logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 12 : 1561-1575(2019) https://doi.org/10.1007/s11426-019-9575-8

Metal-organic framework nanosheets: a class of glamorous low-dimensional materials with distinct structural and chemical natures

More info
  • ReceivedJun 19, 2019
  • AcceptedJul 29, 2016
  • PublishedOct 8, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21808215,21721004)

the Dalian Institute of Chemical Physics

CAS(ZZBS201815)

the Liaoning Revitalization Talents Program(XLYC1801004)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21808215, 21721004), the Dalian Institute of Chemical Physics, CAS (ZZBS201815) and the Liaoning Revitalization Talents Program (XLYC1801004).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Moghadam PZ, Li A, Wiggin SB, Tao A, Maloney AGP, Wood PA, Ward SC, Fairen-Jimenez D. Chem Mater, 2017, 29: 2618-2625 CrossRef Google Scholar

[2] Barea E, Montoro C, Navarro JAR. Chem Soc Rev, 2014, 43: 5419-5430 CrossRef PubMed Google Scholar

[3] Liu J, Chen L, Cui H, Zhang J, Zhang L, Su CY. Chem Soc Rev, 2014, 43: 6011-6061 CrossRef PubMed Google Scholar

[4] Li JR, Kuppler RJ, Zhou HC. Chem Soc Rev, 2009, 38: 1477-1504 CrossRef PubMed Google Scholar

[5] Liu Y, Ban Y, Yang W. Adv Mater, 2017, 29: 1606949 CrossRef PubMed Google Scholar

[6] Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Chem Rev, 2012, 112: 1105-1125 CrossRef PubMed Google Scholar

[7] Wang Z, Jingjing Q, Wang X, Zhang Z, Chen Y, Huang X, Huang W. Chem Soc Rev, 2018, 47: 6128-6174 CrossRef PubMed Google Scholar

[8] Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Chem Rev, 2012, 112: 1232-1268 CrossRef PubMed Google Scholar

[9] Xia BY, Yan Y, Li N, Wu HB, Lou XW, Wang X. Nat Energy, 2016, 1: 15006 CrossRef ADS Google Scholar

[10] Sevilla M, Mokaya R. Energy Environ Sci, 2014, 7: 1250-1280 CrossRef Google Scholar

[11] Ashworth DJ, Foster JA. J Mater Chem A, 2018, 6: 16292-16307 CrossRef Google Scholar

[12] Zheng C, Zhu J, Yang C, Lu C, Chen Z, Zhuang X. Sci China Chem, 2019, 62: 1145-1193 CrossRef Google Scholar

[13] Zhang Z, Chen Y, He S, Zhang J, Xu X, Yang Y, Nosheen F, Saleem F, He W, Wang X. Angew Chem Int Ed, 2014, 10: 12517-12521 CrossRef PubMed Google Scholar

[14] Song WJ. Talanta, 2017, 170: 74-80 CrossRef PubMed Google Scholar

[15] Shen Y, Shan B, Cai H, Qin Y, Agarwal A, Trivedi DB, Chen B, Liu L, Zhuang H, Mu B, Tongay S. Adv Mater, 2018, 30: 1802497 CrossRef PubMed Google Scholar

[16] Yuan S, Zhu J, Li Y, Zhao Y, Li J, Van Puyvelde P, van der Bruggen B. J Mater Chem A, 2019, 7: 2723-2729 CrossRef Google Scholar

[17] Zheng S, Li B, Tang Y, Li Q, Xue H, Pang H. Nanoscale, 2018, 10: 13270-13276 CrossRef PubMed Google Scholar

[18] Cao L, Lin Z, Peng F, Wang W, Huang R, Wang C, Yan J, Liang J, Zhang Z, Zhang T, Long L, Sun J, Lin W. Angew Chem Int Ed, 2016, 55: 4962-4966 CrossRef PubMed Google Scholar

[19] Shi W, Cao L, Zhang H, Zhou X, An B, Lin Z, Dai R, Li J, Wang C, Lin W. Angew Chem Int Ed, 2017, 56: 9704-9709 CrossRef PubMed Google Scholar

[20] Lin Z, Thacker NC, Sawano T, Drake T, Ji P, Lan G, Cao L, Liu S, Wang C, Lin W. Chem Sci, 2018, 9: 143-151 CrossRef PubMed Google Scholar

[21] Yan R, Zhao Y, Yang H, Kang XJ, Wang C, Wen LL, Lu ZD. Adv Funct Mater, 2018, 28: 1802021 CrossRef Google Scholar

[22] He S, Chen Y, Zhang Z, Ni B, He W, Wang X. Chem Sci, 2016, 7: 7101-7105 CrossRef PubMed Google Scholar

[23] Zhan G, Fan L, Zhao F, Huang Z, Chen B, Yang X, Zhou S. Adv Funct Mater, 2019, 29: 1806720 CrossRef Google Scholar

[24] Rui K, Zhao G, Chen Y, Lin Y, Zhou Q, Chen J, Zhu J, Sun W, Huang W, Dou SX. Adv Funct Mater, 2018, 28: 1801554 CrossRef Google Scholar

[25] Huang Y, Zhao M, Han S, Lai Z, Yang J, Tan C, Ma Q, Lu Q, Chen J, Zhang X, Zhang Z, Li B, Chen B, Zong Y, Zhang H. Adv Mater, 2017, 29: 1700102 CrossRef PubMed Google Scholar

[26] Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. ACS Nano, 2019, 13: 5222-5230 CrossRef Google Scholar

[27] Hu Z, Mahdi EM, Peng Y, Qian Y, Zhang B, Yan N, Yuan D, Tan JC, Zhao D. J Mater Chem A, 2017, 5: 8954-8963 CrossRef Google Scholar

[28] Zhang X, Chang L, Yang Z, Shi Y, Long C, Han J, Zhang B, Qiu X, Li G, Tang Z. Nano Res, 2019, 12: 437-440 CrossRef Google Scholar

[29] Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Nat Energy, 2016, 1: 16184 CrossRef Google Scholar

[30] Duan J, Chen S, Zhao C. Nat Commun, 2017, 8: 15341 CrossRef PubMed ADS Google Scholar

[31] Li FL, Wang P, Huang X, Young DJ, Wang HF, Braunstein P, Lang JP. Angew Chem Int Ed, 2019, 58: 7051-7056 CrossRef PubMed Google Scholar

[32] Dong R, Pfeffermann M, Liang H, Zheng Z, Zhu X, Zhang J, Feng X. Angew Chem Int Ed, 2015, 54: 12058-12063 CrossRef PubMed Google Scholar

[33] Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H. Adv Mater, 2015, 27: 7372-7378 CrossRef PubMed Google Scholar

[34] Córdova Wong BJ, Xu D, Bao SS, Zheng LM, Lei J. ACS Appl Mater Interfaces, 2019, 11: 12986-12992 CrossRef Google Scholar

[35] Xu H, Gao J, Qian X, Wang J, He H, Cui Y, Yang Y, Wang Z, Qian G. J Mater Chem A, 2016, 4: 10900-10905 CrossRef Google Scholar

[36] Luo YH, Chen C, He C, Zhu YY, Hong DL, He XT, An PJ, Wu HS, Sun BW. ACS Appl Mater Interfaces, 2018, 10: 28860-28867 CrossRef Google Scholar

[37] Campbell MG, Sheberla D, Liu SF, Swager TM, Dincă M. Angew Chem Int Ed, 2015, 54: 4349-4352 CrossRef PubMed Google Scholar

[38] Campbell MG, Liu SF, Swager TM, Dincă M. J Am Chem Soc, 2015, 137: 13780-13783 CrossRef PubMed Google Scholar

[39] Sun Z, Yu S, Zhao L, Wang J, Li Z, Li G. Chem Eur J, 2018, 24: 10829-10839 CrossRef PubMed Google Scholar

[40] Larcher D, Tarascon JM. Nat Chem, 2014, 7: 19-29 CrossRef PubMed ADS Google Scholar

[41] Choi JW, Aurbach D. Nat Rev Mater, 2016, 1: 16013 CrossRef ADS Google Scholar

[42] Wang Y, Qu Q, Liu G, Battaglia VS, Zheng H. Nano Energy, 2017, 39: 200-210 CrossRef Google Scholar

[43] Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B. ACS Appl Mater Interfaces, 2017, 9: 29829-29838 CrossRef Google Scholar

[44] Huang JK, Li M, Wan Y, Dey S, Ostwal M, Zhang D, Yang CW, Su CJ, Jeng US, Ming J, Amassian A, Lai Z, Han Y, Li S, Li LJ. ACS Nano, 2018, 12: 836-843 CrossRef Google Scholar

[45] Tian M, Pei F, Yao M, Fu Z, Lin L, Wu G, Xu G, Kitagawa H, Fang X. Energy Storage Mater, 2018, : doi: 10.1016/j.ensm.2018.12.016 CrossRef Google Scholar

[46] Simon P, Gogotsi Y. Nat Mater, 2008, 7: 845-854 CrossRef PubMed ADS Google Scholar

[47] Jiao Y, Pei J, Yan C, Chen D, Hu Y, Chen G. J Mater Chem A, 2016, 4: 13344-13351 CrossRef Google Scholar

[48] Clough AJ, Yoo JW, Mecklenburg MH, Marinescu SC. J Am Chem Soc, 2015, 137: 118-121 CrossRef PubMed Google Scholar

[49] Jiao Y, Pei J, Chen D, Yan C, Hu Y, Zhang Q, Chen G. J Mater Chem A, 2017, 5: 1094-1102 CrossRef Google Scholar

[50] Sheberla D, Sun L, Blood-Forsythe MA, Er S, Wade CR, Brozek CK, Aspuru-Guzik A, Dincă M. J Am Chem Soc, 2014, 136: 8859-8862 CrossRef PubMed Google Scholar

[51] Sheberla D, Bachman JC, Elias JS, Sun CJ, Shao-Horn Y, Dincă M. Nat Mater, 2016, 16: 220-224 CrossRef PubMed ADS Google Scholar

[52] Feng D, Lei T, Lukatskaya MR, Park J, Huang Z, Lee M, Shaw L, Chen S, Yakovenko AA, Kulkarni A, Xiao J, Fredrickson K, Tok JB, Zou X, Cui Y, Bao Z. Nat Energy, 2018, 3: 30-36 CrossRef ADS Google Scholar

[53] Dechnik J, Gascon J, Doonan CJ, Janiak C, Sumby CJ. Angew Chem Int Ed, 2017, 56: 9292-9310 CrossRef PubMed Google Scholar

[54] Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W. Science, 2014, 346: 1356-1359 CrossRef PubMed ADS Google Scholar

[55] Seoane B, Coronas J, Gascon I, Etxeberria Benavides M, Karvan O, Caro J, Kapteijn F, Gascon J. Chem Soc Rev, 2015, 44: 2421-2454 CrossRef PubMed Google Scholar

[56] Peng Y, Li Y, Ban Y, Yang W. Angew Chem Int Ed, 2017, 56: 9757-9761 CrossRef PubMed Google Scholar

[57] Wang X, Chi C, Zhang K, Qian Y, Gupta KM, Kang Z, Jiang J, Zhao D. Nat Commun, 2017, 8: 14460 CrossRef PubMed ADS Google Scholar

[58] Li Y, Lin L, Tu M, Nian P, Howarth AJ, Farha OK, Qiu J, Zhang X. Nano Res, 2018, 11: 1850-1860 CrossRef Google Scholar

[59] Li Y, Liu H, Wang H, Qiu J, Zhang X. Chem Sci, 2018, 9: 4132-4141 CrossRef PubMed Google Scholar

[60] Yang F, Wu M, Wang Y, Ashtiani S, Jiang H. ACS Appl Mater Interfaces, 2019, 11: 990-997 CrossRef Google Scholar

[61] Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Llabrés I Xamena FX, Gascon J. Nat Mater, 2015, 14: 48-55 CrossRef PubMed ADS Google Scholar

[62] Vandezande P, Gevers LEM, Vankelecom IFJ. Chem Soc Rev, 2008, 37: 365-405 CrossRef PubMed Google Scholar

[63] Jiang Y, Ryu GH, Joo SH, Chen X, Lee SH, Chen X, Huang M, Wu X, Luo D, Huang Y, Lee JH, Wang B, Zhang X, Kwak SK, Lee Z, Ruoff RS. ACS Appl Mater Interfaces, 2017, 9: 28107-28116 CrossRef Google Scholar

[64] Ang H, Hong L. ACS Appl Mater Interfaces, 2017, 9: 28079-28088 CrossRef Google Scholar

[65] Peng Y, Yao R, Yang W. Chem Commun, 2019, 55: 3935-3938 CrossRef PubMed Google Scholar

[66] Backes C, Higgins TM, Kelly A, Boland C, Harvey A, Hanlon D, Coleman JN. Chem Mater, 2017, 29: 243-255 CrossRef Google Scholar

[67] Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN. Nat Nanotech, 2008, 3: 563-568 CrossRef PubMed ADS arXiv Google Scholar

[68] Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Nature, 2009, 461: 246-249 CrossRef PubMed ADS Google Scholar

[69] Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Chem Soc Rev, 2018, 47: 6267-6295 CrossRef PubMed Google Scholar

[70] Li Y, Fu Z, Xu G. Coord Chem Rev, 2019, 388: 79-106 CrossRef Google Scholar

[71] Amo-Ochoa P, Welte L, González-Prieto R, Sanz Miguel PJ, Gómez-García CJ, Mateo-Martí E, Delgado S, Gómez-Herrero J, Zamora F. Chem Commun, 2010, 46: 3262-3264 CrossRef PubMed Google Scholar

[72] Li PZ, Maeda Y, Xu Q. Chem Commun, 2011, 47: 8436-8438 CrossRef PubMed Google Scholar

[73] Tan JC, Saines PJ, Bithell EG, Cheetham AK. ACS Nano, 2012, 6: 615-621 CrossRef PubMed Google Scholar

[74] Kondo A, Tiew CC, Moriguchi F, Maeda K. Dalton Trans, 2013, 42: 15267-15270 CrossRef PubMed Google Scholar

[75] Beldon PJ, Tominaka S, Singh P, Saha Dasgupta T, Bithell EG, Cheetham AK. Chem Commun, 2014, 50: 3955-3957 CrossRef PubMed Google Scholar

[76] Saines PJ, Steinmann M, Tan JC, Yeung HHM, Li W, Barton PT, Cheetham AK. Inorg Chem, 2012, 51: 11198-11209 CrossRef PubMed Google Scholar

[77] Hermosa C, Horrocks BR, Martínez JI, Liscio F, Gómez-Herrero J, Zamora F. Chem Sci, 2015, 6: 2553-2558 CrossRef PubMed Google Scholar

[78] Foster JA, Henke S, Schneemann A, Fischer RA, Cheetham AK. Chem Commun, 2016, 52: 10474-10477 CrossRef PubMed Google Scholar

[79] Cliffe MJ, Castillo-Martínez E, Wu Y, Lee J, Forse AC, Firth FCN, Moghadam PZ, Fairen-Jimenez D, Gaultois MW, Hill JA, Magdysyuk OV, Slater B, Goodwin AL, Grey CP. J Am Chem Soc, 2017, 139: 5397-5404 CrossRef PubMed Google Scholar

[80] Mohmeyer A, Schaate A, Brechtken B, Rode JC, Warwas DP, Zahn G, Haug RJ, Behrens P. Chem Eur J, 2018, 24: 12848-12855 CrossRef PubMed Google Scholar

[81] Gallego A, Hermosa C, Castillo O, Berlanga I, Gómez-García CJ, Mateo-Martí E, Martínez JI, Flores F, Gómez-Navarro C, Gómez-Herrero J, Delgado S, Zamora F. Adv Mater, 2013, 25: 2141-2146 CrossRef PubMed Google Scholar

[82] Au VKM, Nakayashiki K, Huang H, Suginome S, Sato H, Aida T. J Am Chem Soc, 2019, 141: 53-57 CrossRef PubMed Google Scholar

[83] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA. Science, 2004, 306: 666-669 CrossRef PubMed ADS Google Scholar

[84] Abhervé A, Mañas-Valero S, Clemente-León M, Coronado E. Chem Sci, 2015, 6: 4665-4673 CrossRef PubMed Google Scholar

[85] López-Cabrelles J, Mañas-Valero S, Vitórica-Yrezábal IJ, Bereciartua PJ, Rodríguez-Velamazán JA, Waerenborgh JC, Vieira BJC, Davidovikj D, Steeneken PG, van der Zant HSJ, Mínguez Espallargas G, Coronado E. Nat Chem, 2018, 10: 1001-1007 CrossRef PubMed ADS Google Scholar

[86] Ding Y, Chen YP, Zhang X, Chen L, Dong Z, Jiang HL, Xu H, Zhou HC. J Am Chem Soc, 2017, 139: 9136-9139 CrossRef PubMed Google Scholar

[87] Huang J, Li Y, Huang RK, He CT, Gong L, Hu Q, Wang L, Xu YT, Tian XY, Liu SY, Ye ZM, Wang F, Zhou DD, Zhang WX, Zhang JP. Angew Chem Int Ed, 2018, 57: 4632-4636 CrossRef PubMed Google Scholar

[88] Li Y, Huang J, Mo ZW, Zhang XW, Cheng XN, Gong L, Zhou DD, Zhang JP. Sci Bull, 2019, 64: 964-967 CrossRef Google Scholar

[89] Xu G, Yamada T, Otsubo K, Sakaida S, Kitagawa H. J Am Chem Soc, 2012, 134: 16524-16527 CrossRef PubMed Google Scholar

[90] Junggeburth SC, Diehl L, Werner S, Duppel V, Sigle W, Lotsch BV. J Am Chem Soc, 2013, 135: 6157-6164 CrossRef PubMed Google Scholar

[91] Xue F, Kumar P, Xu W, Mkhoyan KA, Tsapatsis M. Chem Mater, 2018, 30: 69-73 CrossRef Google Scholar

[92] Pustovarenko A, Goesten MG, Sachdeva S, Shan M, Amghouz Z, Belmabkhout Y, Dikhtiarenko A, Rodenas T, Keskin D, Voets IK, Weckhuysen BM, Eddaoudi M, de Smet LCPM, Sudhölter EJR, Kapteijn F, Seoane B, Gascon J. Adv Mater, 2018, 30: 1707234 CrossRef PubMed Google Scholar

[93] Makiura R, Motoyama S, Umemura Y, Yamanaka H, Sakata O, Kitagawa H. Nat Mater, 2010, 9: 565-571 CrossRef PubMed ADS Google Scholar

[94] Motoyama S, Makiura R, Sakata O, Kitagawa H. J Am Chem Soc, 2011, 133: 5640-5643 CrossRef PubMed Google Scholar

[95] Bauer T, Zheng Z, Renn A, Enning R, Stemmer A, Sakamoto J, Schlüter AD. Angew Chem Int Ed, 2011, 50: 7879-7884 CrossRef PubMed Google Scholar

[96] Makiura R, Konovalov O. Sci Rep, 2013, 3: 2506 CrossRef PubMed ADS Google Scholar

[97] Hoshiko K, Kambe T, Sakamoto R, Takada K, Nishihara H. Chem Lett, 2013, 43: 252-253 CrossRef Google Scholar

[98] Kambe T, Sakamoto R, Hoshiko K, Takada K, Miyachi M, Ryu JH, Sasaki S, Kim J, Nakazato K, Takata M, Nishihara H. J Am Chem Soc, 2013, 135: 2462-2465 CrossRef PubMed Google Scholar

[99] Sakamoto R, Hoshiko K, Liu Q, Yagi T, Nagayama T, Kusaka S, Tsuchiya M, Kitagawa Y, Wong WY, Nishihara H. Nat Commun, 2015, 6: 6713-6716 CrossRef PubMed ADS Google Scholar

[100] Sakamoto R, Yagi T, Hoshiko K, Kusaka S, Matsuoka R, Maeda H, Liu Z, Liu Q, Wong WY, Nishihara H. Angew Chem Int Ed, 2017, 56: 3526-3530 CrossRef PubMed Google Scholar

[101] Huang X, Sheng P, Tu Z, Zhang F, Wang J, Geng H, Zou Y, Di CA, Yi Y, Sun Y, Xu W, Zhu D. Nat Commun, 2015, 6: 7408 CrossRef PubMed ADS Google Scholar

[102] Huang L, Zhang X, Han Y, Wang Q, Fang Y, Dong S. J Mater Chem A, 2017, 5: 18610-18617 CrossRef Google Scholar

[103] Wang Y, Li L, Yan L, Gu X, Dai P, Liu D, Bell JG, Zhao G, Zhao X, Thomas KM. Chem Mater, 2018, 30: 3048-3059 CrossRef Google Scholar

  • Figure 1

    Hf6 clusters and BTB ligands (a) to construct BTB-MOL (b). (c) TEM image of BTB-MOLs. The illustrations of MOLs with kgd topology (d) and (e) the fabrication of Fe-TPY-MOL for the hydrosilylation of terminal oelfins [18]. (f, g) TEM images of Zn/Ni-MOF-2 deposited with Pd. (h) Illustration of alkoxycarbonylation of aryl iodides over Zn/Ni-MOF-2 nanosheets with Pd deposited on. (i) Conversion rate as a function of time over Zn/Ni-MOF-2 immobilized Pd and other catalysts [13] (color online).

  • Figure 2

    (a) Presentation of the fabrication of Au/Cu-TCPP(M) hybrid nanosheets. (b) TEM image of hybrid nanosheet and HRTEM image of Au nanoparticles (inset) deposited on the nanosheet. (c) Illustration of enzyme-mimetic cascade reaction in the presence of hybrid nanosheets. (d, e) Time-dependent absorption spectra of the product after cascade reaction for different times [25]. (f) Illustration of MOF nanosheets grown on Ni foam. (g) SEM image of the NiFe-MOF electrode. (h) Linear sweep voltammograms plots of an electrolytic cell with NiFe electrodes and one with a Pt/C cathode and IrO2 anode, inset shows the evolution of hydrogen and oxygen gas at a voltage of 1.6 V [30] (color online).

  • Figure 3

    (a) Presentation of DNA detection of Cu-TCPP nanosheets. (b) The quenching efficiency of Cu-TCPP nanosheet and bulk counterparts for ssDNA(P1) and dsDNA (P1/T1) (left) and the fluorescence intensity ratio of Cu-TCPP nanosheets and bulk MOFs (right) [33]. (c) Illustration of metal ion luminescent sensing in the presence of NTU-9 nanosheets. (d) The intensity of photoluminescence spectra at 530 nm of the aqueous solution of different metal ions in the presence of NTU-9 nanosheets [35]. (e) Color display of the [Co(CNS)2(pyz)2]n nanosheets suspension in different solvents and (f) the corresponding UV-Vis absorption spectra of these suspensions [36]. (g) Illustration of the in situ visual solvent detection and the corresponding solvent polarity by using nanosheet-coated test papers [36] (color online).

  • Figure 4

    TEM image (a) and AFM image (b) of Mn-based MOF nanosheets. (c) Stability of Mn-based nanosheets at a current rate of 1 A g−1 [43]. (d) AFM image of ZBCP nanosheet on silica substrate. Scale bar: 10 μm. (e) Illustration of cell separator coated with ZBCP nanosheets to suppress the migration of polysulfide. (f) Cycling stability of the Li-S batteries at 0.25 C with or without the aid of ZBCP nanosheet [44] (color online).

  • Figure 5

    (a) Structure of Ni3(HITP)2. (b) Electrolyte Et4N+ and BF4 ions and acetonitrile solvent molecules filled the pores of Ni3(HITP)2. (c) Comparison of areal capacitances for various materials relative to BET surface areas. (d) Capacitance stability for 10,000 repeated cycles at a current density of 2 A g−1 [51]. (e) Cu-HAB structural model. (f) HR-TEM image of the Cu-HAB along [001]. (g) HR-TEM image of the area within the blue square in (f). Cyclic voltammetry profiles collected at different scanning rates for Cu-HAB (h) and Ni-HAB (i). (j) Comparison of the capacitance of Ni-HAB electrode (green area) with those of other materials [52] (color online).

  • Figure 6

    (a) The grid-like structure of a single-layered Zn2(bim)4 along [001]. (b) A four-membered aperture structure of Zn2(bim)4. (c) TEM image ofZn2(bim)4 nanosheets, inset represents the Tyndall effect of a nanosheet suspension. (d) AFM image and the height profile of a single-layered Zn2(bim)4. SEM images of the top view (e) and the cross-section view (f) of a Zn2(bim)4 nanosheet membrane coated on porous substrate. (g) The relationship between selectivity and H2 permeance of 15 nanosheet membranes. (h) Long-term stability test of a Zn2(bim)4 nanosheet membrane [54]. SEM images of CuBDC nanosheets (i) and the cross-section view of CuBDC-based MMM (j). (k) Surface-rendered view of the FIB-SEM tomogram for CuBDC nanosheet-based MMM. (l) Orientation of CuBDC nanosheets within the matrix with respect to the gas flow direction. (m) Coverage efficiency of the individual nanosheets along the cross-section. (n) Separation performance of MMMs and pure polymeric membrane for CO2/CH4 separation [61] (color online).

  • Figure 7

    (a) Illustration of the exfoliation process of hcp UiO-67. (b) TEM image of hxl UiO-67 nanosheets [79]. (c) Freeze-thaw exfoliation of MAMS-1. (d) Thickness and lateral size distribution of MAMS-1 nanosheets after freeze-thaw treatment for 10 times. (e) AFM image of MAMS-1 nanosheet [57]. (f) Exfoliation of vdW MOF-2 crystals. (g) AFM image of vdW MOF-2 nanosheets deposited on Si/SiO2 [15]. (h) Illustration of layered MOF exfoliation via chemical reaction [86] (color online).

  • Figure 8

    (a) Solvolthermal synthesis of Ni-Fe-MOF nanosheets. (b) TEM image of the corresponding nanosheets [31]. (c) Traditional synthesis and surfactant-assisted synthesis of TCPP-based nanosheets. (d) STEM image of Zn-TCPP nanosheets [33]. (e) Illustration of the CTAB-assisted synthesis of NH2-MIL-53(Al). (f) TEM image of NH2-MIL-53(Al) nanosheets [92]. (g) NAFS-1 nanosheets crystallization in LB trough. (h) T-scan at (001) peak for NAFS-1 [93]. (i) Illustration of microdroplet flow reaction method and conventional method for nanosheet production. (j) AFM image of ZrBTB nanosheets [103] (color online).

qqqq

Contact and support