufman L. The Interpretation of Analytical Chemical Data by the Use of Cluster Analysis. New York: John Wiley & Sons, 1983. Google Scholar

[8] Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. 6th ed. Prentice Hall: Upper Saddle River, 2007. Google Scholar

[9] Stewart S, Ivy MA, Anslyn EV. Jolliffe IT. Principal Component Analysis. New York: Springer-Verlag, 2002. Google Scholar

[10] Donoho DL. High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality. Presented at Mathematical Challenges of the 21st Century, 2000. 1−32. Google Scholar

[11] Lu Y, Peng S, Luo D, Lal A, Kubo W, Fujikawa S, Jeon S, Ahn SE, Song I, Kim CJ, Chung UI, Lee E, Yoo I, Nathan A, Lee S, Ghaffarzadeh K, Robertson J, Kim K, Li Z, Askim JR, Suslick KS. Nat Commun, 2011, 2: 578-583 CrossRef PubMed ADS Google Scholar

[12] Suslick KS. MRS Bull, 2004, 29: 720-725 CrossRef Google Scholar

[13] Miranda OR, Chen HT, You CC, Mortenson DE, Yang XC, Bunz UHF, Rotello VM, De M, Rana S, Akpinar H, Miranda OR, Arvizo RR, Bunz UHF, Rotello VM, He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP, Greengard P. J Am Chem Soc, 2010, 132: 5285-5289 CrossRef PubMed Google Scholar

[14] Li Z, Guan W, Lu C, Zhou XR, Luo SZ, You Y, Ouyang J, Li Z, Li M, Li F, Zhang M. Chem Commun, 2016, 52: 2807-2810 CrossRef PubMed Google Scholar

[15] Liu Y, Deng Y, Dong H, Liu K, He N, Luo Y, Zhu C, Du D, Lin Y, Chen YX, Huang KJ, Niu KX. Sci China Chem, 2017, 60: 329-337 CrossRef Google Scholar

[16] Xu S, Lu X, Yao C, Huang F, Jiang H, Hua W, Na N, Liu H, Ouyang J, Xu S, Gao T, Feng X, Fan X, Liu G, Mao Y, Yu X, Lin J, Luo X, Xu S, Su Z, Zhang Z, Nie Y, Wang J, Ge G, Luo X. Anal Chem, 2014, 86: 11634-11639 CrossRef PubMed Google Scholar

[17] Clelland CT, Risca V, Bancroft C. Nature, 1999, 399: 533-534 CrossRef PubMed ADS Google Scholar

[18] Sun W, Lu Y, Mao J, Chang N, Yang J, Liu Y. Anal Chem, 2015, 87: 3354-3359 CrossRef PubMed Google Scholar

[19] Wei X, Chen Z, Tan L, Lou T, Zhao Y. Anal Chem, 2017, 89: 556-559 CrossRef PubMed Google Scholar

[20] Wei X, Wang Y, Zhao Y, Chen Z. Biosens Bioelectron, 2017, 97: 332-337 CrossRef PubMed Google Scholar

[21] Tao Y, Ran X, Ren J, Qu X, Ran X, Pu F, Ren J, Qu X. Small, 2014, 10: 3667-3671 CrossRef PubMed Google Scholar

[22] You CC, Miranda OR, Gider B, Ghosh PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM. Nat Nanotech, 2007, 2: 318-323 CrossRef PubMed ADS Google Scholar

[23] Wang X, Zhao X, Zheng K, Guo X, Yan Y, Xu Y. Langmuir, 2019, 35: 5599-5607 CrossRef PubMed Google Scholar

[24] Li X, Wen F, Creran B, Jeong Y, Zhang X, Rotello VM. Small, 2012, 8: 3589-3592 CrossRef PubMed Google Scholar

[25] Yan P, Li X, Dong Y, Li B, Wu Y. Analyst, 2019, 144: 2891-2897 CrossRef PubMed ADS Google Scholar

[26] Cui L, Lin X, Lin N, Song Y, Zhu Z, Chen X, Yang CJ. Chem Commun, 2012, 48: 194-196 CrossRef PubMed Google Scholar

[27] Pan W, Zhang T, Yang H, Diao W, Li N, Tang B. Anal Chem, 2013, 85: 10581-10588 CrossRef PubMed Google Scholar

[28] Lee JH, Kim JA, Jeong S, Rhee WJ. Biosens Bioelectron, 2016, 86: 202-210 CrossRef PubMed Google Scholar

[29] Xu S, Feng X, Gao T, Liu G, Mao Y, Lin J, Yu X, Luo X, Xu S, Nie Y, Jiang L, Wang J, Xu G, Wang W, Luo X. Anal Chim Acta, 2017, 983: 173-180 CrossRef PubMed Google Scholar

[30] Peng G, Tisch U, Adams O, Hakim M, Shehada N, Broza YY, Billan S, Abdah-Bortnyak R, Kuten A, Haick H, Diamandis EP. Nat Nanotech, 2009, 4: 669-673 CrossRef PubMed ADS Google Scholar

[31] Bajaj A, Rana S, Miranda OR, Yawe JC, Jerry DJ, Bunz UHF, Rotello VM, Rana S, Singla AK, Bajaj A, Elci SG, Miranda OR, Mout R, Yan B, Jirik FR, Rotello VM, Rana S, Elci SG, Mout R, Singla AK, Yazdani M, Bender M, Bajaj A, Saha K, Bunz UHF, Jirik FR, Rotello VM. Chem Sci, 2010, 1: 134-138 CrossRef Google Scholar

[32] Le NDB, Yesilbag Tonga G, Mout R, Kim ST, Wille ME, Rana S, Dunphy KA, Jerry DJ, Yazdani M, Ramanathan R, Rotello CM, Rotello VM. J Am Chem Soc, 2017, 139: 8008-8012 CrossRef PubMed Google Scholar

[33] Peveler WJ, Landis RF, Yazdani M, Day JW, Modi R, Carmalt CJ, Rosenberg WM, Rotello VM. Adv Mater, 2018, 30: 1800634 CrossRef PubMed Google Scholar

[34] Bajaj A, Miranda OR, Phillips R, Kim IB, Jerry DJ, Bunz UHF, Rotello VM. J Am Chem Soc, 2010, 132: 1018-1022 CrossRef PubMed Google Scholar

[35] Li Z, Fang M, LaGasse MK, Askim JR, Suslick KS. Angew Chem Int Ed, 2017, 56: 9860-9863 CrossRef PubMed Google Scholar

[36] Mosca L, Karimi Behzad S, Anzenbacher P Jr.. J Am Chem Soc, 2015, 137: 7967-7969 CrossRef PubMed Google Scholar

[37] Qi Y, Xu W, Kang R, Ding N, Wang Y, He G, Fang Y. Chem Sci, 2018, 9: 1892-1901 CrossRef PubMed Google Scholar

[38] Deisingh AK, Thompson M, Gerner-Smidt P, Kincaid J, Kubota K, Hise K, Hunter SB, Fair MA, Norton D, Woo-Ming A, Kurzynski T, Sotir MJ, Head M, Holt K, Swaminathan B. Analyst, 2002, 127: 567-581 CrossRef PubMed ADS Google Scholar

[39] Qian X, Metallo SJ, Choi IS, Wu H, Liang MN, Whitesides GM, Didelot X, Bowden R, Wilson DJ, Peto TEA, Crook DW. Anal Chem, 2002, 74: 1805-1810 CrossRef PubMed Google Scholar

[40] Carey JR, Suslick KS, Hulkower KI, Imlay JA, Imlay KRC, Ingison CK, Ponder JB, Sen A, Wittrig AE. J Am Chem Soc, 2011, 133: 7571-7576 CrossRef PubMed Google Scholar

[41] Lim SH, Mix S, Anikst V, Budvytiene I, Eiden M, Churi Y, Queralto N, Berliner A, Martino RA, Rhodes PA, Banaei N. Analyst, 2016, 141: 918-925 CrossRef PubMed ADS Google Scholar

[42] Chen W, Li Q, Zheng W, Hu F, Zhang G, Wang Z, Zhang D, Jiang X. Angew Chem Int Ed, 2014, 53: 13734-13739 CrossRef PubMed Google Scholar

[43] Li B, Li X, Dong Y, Wang B, Li D, Shi Y, Wu Y. Anal Chem, 2017, 89: 10639-10643 CrossRef PubMed Google Scholar

[44] Zhou C, Xu W, Zhang P, Jiang M, Chen Y, Kwok RTK, Lee MMS, Shan G, Qi R, Zhou X, Lam JWY, Wang S, Tang BZ. Adv Funct Mater, 2019, 29: 1805986-1805995 CrossRef Google Scholar

[45] Shen J, Hu R, Zhou T, Wang Z, Zhang Y, Li S, Gui C, Jiang M, Qin A, Tang BZ. ACS Sens, 2018, 3: 2218-2222 CrossRef Google Scholar

[46] Ngernpimai S, Geng Y, Makabenta JM, Landis RF, Keshri P, Gupta A, Li CH, Chompoosor A, Rotello VM. ACS Appl Mater Interfaces, 2019, 11: 11202-11208 CrossRef Google Scholar

[47] Phillips RL, Miranda OR, You CC, Rotello VM, Bunz UHF. Angew Chem Int Ed, 2008, 47: 2590-2594 CrossRef PubMed Google Scholar

[48] Han J, Cheng H, Wang B, Braun MS, Fan X, Bender M, Huang W, Domhan C, Mier W, Lindner T, Seehafer K, Wink M, Bunz UHF. Angew Chem Int Ed, 2017, 56: 15246-15251 CrossRef PubMed Google Scholar

[49] Nordberg GF, Fowler BA, Nordberg M, Frigerg L. Handbook on the Toxicology of Metals. 3rd ed. Burligton: Academic Press. 2007. Google Scholar

[50] Sener G, Uzun L, Denizli A. ACS Appl Mater Interfaces, 2014, 6: 18395-18400 CrossRef PubMed Google Scholar

[51] Li X, Li S, Liu Q, Chen Z. Anal Chem, 2019, 91: 6315-6320 CrossRef PubMed Google Scholar

[52] Liu L, Lin H. Anal Chem, 2014, 86: 8829-8834 CrossRef PubMed Google Scholar

[53] Xu W, Ren C, Teoh CL, Peng J, Gadre SH, Rhee HW, Lee CLK, Chang YT. Anal Chem, 2014, 86: 8763-8769 CrossRef PubMed Google Scholar

[54] Peng J, Li J, Xu W, Wang L, Su D, Teoh CL, Chang YT. Anal Chem, 2018, 90: 1628-1634 CrossRef PubMed Google Scholar

[55] Pu F, Ran X, Ren J, Qu X. Chem Commun, 2016, 52: 3410-3413 CrossRef PubMed Google Scholar

[56] Xue SF, Chen ZH, Han XY, Lin ZY, Wang QX, Zhang M, Shi G. Anal Chem, 2018, 90: 3443-3451 CrossRef PubMed Google Scholar

[57] Wang Z, Palacios MA, Anzenbacher P, Palacios MA, Wang Z, Montes VA, Zyryanov GV, Anzenbacher P. Anal Chem, 2008, 80: 7451-7459 CrossRef PubMed Google Scholar

[58] Anzenbacher Jr. P, Li F, Palacios MA. Angew Chem Int Ed, 2012, 51: 2345-2348 CrossRef Google Scholar

[59] Wang J, Chow W, Leung D, Chang J, Kiso Y, Li H, Shigetoh K, Kitao T, Jinno K, Gómez-Ramos MM, Ferrer C, Malato O, Agüera A, Fernández-Alba AR. J Agric Food Chem, 2012, 60: 12088-12104 CrossRef PubMed Google Scholar

[60] Liu G, Lin Y, Viswanathan S, Radecka H, Radecki J. Anal Chem, 2005, 77: 5894-5901 CrossRef PubMed Google Scholar

[61] Qian G, Wang L, Wu Y, Zhang Q, Sun Q, Liu Y, Liu F, Gabaldón JA, Maquieira A, Puchades R. Food Chem, 2009, 117: 364-370 CrossRef Google Scholar

[62] Zhang K, Mei Q, Guan G, Liu B, Wang S, Zhang Z, Xuan W, Cao Y, Zhou J, Wang W, Lee J, Seo S, Kim J, Walton I, Davis M, Munro L, Catalano VJ, Cragg PJ, Huggins MT, Wallace KJ. Anal Chem, 2010, 82: 9579-9586 CrossRef PubMed Google Scholar

[63] Liu Y, Bonizzoni M. J Am Chem Soc, 2014, 136: 14223-14229 CrossRef PubMed Google Scholar

[64] Qian S, Lin H. Anal Chem, 2015, 87: 5395-5400 CrossRef PubMed Google Scholar

[65] Lin H, Suslick KS, Lin H, Jang M, Suslick KS. J Am Chem Soc, 2010, 132: 15519-15521 CrossRef PubMed Google Scholar

[66] Qian S, Leng Y, Lin H. RSC Adv, 2016, 6: 7902-7907 CrossRef Google Scholar

[67] Qiao L’, Qian S, Wang Y, Lin H. Talanta, 2018, 181: 305-310 CrossRef PubMed Google Scholar

[68] Fahimi-Kashani N, Hormozi-Nezhad MR. Anal Chem, 2016, 88: 8099-8106 CrossRef PubMed Google Scholar

[69] Huang X, Zou X, Shi J, Guo Y, Zhao J, Zhang J, Hao L. Food Chem, 2014, 145: 549-554 CrossRef PubMed Google Scholar

[70] Morsy MK, Zór K, Kostesha N, Alstrøm TS, Heiskanen A, El-Tanahi H, Sharoba A, Papkovsky D, Larsen J, Khalaf H, Jakobsen MH, Emnéus J. Food Control, 2016, 60: 346-352 CrossRef Google Scholar

[71] Khulal U, Zhao J, Hu W, Chen Q. RSC Adv, 2016, 6: 4663-4672 CrossRef Google Scholar

[72] Li Z, Suslick KS. ACS Sens, 2016, 1: 1330-1335 CrossRef Google Scholar

[73] Chen Y, Fu G, Zilberman Y, Ruan W, Ameri SK, Zhang YS, Miller E, Sonkusale SR. Food Control, 2017, 82: 227-232 CrossRef Google Scholar

[74] Umali AP, LeBoeuf SE, Newberry RW, Kim S, Tran L, Rome WA, Tian T, Taing D, Hong J, Kwan M, Heymann H, Anslyn EV. Chem Sci, 2011, 2: 439-445 CrossRef Google Scholar

[75] Ghanem E, Hopfer H, Navarro A, Ritzer MS, Mahmood L, Fredell M, Cubley A, Bolen J, Fattah R, Teasdale K, Lieu L, Chua T, Marini F, Heymann H, Anslyn EV. Molecules, 2015, 20: 9170-9182 CrossRef PubMed Google Scholar

[76] Han J, Bender M, Seehafer K, Bunz UHF. Angew Chem Int Ed, 2016, 55: 7689-7692 CrossRef PubMed Google Scholar

[77] Han J, Ma C, Wang B, Bender M, Bojanowski M, Hergert M, Seehafer K, Herrmann A, Bunz UHF. Chem, 2017, 2: 817-824 CrossRef Google Scholar

[78] Li Z, Suslick KS. ACS Sens, 2018, 3: 121-127 CrossRef Google Scholar

[79] Ya Z, He K, Lu Z, Yi B, Hou C, Shan S, Huo D, Luo X, Qin H, Huo D, Zhang L, Yang L, Zhang S, Yang M, Shen C, Hou C, Li JJ, Song CX, Hou CJ, Huo DQ, Shen CH, Luo XG, Yang M, Fa HB. Flavour Fragr J, 2012, 27: 165-170 CrossRef Google Scholar

[80] Huo D, Wu Y, Yang M, Fa H, Luo X, Hou C. Food Chem, 2014, 145: 639-645 CrossRef PubMed Google Scholar

[81] Li J, Fu B, Huo D, Hou C, Yang M, Shen C, Luo H, Yang P. Sens Actuat B-Chem, 2017, 240: 770-778 CrossRef Google Scholar

[82] Wang B, Han J, Bender M, Hahn S, Seehafer K, Bunz UHF. ACS Sens, 2018, 3: 504-511 CrossRef Google Scholar

[83] Flament I. Coffee Flavor Chemistry. Chichester: Wiley & Sons, 2002. Google Scholar

[84] Suslick BA, Feng L, Suslick KS. Anal Chem, 2010, 82: 2067-2073 CrossRef PubMed Google Scholar

[85] Kim SY, Ko JA, Kang BS, Park HJ. Food Chem, 2018, 240: 808-816 CrossRef PubMed Google Scholar

[86] Galpothdeniya WIS, Regmi BP, McCarter KS, de Rooy SL, Siraj N, Warner IM. Anal Chem, 2015, 87: 4464-4471 CrossRef PubMed Google Scholar

[87] Li X, Kong C, Chen Z. ACS Appl Mater Interfaces, 2019, 11: 9504-9509 CrossRef Google Scholar

[88] Sun S, Jiang K, Qian S, Wang Y, Lin H. Anal Chem, 2017, 89: 5542-5548 CrossRef PubMed Google Scholar

[89] Qiao L, Qian S, Wang Y, Yan S, Lin H. Chem Eur J, 2018, 24: 4703-4709 CrossRef PubMed Google Scholar

[90] Magri DC, Brown GJ, McClean GD, de Silva AP. J Am Chem Soc, 2006, 128: 4950-4951 CrossRef PubMed Google Scholar

[91] Martínez-Máñez R, Sancenón F, Callan JF, de Silva AP, Magri DC. Chem Rev, 2003, 103: 4419-4476 CrossRef PubMed Google Scholar

[92] Pan L, Sun S, Zhang A, Jiang K, Zhang L, Dong C, Huang Q, Wu A, Lin H. Adv Mater, 2015, 27: 7782-7787 CrossRef PubMed Google Scholar

[93] Leng Y, Qian S, Wang Y, Lu C, Ji X, Lu Z, Lin H. Sci Rep, 2016, 6: 25354 CrossRef PubMed ADS Google Scholar

[94] Chen K, Schmittel M. Chem Commun, 2014, 50: 5756-5759 CrossRef PubMed Google Scholar

[95] Khatua S, Samanta D, Bats JW, Schmittel M, Schmittel M, Qinghai S. Inorg Chem, 2012, 51: 7075-7086 CrossRef PubMed Google Scholar

[96] Lu Y, Kong H, Wen F, Zhang S, Zhang X. Chem Commun, 2013, 49: 81-83 CrossRef PubMed Google Scholar

[97] Gao L, Ju L, Cui H. J Mater Chem C, 2017, 5: 7753-7758 CrossRef Google Scholar

[98] Yang JY, Yang T, Wang XY, Wang YT, Liu MX, Chen ML, Yu YL, Wang JH. Anal Chem, 2019, 91: 6012-6018 CrossRef PubMed Google Scholar

[99] Chen K, Schmittel M. Analyst, 2013, 138: 6742-6745 CrossRef PubMed ADS Google Scholar

[100] Hierlemann A, Brand O, Hagleitner C, Baltes H. Proc IEEE, 2003, 91: 839-863 CrossRef Google Scholar

[101] Kurzawski P, Hagleitner C, Hierlemann A. Anal Chem, 2006, 78: 6910-6920 CrossRef PubMed Google Scholar

[102] Hu J, Jiang X, Wu L, Xu K, Hou X, Lv Y. Anal Chem, 2011, 83: 6552-6558 CrossRef PubMed Google Scholar

[103] Kahn N, Lavie O, Paz M, Segev Y, Haick H. Nano Lett, 2015, 15: 7023-7028 CrossRef PubMed ADS Google Scholar

[104] Jin H, Huynh TP, Haick H. Nano Lett, 2016, 16: 4194-4202 CrossRef PubMed ADS Google Scholar

[105] Nakhleh MK, Amal H, Jeries R, Broza YY, Aboud M, Gharra A, Ivgi H, Khatib S, Badarneh S, Har-Shai L, Glass-Marmor L, Lejbkowicz I, Miller A, Badarny S, Winer R, Finberg J, Cohen-Kaminsky S, Perros F, Montani D, Girerd B, Garcia G, Simonneau G, Nakhoul F, Baram S, Salim R, Hakim M, Gruber M, Ronen O, Marshak T, Doweck I, Nativ O, Bahouth Z, Shi D, Zhang W, Hua Q, Pan Y, Tao L, Liu H, Karban A, Koifman E, Rainis T, Skapars R, Sivins A, Ancans G, Liepniece-Karele I, Kikuste I, Lasina I, Tolmanis I, Johnson D, Millstone SZ, Fulton J, Wells JW, Wilf LH, Humbert M, Leja M, Peled N, Haick H. ACS Nano, 2017, 11: 112-125 CrossRef Google Scholar

[106] Su M, Li F, Chen S, Huang Z, Qin M, Li W, Zhang X, Song Y. Adv Mater, 2016, 28: 1369-1374 CrossRef PubMed Google Scholar

[107] An B, Ma Y, Li W, Su M, Li F, Song Y. Chem Commun, 2016, 52: 10948-10951 CrossRef PubMed Google Scholar

[108] Qin M, Huang Y, Li Y, Su M, Chen B, Sun H, Yong P, Ye C, Li F, Song Y. Angew Chem Int Ed, 2016, 55: 6911-6914 CrossRef PubMed Google Scholar

  • Figure 1

    (a) Fluorescence emission photographs of Au NCs with different proteins (top), the linear discriminant analysis (LDA) results based on the wavelength shift (bottom left), and the LDA results based on the fluorescence response patterns (bottom right). (b) The colors of DNA-AuNPs in the presence of different proteins (top), response patterns of diverse proteins (bottom), and the LDA results (right). (c) Schematic illustration of the CuS-based sensor array (left), fluorescence response of the sensor array against different proteins (middle), and the PCA results (right). Reproduced with permissions from Refs. [16a,20,21b]. Copyrights of American Chemical Society, Elsevier and Royal Society of Chemistry, respectively (color online).

  • Figure 2

    (a) Scheme of the interaction between serum sample and the polymers; (b) the fluorescent patterns; (c) fluorescent patterns for “healthy” and “fibrotic” samples; (d) the discriminant result; (e) structures of the polymers; (f) multiple mechanisms of the action. Reproduced with permission from Ref. [33]. Copyright of Wiley-VCH (color online).

  • Figure 3

    (a) Three dyes used in this study and their color changes in the presence of carbonyl compounds. (b) Procedure for the fabrication of the sensor array. (c) Response of the array with formaldehyde. (d) Pattern responses of the sensor array towards seven aldehydes and eight ketones. (e) The corresponding HCA result. Reproduced with permission from Ref. [35]. Copyright of Wiley-VCH (color online).

  • Figure 4

    (a) LDA result for bacteria of diverse genera in water (OD600=0.1). (b) LDA result for bacteria of diverse strains and species in water (OD600=0.1). (c) LDA result for bacteria of diverse genera in urine (OD600=0.1). (d) LDA result for bacteria of diverse strains and species in urine (OD600=0.1). (e) LDA result for bacteria of diverse genera in urine (OD600=0.01). (f) LDA result for bacteria of diverse strains and species in urine (OD600=0.01). Reproduced with permission from Ref. [48]. Copyright of Wiley-VCH (color online).

  • Figure 5

    (a) Diagrams of displacement of dyes from dendrimer-dye complexes by OPs with diverse fluorescence recoveries. (b) The HCA result of AChE-based sensor array for the discrimination of carbamates and OPs. (c) Schematic illustration of the AuNPs-based sensor array for OPs detection. Reproduced with permission from Refs. [63,64,68]. Copyright of American Chemical Society (color online).

  • Figure 6

    (A) Response patterns (II0)/I0 obtained by F-CDs in the presence (I) and absence (I0) of metal ions (a); the corresponding PCA result (b). (B) Diagrams of a single-indicator-based multi-channel sensor for multianalyte analysis (a); the HCA result (b). Reproduced with permission from Refs. [92,93]. Copyright of Wiley-VCH and Springer Nature (color online).

  • Figure 7

    (A) Diagrams of the lab-on-chip chemical sensor for exhaled breath (a); strain-related responses in the presence of VOCs (b); the resistance changes (c); fabrication of the sensors (d); structures of the five thiol ligands that were used for the modification of the GNPs (e). (B) Schematics of the flexible sensor based on smart chips (a); structures of the sulfhydryl compounds that were used to modify the GNPs (b); illustration of the self-healing process (c). Reproduced with permission from Refs. [103,104]. Copyright of American Chemical Society (color online).

  • Figure 8

    (a) Photograph of the flexible electronic sensor; (b) photo of the silver nanoparticle curves; (c) image of the experimental setup; (d) the electrical resistance responses at different stresses; (e) real-time resistance alterations along with the eyeball movements; (f) six positions of facial skin were selected to attach the chips; (g) the corresponding PCA result; (h) the corresponding HCA result. Reproduced with permission from Ref. [106]. Copyright of Wiley-VCH (color online).

qqqq

Contact and support