logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 12 : 1588-1600(2019) https://doi.org/10.1007/s11426-019-9529-x

Recent advances in nanocollision electrochemistry

More info
  • ReceivedMay 9, 2019
  • AcceptedJul 10, 2019
  • PublishedSep 24, 2019

Abstract


Funded by

the National Natural Science Foundation of China(21775043,21421004)

the Program of Introducing Talents of Discipline to Universities(B16017)

Innovation Program of Shanghai Municipal Education Commission(2017-01-07-00-02-E00023)

and the Fundamental Research Funds for the Central Universities(222201718001,222201717003)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21775043, 21421004), the Program of Introducing Talents of Discipline to Universities (B16017), Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-02-E00023), and the Fundamental Research Funds for the Central Universities (222201718001, 222201717003).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Kim T, Hyeon T. Nanotechnology, 2014, 25: 012001 CrossRef PubMed ADS Google Scholar

[2] Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella Jr. MF, Rejeski D, Hull MS. Beilstein J Nanotechnol, 2015, 6: 1769-1780 CrossRef PubMed Google Scholar

[3] Tong R, Hemmati HD, Langer R, Kohane DS. J Am Chem Soc, 2012, 134: 8848-8855 CrossRef PubMed Google Scholar

[4] Bandaru PR, Yamada H, Narayanan R, Hoefer M. Mater Sci Eng R-Rep, 2015, 96: 1-69 CrossRef Google Scholar

[5] Bell AT. Science, 2003, 299: 1688-1691 CrossRef PubMed ADS Google Scholar

[6] Somorjai GA, Contreras AM, Montano M, Rioux RM. Proc Natl Acad Sci USA, 2006, 103: 10577-10583 CrossRef PubMed ADS Google Scholar

[7] Wan K, Yu Z, Li X, Liu M, Yang G, Piao J, Liang Z. ACS Catal, 2015, 5: 4325-4332 CrossRef Google Scholar

[8] Xiao X, Bard AJ. J Am Chem Soc, 2007, 129: 9610-9612 CrossRef PubMed Google Scholar

[9] Xiao X, Fan FRF, Zhou J, Bard AJ. J Am Chem Soc, 2008, 130: 16669-16677 CrossRef PubMed Google Scholar

[10] Shan X, Díez-Pérez I, Wang L, Wiktor P, Gu Y, Zhang L, Wang W, Lu J, Wang S, Gong Q, Li J, Tao N. Nat Nanotech, 2012, 7: 668-672 CrossRef PubMed ADS Google Scholar

[11] Wang Y, Shan X, Tao N. Faraday Discuss, 2016, 193: 9-39 CrossRef PubMed ADS Google Scholar

[12] Hafez ME, Ma H, Peng YY, Ma W, Long YT. J Phys Chem Lett, 2019, 10: 3276-3281 CrossRef PubMed Google Scholar

[13] Shimizu K, Sokolov SV, Young NP, Compton RG. Phys Chem Chem Phys, 2017, 19: 3911-3921 CrossRef PubMed ADS Google Scholar

[14] Ellison J, Tschulik K, Stuart EJE, Jurkschat K, Omanović D, Uhlemann M, Crossley A, Compton RG. ChemistryOpen, 2013, 2: 69-75 CrossRef PubMed Google Scholar

[15] Jiao X, Tanner EEL, Sokolov SV, Palgrave RG, Young NP, Compton RG. Phys Chem Chem Phys, 2017, 19: 13547-13552 CrossRef PubMed ADS Google Scholar

[16] Jiao X, Batchelor-McAuley C, Young NP, Compton RG. Phys Chem Chem Phys, 2018, 20: 23847-23850 CrossRef PubMed ADS Google Scholar

[17] Peng YY, Guo D, Ma W, Long YT. ChemElectroChem, 2018, 5: 2982-2985 CrossRef Google Scholar

[18] Fang Y, Wang W, Wo X, Luo Y, Yin S, Wang Y, Shan X, Tao N. J Am Chem Soc, 2014, 136: 12584-12587 CrossRef PubMed Google Scholar

[19] Wang Y, Shan X, Wang H, Wang S, Tao N. J Am Chem Soc, 2017, 139: 1376-1379 CrossRef PubMed Google Scholar

[20] O’Connell MA, Snowden ME, McKelvey K, Gayet F, Shirley I, Haddleton DM, Unwin PR. Langmuir, 2014, 30: 10011-10018 CrossRef PubMed Google Scholar

[21] Li L, Steiner U, Mahajan S. Nano Lett, 2014, 14: 495-498 CrossRef PubMed ADS Google Scholar

[22] Bentley CL, Kang M, Unwin PR. J Am Chem Soc, 2016, 138: 12755-12758 CrossRef PubMed Google Scholar

[23] Zhou YG, Rees NV, Compton RG. Angew Chem Int Ed, 2011, 50: 4219-4221 CrossRef PubMed Google Scholar

[24] Stuart EJE, Zhou YG, Rees NV, Compton RG. RSC Adv, 2012, 2: 6879-6884 CrossRef Google Scholar

[25] Toh HS, Jurkschat K, Compton RG. Chem Eur J, 2015, 21: 2998-3004 CrossRef PubMed Google Scholar

[26] Tanner EEL, Sokolov SV, Young NP, Compton RG. Phys Chem Chem Phys, 2017, 19: 9733-9738 CrossRef PubMed ADS Google Scholar

[27] Karimi A, Kirk KA, Andreescu S. ChemElectroChem, 2017, 4: 2801-2806 CrossRef Google Scholar

[28] Ma W, Ma H, Chen JF, Peng YY, Yang ZY, Wang HF, Ying YL, Tian H, Long YT. Chem Sci, 2017, 8: 1854-1861 CrossRef PubMed Google Scholar

[29] Ustarroz J, Kang M, Bullions E, Unwin PR. Chem Sci, 2017, 8: 1841-1853 CrossRef PubMed Google Scholar

[30] Robinson DA, Liu Y, Edwards MA, Vitti NJ, Oja SM, Zhang B, White HS. J Am Chem Soc, 2017, 139: 16923-16931 CrossRef PubMed Google Scholar

[31] Zhang F, Edwards MA, Hao R, White HS, Zhang B. J Phys Chem C, 2017, 121: 23564-23573 CrossRef Google Scholar

[32] Little CA, Li X, Batchelor-McAuley C, Young NP, Compton RG. J Electroanal Chem, 2018, 823: 492-498 CrossRef Google Scholar

[33] Ma W, Ma H, Yang ZY, Long YT. J Phys Chem Lett, 2018, 9: 1429-1433 CrossRef PubMed Google Scholar

[34] Zhou YG, Rees NV, Compton RG. Chem Commun, 2012, 48: 2510-2512 CrossRef PubMed Google Scholar

[35] Rees NV, Zhou YG, Compton RG. Chem Phys Lett, 2012, 525-526: 69-71 CrossRef ADS Google Scholar

[36] Lin Q, Compton RG. J Phys Chem C, 2015, 119: 23463-23469 CrossRef Google Scholar

[37] Karimi A, Hayat A, Andreescu S. Biosens Bioelectron, 2017, 87: 501-507 CrossRef PubMed Google Scholar

[38] Sepunaru L, Tschulik K, Batchelor-McAuley C, Gavish R, Compton RG. Biomater Sci, 2015, 3: 816-820 CrossRef PubMed Google Scholar

[39] Sepunaru L, Plowman BJ, Sokolov SV, Young NP, Compton RG. Chem Sci, 2016, 7: 3892-3899 CrossRef PubMed Google Scholar

[40] Sun L, Fang Y, Li Z, Wang W, Chen H. Nano Res, 2017, 10: 1740-1748 CrossRef Google Scholar

[41] Hao R, Fan Y, Zhang B. J Am Chem Soc, 2017, 139: 12274-12282 CrossRef PubMed Google Scholar

[42] Fan FRF, Bard AJ. Nano Lett, 2008, 8: 1746-1749 CrossRef PubMed ADS Google Scholar

[43] Dick JE, Renault C, Kim BK, Bard AJ. Angew Chem Int Ed, 2014, 53: 11859-11862 CrossRef PubMed Google Scholar

[44] Hill CM, Pan S. J Am Chem Soc, 2013, 135: 17250-17253 CrossRef PubMed Google Scholar

[45] Hill CM, Bennett R, Zhou C, Street S, Zheng J, Pan S. J Phys Chem C, 2015, 119: 6760-6768 CrossRef Google Scholar

[46] Sun L, Wang W, Chen HY. ChemElectroChem, 2018, 5: 2995-2999 CrossRef Google Scholar

[47] Andreescu D, Kirk KA, Narouei FH, Andreescu S. ChemElectro- Chem, 2018, 5: 2920-2936 CrossRef Google Scholar

[48] Cheng W, Compton RG. Angew Chem Int Ed, 2015, 54: 7082-7085 CrossRef PubMed Google Scholar

[49] Dunevall J, Fathali H, Najafinobar N, Lovric J, Wigström J, Cans AS, Ewing AG. J Am Chem Soc, 2015, 137: 4344-4346 CrossRef PubMed Google Scholar

[50] Cheng W, Compton RG. Angew Chem Int Ed, 2014, 53: 13928-13930 CrossRef PubMed Google Scholar

[51] Li X, Dunevall J, Ren L, Ewing AG. Anal Chem, 2017, 89: 9416-9423 CrossRef PubMed Google Scholar

[52] Li X, Ren L, Dunevall J, Ye D, White HS, Edwards MA, Ewing AG. ACS Nano, 2018, 12: 3010-3019 CrossRef Google Scholar

[53] Li YT, Zhang SH, Wang L, Xiao RR, Liu W, Zhang XW, Zhou Z, Amatore C, Huang WH. Angew Chem Int Ed, 2014, 53: 12456-12460 CrossRef PubMed Google Scholar

[54] Liu JT, Hu LS, Liu YL, Chen RS, Cheng Z, Chen SJ, Amatore C, Huang WH, Huo KF. Angew Chem Int Ed, 2014, 53: 2643-2647 CrossRef PubMed Google Scholar

[55] Adams KL, Jena BK, Percival SJ, Zhang B. Anal Chem, 2011, 83: 920-927 CrossRef PubMed Google Scholar

[56] Li X, Majdi S, Dunevall J, Fathali H, Ewing AG. Angew Chem Int Ed, 2015, 54: 11978-11982 CrossRef PubMed Google Scholar

[57] Holt LR, Plowman BJ, Young NP, Tschulik K, Compton RG. Angew Chem Int Ed, 2016, 55: 397-400 CrossRef PubMed Google Scholar

[58] Jiao X, Lin C, Young NP, Batchelor-McAuley C, Compton RG. J Phys Chem C, 2016, 120: 13148-13158 CrossRef Google Scholar

[59] Li X, Hodson H, Batchelor-McAuley C, Shao L, Compton RG. ACS Catal, 2016, 6: 7118-7124 CrossRef Google Scholar

[60] Zampardi G, Thöming J, Naatz H, Amin HMA, Pokhrel S, Mädler L, Compton RG. Small, 2018, 14: 1801765 CrossRef PubMed Google Scholar

[61] Toh HS, Batchelor-McAuley C, Tschulik K, Uhlemann M, Crossley A, Compton RG. Nanoscale, 2013, 5: 4884-4893 CrossRef PubMed ADS Google Scholar

[62] Cloake SJ, Toh HS, Lee PT, Salter C, Johnston C, Compton RG. ChemistryOpen, 2015, 4: 22-26 CrossRef PubMed Google Scholar

[63] Ivanova OS, Zamborini FP. J Am Chem Soc, 2010, 132: 70-72 CrossRef PubMed Google Scholar

[64] Batchelor-McAuley C, Compton RG. J Phys Chem C, 2014, 118: 30034-30038 CrossRef Google Scholar

[65] Kwon SJ, Fan FRF, Bard AJ. J Am Chem Soc, 2010, 132: 13165-13167 CrossRef PubMed Google Scholar

[66] Daryanavard N, Zare HR. J Electroanal Chem, 2017, 794: 23-27 CrossRef Google Scholar

[67] Stuart EJE, Rees NV, Compton RG. Chem Phys Lett, 2012, 531: 94-97 CrossRef ADS Google Scholar

[68] Dick JE, Bard AJ. J Am Chem Soc, 2015, 137: 13752-13755 CrossRef PubMed Google Scholar

[69] Zhou M, Dick JE, Hu K, Mirkin MV, Bard AJ. Anal Chem, 2018, 90: 1142-1146 CrossRef PubMed Google Scholar

[70] Zhao LJ, Qian RC, Ma W, Tian H, Long YT. Anal Chem, 2016, 88: 8375-8379 CrossRef PubMed Google Scholar

[71] Kwon SJ, Bard AJ. J Am Chem Soc, 2012, 134: 10777-10779 CrossRef PubMed Google Scholar

[72] Castañeda AD, Robinson DA, Stevenson KJ, Crooks RM. Chem Sci, 2016, 7: 6450-6457 CrossRef PubMed Google Scholar

[73] Castañeda AD, Brenes NJ, Kondajji A, Crooks RM. J Am Chem Soc, 2017, 139: 7657-7664 CrossRef PubMed Google Scholar

[74] Sekretaryova AN, Vagin MY, Turner APF, Eriksson M. J Am Chem Soc, 2016, 138: 2504-2507 CrossRef PubMed Google Scholar

[75] Kätelhön E, Sepunaru L, Karyakin AA, Compton RG. ACS Catal, 2017, 7: 3594-3596 CrossRef Google Scholar

[76] Lin C, Kätelhön E, Sepunaru L, Compton RG. Chem Sci, 2017, 8: 6423-6432 CrossRef PubMed Google Scholar

[77] Lin C, Sepunaru L, Kätelhön E, Compton RG. J Phys Chem Lett, 2018, 9: 2814-2817 CrossRef PubMed Google Scholar

[78] Hafez ME, Ma H, Ma W, Long YT. Angew Chem, 2019, 131: 6393-6398 CrossRef Google Scholar

[79] Quinn BM, van’t Hof PG, Lemay SG. J Am Chem Soc, 2004, 126: 8360-8361 CrossRef PubMed Google Scholar

[80] Dick JE, Renault C, Bard AJ. J Am Chem Soc, 2015, 137: 8376-8379 CrossRef PubMed Google Scholar

[81] Dick JE, Hilterbrand AT, Boika A, Upton JW, Bard AJ. Proc Natl Acad Sci USA, 2015, 112: 5303-5308 CrossRef PubMed ADS Google Scholar

[82] Kim BK, Boika A, Kim J, Dick JE, Bard AJ. J Am Chem Soc, 2014, 136: 4849-4852 CrossRef PubMed Google Scholar

[83] Boika A, Thorgaard SN, Bard AJ. J Phys Chem B, 2013, 117: 4371-4380 CrossRef PubMed Google Scholar

[84] Ho TLT, Hoang NTT, Lee J, Park JH, Kim BK. Biosens Bioelectron, 2018, 110: 155-159 CrossRef PubMed Google Scholar

[85] Laborda E, Molina A, Batchelor-McAuley C, Compton RG. ChemElectroChem, 2018, 5: 410-417 CrossRef Google Scholar

[86] Ronspees AT, Thorgaard SN. Electrochim Acta, 2018, 278: 412-420 CrossRef Google Scholar

[87] Fosdick SE, Anderson MJ, Nettleton EG, Crooks RM. J Am Chem Soc, 2013, 135: 5994-5997 CrossRef PubMed Google Scholar

[88] McKelvey K, Edwards MA, White HS. J Phys Chem Lett, 2016, 7: 3920-3924 CrossRef PubMed Google Scholar

[89] Wang Y, Cai H, Mirkin MV. ChemElectroChem, 2015, 2: 343-347 CrossRef Google Scholar

[90] Alpuche-Aviles MA, Gutierrez-Portocarrero S, Barakoti KK. Curr Opin Electrochem, 2019, 13: 174-180 CrossRef Google Scholar

[91] Urbani M, Grätzel M, Nazeeruddin MK, Torres T. Chem Rev, 2014, 114: 12330-12396 CrossRef PubMed Google Scholar

[92] Simpson BH, Rodríguez-López J. Anal Methods, 2015, 7: 7029-7041 CrossRef Google Scholar

[93] Wu J, Lan Z, Lin J, Huang M, Huang Y, Fan L, Luo G. Chem Rev, 2015, 115: 2136-2173 CrossRef PubMed Google Scholar

[94] Fernando A, Parajuli S, Alpuche-Aviles MA. J Am Chem Soc, 2013, 135: 10894-10897 CrossRef PubMed Google Scholar

[95] Fernando A, Chhetri P, Barakoti KK, Parajuli S, Kazemi R, Alpuche-Aviles MA. J Electrochem Soc, 2016, 163: H3025-H3031 CrossRef Google Scholar

[96] Peng YY, Ma H, Ma W, Long YT, Tian H. Angew Chem Int Ed, 2018, 57: 3758-3762 CrossRef PubMed Google Scholar

[97] Ma H, Ma W, Chen JF, Liu XY, Peng YY, Yang ZY, Tian H, Long YT. J Am Chem Soc, 2018, 140: 5272-5279 CrossRef PubMed Google Scholar

[98] Gu Z, Ying YL, Cao C, He P, Long YT. Anal Chem, 2015, 87: 907-913 CrossRef PubMed Google Scholar

[99] Raillon C, Granjon P, Graf M, Steinbock LJ, Radenovic A. Nanoscale, 2012, 4: 4916-4924 CrossRef PubMed ADS Google Scholar

[100] Zhang X, Zhang J, Ying YL, Tian H, Long YT. Chem Sci, 2014, 5: 2642-2646 CrossRef Google Scholar

[101] Ying YL, Zhang J, Meng FN, Cao C, Yao X, Willner I, Tian H, Long YT. Sci Rep, 2013, 3: 1662 CrossRef PubMed ADS Google Scholar

[102] Oukhaled A, Bacri L, Pastoriza-Gallego M, Betton JM, Pelta J. ACS Chem Biol, 2012, 7: 1935-1949 CrossRef PubMed Google Scholar

[103] Pedone D, Firnkes M, Rant U. Anal Chem, 2009, 81: 9689-9694 CrossRef PubMed Google Scholar

[104] Kwon SJ, Zhou H, Fan FRF, Vorobyev V, Zhang B, Bard AJ. Phys Chem Chem Phys, 2011, 13: 5394-5402 CrossRef PubMed ADS Google Scholar

[105] Kwon SJ, Bard AJ. J Am Chem Soc, 2012, 134: 7102-7108 CrossRef PubMed Google Scholar

[106] Kätelhön E, Tanner EEL, Batchelor-McAuley C, Compton RG. Electrochim Acta, 2016, 199: 297-304 CrossRef Google Scholar

[107] Kanokkanchana K, Saw EN, Tschulik K. ChemElectroChem, 2018, 5: 3000-3005 CrossRef Google Scholar

[108] Little CA, Xie R, Batchelor-McAuley C, Kätelhön E, Li X, Young NP, Compton RG. Phys Chem Chem Phys, 2018, 20: 13537-13546 CrossRef PubMed ADS Google Scholar

[109] Brasiliense V, Clausmeyer J, Dauphin AL, Noël JM, Berto P, Tessier G, Schuhmann W, Kanoufi F. Angew Chem Int Ed, 2017, 56: 10598-10601 CrossRef PubMed Google Scholar

[110] Sun S, Gao M, Lei G, Zou H, Ma J, Huang C. Nano Res, 2016, 9: 1125-1134 CrossRef Google Scholar

[111] Sun L, Jiang D, Li M, Liu T, Yuan L, Wang W, Chen HY. Anal Chem, 2017, 89: 6050-6055 CrossRef PubMed Google Scholar

[112] Nizamov S, Kasian O, Mirsky VM. Angew Chem Int Ed, 2016, 55: 7247-7251 CrossRef PubMed Google Scholar

[113] Kang M, Perry D, Kim YR, Colburn AW, Lazenby RA, Unwin PR. J Am Chem Soc, 2015, 137: 10902-10905 CrossRef PubMed Google Scholar

[114] Kleijn SEF, Lai SCS, Miller TS, Yanson AI, Koper MTM, Unwin PR. J Am Chem Soc, 2012, 134: 18558-18561 CrossRef PubMed Google Scholar

[115] Liu Y, He R, Zhang Q, Chen S. J Phys Chem C, 2010, 114: 10812-10822 CrossRef Google Scholar

[116] Zhang B, Fan L, Zhong H, Liu Y, Chen S. J Am Chem Soc, 2013, 135: 10073-10080 CrossRef PubMed Google Scholar

[117] Chen S, Liu Y. Phys Chem Chem Phys, 2014, 16: 635-652 CrossRef PubMed ADS Google Scholar

[118] Chen S, Liu Y, Chen J. Chem Soc Rev, 2014, 43: 5372-5386 CrossRef PubMed Google Scholar

  • Figure 1

    Schematic illustration of the time-resolved current traces of individual AgNPs with different sizes and the corresponding motion trajectories. Reproduced from Ref. [28] with permission, copyright (2017) The Royal Society of Chemistry (color online).

  • Figure 2

    (a) Schematic illustration of monitoring multiple oxidation behavior of single Ag NPs with SPRM; (b) transient current spikes associated with the multiple oxidation of the Ag NP on an Au microelectrode (black curve); (c) transient plasmonic image intensity curve correlated with the segmented dissolution of the Ag NP (blue curve). Reproduced from Ref. [46] with permission, copyright (2018) Wiley-VCH (color online).

  • Figure 3

    Collision electrochemical cytometry for the oxidation of individual vesicles containing catecholamine on the polarized electrode. Vesicles containing catecholamine adsorb to the electrode, rupture, and release catecholamine, subsequent. Reproduced from Ref. [52] with permission, copyright (2018) American Chemical Society (color online).

  • Figure 4

    Current-time (I-t) curves for a nanotip conical carbon-fiber microelectrode (a) pushed against a pheochromocytoma cell without breaking into the cytoplasm and (b) inserted into a pheochromocytoma cell. Reproduced from Ref. [56] with permission, copyright (2015) Wiley-VCH (color online).

  • Figure 5

    A step-wise representation of the electrodeposition of Pt cluster on a carbon fiber UME, capable of reducing protons to molecular hydrogen in the presence of strong acid. Reproduced from Ref. [68] with permission, copyright (2015) American Chemical Society (color online).

  • Figure 6

    Electrocatalytic process of individual catechol molecules functionalized AuNPs colliding at a carbon fiber UME in the absence and presence of NADH. Reproduced from Ref. [70] with permission, copyright (2016) American Chemical Society (color online).

  • Figure 7

    “Turn-on sensors” strategy based on the electrocatalytic amplification of DNA-modified NP collisions via enzymatic digestion to detection of DNA. Reproduced from Ref. [72] with permission, copyright (2016) The Royal Society of Chemistry (color online).

  • Figure 8

    Single enzyme electrochemical detection using nanocollision method. The corresponding current signals could be only observed when the enzyme is both close to the electrode surface and catalytically active. Reproduced from Ref. [77] with permission, copyright (2018) American Chemical Society (color online).

  • Figure 9

    Electrochemical detection of catalytic current of a single nanozyme. (a) GOx-like activity of single citrate-AuNPs and (b) peroxidase mimetics activity Ag-Au nanohybrids as peroxidase-mimetics. Reproduced from Ref. [78] with permission, copyright (2019) Wiley-VCH (color online).

  • Figure 10

    Blocking experiment of single insulating molecule. A molecule adsorbs at the surface of an UME and blocks the oxidation of ferrocyanide. Consequently, a decrease of the current is observed on the I-t curve. Reproduced from Ref. [80] with permission, copyright (2015) American Chemical Society (color online).

  • Figure 11

    (a) Schematic representation of the presence of both virus and its primary antibody cause the aggregation of the secondary antibody functionalized PSBs. (b) Electrochemical current responses of individual blocking events with and without virus. In the absence of the virus, collisions of PSBs were observed with a characteristic frequency and current height. Upon addition of virus, the lower frequency and larger current steps were obtained. Reproduced from Ref. [81] with permission, copyright (2015) National Academy of Sciences (color online).

  • Figure 12

    (a) A series of optical micrographs showing bead collisions at a Pt UME; (b–d) current-time curves of blocking collision events corresponding to the optical micrographs by the numbers in each frame. Reproduced from Ref. [87] with permission, copyright (2013) American Chemical Society (color online).

  • Figure 13

    (a) Photoelectrochemical detection of individual colloidal TiO2 NPs for photo-oxidizing MeOH system using stochastic collision electrochemical measurement; (b) current-time curve of single TiO2 NPs adsorbing to a Pt electrode in MeOH under illumination. Reproduced from Ref. [94] with permission, copyright (2013) American Chemical Society (color online).

  • Figure 14

    (a) Photoelectrochemical behavior of a single N719@TiO2 NP upon a collision with a TiO2@Au UME in the presence of iodide/triiodide under visible light; (b) typical photocurrent signals for individual N719/TiO2 NPs. Reproduced from Ref. [96] with permission, copyright (2018) Wiley-VCH (color online).

  • Figure 15

    (a) Photoelectrochemical behaviors of single N719@ZnO entities for visible light water splitting at TiO2@Au UMEs with different thicknesses of nanoparticulate TiO2film; (b) confirmation of single entity photoelectrochemical events using transmission electron microscope results of N719@ ZnO NPs before (black) and after (red) the photoelectrochemical experiments; (c) plots of the collision frequency as a function of concentrate ion of N719@ZnO entities for the experimental (black) and the theoretical results (red). Reproduced from Ref. [97] with permission, copyright (2018) American Chemical Society (color online).

  • Figure 16

    (a) Current signals identification using a two-threshold method. ⟨I0⟩ is the mean current of baseline, σ is standard deviation. The first threshold is defined by th1=⟨I0⟩−2σ and the second threshold by th2=⟨I0⟩−3σ. Reproduced from Ref. [102] with permission, copyright (2012) American Chemical Society. (b) Magnified view of the falling edges of three current signals with different current heights. Reproduced from Ref. [103] with permission, copyright (2009) American Chemical Society. (c) Recognize the region of current signal by a local threshold. (d) Reset the starting point and the stopping point using tracking-back routine. (e) Correct the region of the current signal by the DBC method. (f) Second-order differential of both the generated current signal (blue) and the Fourier-series-fitted current signal (red). Reproduced from Ref. [98] with permission, copyright (2015) American Chemical Society (color online).

qqqq

Contact and support