logo

SCIENCE CHINA Chemistry, Volume 62 , Issue 9 : 1245-1256(2019) https://doi.org/10.1007/s11426-019-9493-6

Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process

More info
  • ReceivedMar 19, 2019
  • AcceptedMay 5, 2019
  • PublishedJun 18, 2019

Abstract


Funding

the National Key R&D Project of China(2017YFA0204902)

the National Natural Science Foundation of China(21722305,21673195,21703188,21790360)

the Youth Innovation Promotion Association CAS(No.,2015024)


Acknowledgment

This work was supported by the National Key R&D Project of China (2017YFA0204902), the National Natural Science Foundation of China (21722305, 21673195, 21703188, 21790360), the Youth Innovation Promotion Association CAS (2015024).


Interest statement

The authors declare that they have no conflict of interest.


Supplementary data

The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


References

[1] Aradhya SV, Venkataraman L. Nat Nanotech, 2013, 8399-410 CrossRef PubMed ADS Google Scholar

[2] Tao NJ. Nat Nanotech, 2006, 1173-181 CrossRef PubMed ADS Google Scholar

[3] Xiang D, Wang X, Jia C, Lee T, Guo X. Chem Rev, 2016, 1164318-4440 CrossRef PubMed Google Scholar

[4] Chen L, Feng A, Wang M, Liu J, Hong W, Guo X, Xiang D. Sci China Chem, 2018, 611368-1384 CrossRef Google Scholar

[5] Huang C, Rudnev AV, Hong W, Wandlowski T. Chem Soc Rev, 2015, 44889-901 CrossRef PubMed Google Scholar

[6] Natelson D. ACS Nano, 2012, 62871-2876 CrossRef PubMed Google Scholar

[7] Perrin ML, Burzurí E, van der Zant HSJ. Chem Soc Rev, 2015, 44902-919 CrossRef PubMed Google Scholar

[8] Xiang D, Jeong H, Lee T, Mayer D. Adv Mater, 2013, 254845-4867 CrossRef PubMed Google Scholar

[9] Hybertsen MS, Venkataraman L. Acc Chem Res, 2016, 49452-460 CrossRef Google Scholar

[10] Song H, Reed MA, Lee T. Adv Mater, 2011, 231583-1608 CrossRef Google Scholar

[11] Su TA, Neupane M, Steigerwald ML, Venkataraman L, Nuckolls C. Nat Rev Mater, 2016, 116002 CrossRef ADS Google Scholar

[12] Metzger RM. Chem Rev, 2015, 1155056-5115 CrossRef Google Scholar

[13] Liu R, Bi JJ, Xie Z, Yin K, Wang D, Zhang GP, Xiang D, Wang CK, Li ZL. Phys Rev Appl, 2018, 9054023 CrossRef ADS Google Scholar

[14] Zhao Z, Liu R, Mayer D, Coppola M, Sun L, Kim Y, Wang C, Ni L, Chen X, Wang M, Li Z, Lee T, Xiang D. Small, 2018, 141703815 CrossRef PubMed Google Scholar

[15] Schwarz F, Lörtscher E. J Phys-Condens Matter, 2014, 26474201 CrossRef PubMed ADS Google Scholar

[16] Makk P, Tomaszewski D, Martinek J, Balogh Z, Csonka S, Wawrzyniak M, Frei M, Venkataraman L, Halbritter A. ACS Nano, 2012, 63411-3423 CrossRef PubMed Google Scholar

[17] Ulrich J, Esrail D, Pontius W, Venkataraman L, Millar D, Doerrer LH. J Phys Chem B, 2006, 1102462-2466 CrossRef PubMed Google Scholar

[18] Lörtscher E, Weber HB, Riel H. Phys Rev Lett, 2007, 98176807 CrossRef PubMed ADS Google Scholar

[19] Xia JL, Diez-Perez I, Tao NJ. Nano Lett, 2008, 81960-1964 CrossRef PubMed ADS Google Scholar

[20] Gotsmann B, Riel H, Lörtscher E. Phys Rev B, 2011, 84205408 CrossRef ADS Google Scholar

[21] Liu J, Zhao X, Zheng J, Huang X, Tang Y, Wang F, Li R, Pi J, Huang C, Wang L, Yang Y, Shi J, Mao BW, Tian ZQ, Bryce MR, Hong W. Chem, 2019, 5390-401 CrossRef Google Scholar

[22] Reuter MG, Hersam MC, Seideman T, Ratner MA. Nano Lett, 2012, 122243-2248 CrossRef PubMed ADS Google Scholar

[23] Xiao XY, Xu BQ, Tao NJ. Nano Lett, 2004, 4267-271 CrossRef ADS Google Scholar

[24] Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS, Steigerwald ML. Nature, 2006, 442904-907 CrossRef PubMed ADS Google Scholar

[25] Gonzalez MT, Wu S, Huber R, van der Molen SJ, Schönenberger C, Calame M. Nano Lett, 2006, 62238-2242 CrossRef PubMed ADS Google Scholar

[26] Quan R, Pitler CS, Ratner MA, Reuter MG. ACS Nano, 2015, 97704-7713 CrossRef Google Scholar

[27] Li X, Hu D, Tan Z, Bai J, Xiao Z, Yang Y, Shi J, Hong W. Top Curr Chem, 2017, 375: 42. Google Scholar

[28] Gu C, Jia C, Guo X. Small Methods, 2017, 11700071 CrossRef Google Scholar

[29] Martin CA, Ding D, Sørensen JK, Bjørnholm T, van Ruitenbeek JM, van der Zant HSJ. J Am Chem Soc, 2008, 13013198-13199 CrossRef PubMed Google Scholar

[30] Li ZL, Yi XH, Liu R, Bi JJ, Fu HY, Zhang GP, Song YZ, Wang CK. Sci Rep, 2017, 74195 CrossRef PubMed ADS Google Scholar

[31] Huang C, Jevric M, Borges A, Olsen ST, Hamill JM, Zheng JT, Yang Y, Rudnev A, Baghernejad M, Broekmann P, Petersen AU, Wandlowski T, Mikkelsen KV, Solomon GC, Brøndsted Nielsen M, Hong W. Nat Commun, 2017, 815436 CrossRef PubMed ADS Google Scholar

[32] Zhou C, Li X, Gong Z, Jia C, Lin Y, Gu C, He G, Zhong Y, Yang J, Guo X. Nat Commun, 2018, 9807 CrossRef PubMed ADS Google Scholar

[33] Guan J, Jia C, Li Y, Liu Z, Wang J, Yang Z, Gu C, Su D, Houk KN, Zhang D, Guo X. Sci Adv, 2018, 4eaar2177 CrossRef PubMed ADS Google Scholar

[34] Lörtscher E. Nat Nanotech, 2013, 8381-384 CrossRef PubMed ADS Google Scholar

[35] Lemmer M, Inkpen MS, Kornysheva K, Long NJ, Albrecht T. Nat Commun, 2016, 712922 CrossRef PubMed ADS Google Scholar

[36] Albrecht T, Slabaugh G, Alonso E, Al-Arif SMMR. Nanotechnology, 2017, 28423001 CrossRef PubMed ADS Google Scholar

[37] Adak O, Rosenthal E, Meisner J, Andrade EF, Pasupathy AN, Nuckolls C, Hybertsen MS, Venkataraman L. Nano Lett, 2015, 154143-4149 CrossRef PubMed ADS Google Scholar

[38] Hong W, Manrique DZ, Moreno-García P, Gulcur M, Mishchenko A, Lambert CJ, Bryce MR, Wandlowski T. J Am Chem Soc, 2012, 1342292-2304 CrossRef PubMed Google Scholar

[39] Halbritter A, Makk P, Mackowiak S, Csonka S, Wawrzyniak M, Martinek J. Phys Rev Lett, 2010, 105266805 CrossRef PubMed ADS arXiv Google Scholar

[40] Aradhya SV, Frei M, Halbritter A, Venkataraman L. ACS Nano, 2013, 73706-3712 CrossRef PubMed Google Scholar

[41] Quek SY, Kamenetska M, Steigerwald ML, Choi HJ, Louie SG, Hybertsen MS, Neaton JB, Venkataraman L. Nat Nanotech, 2009, 4230-234 CrossRef PubMed ADS arXiv Google Scholar

[42] Zhao X, Huang C, Gulcur M, Batsanov AS, Baghernejad M, Hong W, Bryce MR, Wandlowski T. Chem Mater, 2013, 254340-4347 CrossRef Google Scholar

[43] Quek SY, Venkataraman L, Choi HJ, Louie SG, Hybertsen MS, Neaton JB. Nano Lett, 2007, 73477-3482 CrossRef PubMed ADS arXiv Google Scholar

[44] Ismael AK, Wang K, Vezzoli A, Al-Khaykanee MK, Gallagher HE, Grace IM, Lambert CJ, Xu B, Nichols RJ, Higgins SJ. Angew Chem Int Ed, 2017, 5615378-15382 CrossRef PubMed Google Scholar

[45] Hamill JM, Wang K, Xu B. Nanoscale, 2014, 65657-5661 CrossRef PubMed ADS Google Scholar

[46] Wang L, Gong ZL, Li SY, Hong W, Zhong YW, Wang D, Wan LJ. Angew Chem Int Ed, 2016, 5512393-12397 CrossRef PubMed Google Scholar

[47] Liu X, Li X, Sangtarash S, Sadeghi H, Decurtins S, Häner R, Hong W, Lambert CJ, Liu SX. Nanoscale, 2018, 1018131-18134 CrossRef PubMed Google Scholar

[48] Aragonès AC, Haworth NL, Darwish N, Ciampi S, Bloomfield NJ, Wallace GG, Diez-Perez I, Coote ML. Nature, 2016, 53188-91 CrossRef PubMed ADS Google Scholar

[49] Gu C, Hu C, Wei Y, Lin D, Jia C, Li M, Su D, Guan J, Xia A, Xie L, Nitzan A, Guo H, Guo X. Nano Lett, 2018, 184156-4162 CrossRef PubMed ADS Google Scholar

[50] Xiang L, Palma JL, Li Y, Mujica V, Ratner MA, Tao N. Nat Commun, 2017, 814471 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Schematic of the break junction technique. (a) Schematic of a single-molecule junction of OAE3. During the formation of a junction, electrons (black dots) can be transported through two different channels, the through-space channel (transparent gray path) and the through-molecule channel (transparent red path). (b) Evolution of molecular configurations during the opening process in break junction measurements. (c) Schematic representation of a typical conductance-distance trace in the opening process of the two electrodes. The total conductance (red solid line) of a single-molecule junction is composed of the through-space tunneling (transparent black line) and through-molecule tunneling (transparent red line) contributions. After breaking down of the junction, a gold-molecule-solution-gold channel (transparent green line) appears. The three gray areas show regions in which the conductance cannot be measured (color online).

  • Figure 2

    Comparison between the experimental results and modeling results. (a) The molecular structures of OAE3, OAE4, and OAE5, R=OC6H13. (b) 1D conductance histograms, the colored areas show the experimental results, while the colored solid lines show the simulated results. (c–h) The left column shows the 2D conductance-distance histograms and displacement distribution histograms (insets) of OAE3 (c), OAE4 (e) and OAE5 (g), while the counterparts in the right column show the modeling results. The G intervals for construction of the displacement distribution histograms of OAE3, OAE4, and OAE5 are 10−0.3G0–10−5.5G0, 10−0.3G0–10−6.5G0, and 10−0.3G0–10−7.5G0, respectively, for both the experimental and simulated results (color online).

  • Figure 3

    Influence of the junction formation probability (Pj) on the conductance properties of OAE3. (a–c) 2D histograms and displacement distribution histograms (insets, 10−0.3G0–10−5.5G0) under Pj of 0, 0.5 and 1.0, respectively. (d) 1D histograms corresponding to (a), (b) and (c), the cyan vertical span covers the flat region of the background conductance. (e) The case in which the most probable conductance lies in the slope region (cyan vertical span). The red dashed line in (d) and (e) highlight the invariance and skewness of corresponding conductance peaks in each scenario, respectively (color online).

  • Figure 4

    Influence of the rupture length of the junction on the conductance properties of OAE3. (a–c) 2D histograms and displacement distribution histograms (insets, 10−0.3G0–10−5.5G0) under rupture lengths of 1.4, 1.6 and 1.8 nm, respectively. (d) 1D histograms corresponding to (a), (b) and (c). The variation tendency of the conductance peak is highlighted by a black solid arrow. RL, the rupture length of the junction (color online).

  • Figure 5

    Simulation results of the quantification of the molecular concentration in a diffusion system. (a, b) 2D histogram and displacement distribution histogram (10−0.3G0–10−5.5G0) under Pj=0.5 in the ambiguous case (the simulated molecular length of OAE3 was changed to 1.6 nm). (c) Displacement distribution histogram (10−0.3G0–10−5.5G0) of OAE3 with parameters kept unchanged under Pj=0.5 (the unambiguous case). (d) A comparison between the fitted ((M/(M+T), inverted red triangle) and the preset (blue solid line) junction formation probabilities. T, integrated area of the tunneling peak; M, integrated area of the molecular peak (color online).

  • Figure 6

    Simulation results of the quantification of the reactant/product ratio in a reaction system. (a) 2D conductance-distance histogram and 1D conductance histogram (inset) of the hypothetical reaction system. (b–d) Displacement distribution histograms with fitted peak areas corresponding to (a) for different binning ranges of G. (b) 10−0.3G0–10−6.2G0, (c) 10−4.0G0–10−5.2G0 (gray horizontal span in (a)); (d) 10−5.0G0–10−6.2G0 (red horizontal span in (a)). R, integrated area of the reactant peak; P, integrated area of the product peak (color online).

  • Table 1   Simulation parameters for OAE molecules

    Molecule

    A

    B

    n

    lm (nm)

    OAE3

    4.6799×10−5

    1.2916×10−6

    1.6489

    1.8

    OAE4

    3.2681×10−6

    2.3949×10−7

    2.8628

    2.5

    OAE5

    1.8989×10−7

    4.1729×10−8

    2.4210

    3.3

qqqq

Contact and support