logo

Bioinspired membranes for multi-phase liquid and molecule separation

More info
  • ReceivedJun 15, 2018
  • AcceptedJul 16, 2018
  • PublishedSep 21, 2018

Abstract


Funded by

the National Natural Science Foundation of China(21433012,21774005,21374001,21503005,51772010)

the National Instrumentation Program(2013YQ120355)

the Program for New Century Excellent Talents in University of China

the Fundamental Research Funds for the Central Universities

the National Program for Support of Top-notch Young Professionals and the Program of Introducing Talents of Discipline to Universities of China(B14009)


Acknowledgment

This work was supported by the National Natural Science Foundation of China (21433012, 21774005, 21374001, 21503005, 51772010), the National Instrumentation Program (2013YQ120355), the Program for New Century Excellent Talents in University of China, the Fundamental Research Funds for the Central Universities, the National Program for Support of Top-notch Young Professionals and the Program of Introducing Talents of Discipline to Universities of China (B14009).


Interest statement

The authors declare that they have no conflict of interest.


References

[1] Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD. Science, 2017, 356: eaab0530 CrossRef PubMed Google Scholar

[2] Dubansky B, Whitehead A, Miller JT, Rice CD, Galvez F. Environ Sci Technol, 2013, 47: 5074-5082 CrossRef PubMed ADS Google Scholar

[3] Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. ACS Appl Mater Interfaces, 2012, 4: 3207-3212 CrossRef PubMed Google Scholar

[4] Zhang S, Jiang G, Gao S, Jin H, Zhu Y, Zhang F, Jin J. ACS Nano, 2018, 12: 795-803 CrossRef Google Scholar

[5] Hou L, Wang N, Wu J, Cui Z, Jiang L, Zhao Y. Adv Funct Mater, 2018, 2: 1801114 CrossRef Google Scholar

[6] Jin X, Yang S, Li Z, Liu KS, Jiang L. Sci China Chem, 2012, 55: 2327-2333 CrossRef Google Scholar

[7] Wenzel RN. Ind Eng Chem, 1936, 28: 988-994 CrossRef Google Scholar

[8] Jiang L, Zhao Y, Zhai J. Angew Chem, 2004, 116: 4438-4441 CrossRef Google Scholar

[9] Wu J, Wang N, Zhang H, Wang L, Dong H, Zhao Y, Jiang L. J Mater Chem A, 2013, 1: 4642-4646 CrossRef Google Scholar

[10] Liu M, Jiang L. Sci China Mater, 2016, 59: 239-246 CrossRef Google Scholar

[11] Wu J, Wang N, Wang L, Dong H, Zhao Y, Jiang L. Soft Matter, 2012, 8: 5996-5999 CrossRef ADS Google Scholar

[12] Zhang Y, Chen Y, Hou L, Guo F, Liu J, Qiu S, Xu Y, Wang N, Zhao Y. J Mater Chem A, 2017, 5: 16134-16138 CrossRef Google Scholar

[13] Hou L, Wang L, Wang N, Guo F, Liu J, Chen Y, Liu J, Zhao Y, Jiang L. NPG Asia Mater, 2016, 8: e334 CrossRef Google Scholar

[14] Tian Y, Su B, Jiang L. Adv Mater, 2014, 26: 6872-6897 CrossRef PubMed Google Scholar

[15] Li J, Li D, Yang Y, Li J, Zha F, Lei Z. Green Chem, 2016, 18: 541-549 CrossRef Google Scholar

[16] Chu Z, Feng Y, Seeger S. Angew Chem Int Ed, 2015, 54: 2328-2338 CrossRef PubMed Google Scholar

[17] Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A. Nat Commun, 2012, 3: 1025 CrossRef PubMed ADS Google Scholar

[18] Zhu Y, Wang D, Jiang L, Jin J. NPG Asia Mater, 2014, 6: e101 CrossRef Google Scholar

[19] Hilal N, Al-Zoubi H, Darwish NA, Mohamma AW, Abu Arabi M. Desalination, 2004, 170: 281-308 CrossRef Google Scholar

[20] Neinhuis C, Barthlott W. Ann Bot, 1997, 79: 667-677 CrossRef Google Scholar

[21] Barthlott W, Neinhuis C. Planta, 1997, 202: 1-8 CrossRef Google Scholar

[22] Liu K, Yao X, Jiang L. Chem Soc Rev, 2010, 39: 3240-3255 CrossRef PubMed Google Scholar

[23] Feng L, Zhang Z, Mai Z, Ma Y, Liu B, Jiang L, Zhu D. Angew Chem Int Ed, 2004, 43: 2012-2014 CrossRef PubMed Google Scholar

[24] Li X, Wang M, Wang C, Cheng C, Wang X. ACS Appl Mater Interfaces, 2014, 6: 15272-15282 CrossRef PubMed Google Scholar

[25] Zhu Q, Pan Q. ACS Nano, 2014, 8: 1402-1409 CrossRef PubMed Google Scholar

[26] Kwon G, Kota AK, Li Y, Sohani A, Mabry JM, Tuteja A. Adv Mater, 2012, 24: 3666-3671 CrossRef PubMed Google Scholar

[27] Zhou H, Wang H, Niu H, Gestos A, Wang X, Lin T. Adv Mater, 2012, 24: 2409-2412 CrossRef PubMed Google Scholar

[28] Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K. Angew Chem Int Ed, 2013, 52: 1986-1989 CrossRef PubMed Google Scholar

[29] Liu J, Wang L, Guo F, Hou L, Chen Y, Liu J, Wang N, Zhao Y, Jiang L. J Mater Chem A, 2016, 4: 4365-4370 CrossRef Google Scholar

[30] Lu Y, Sathasivam S, Song J, Chen F, Xu W, Carmalt CJ, Parkin IP. J Mater Chem A, 2014, 2: 11628-11634 CrossRef Google Scholar

[31] Dong Y, Li J, Shi L, Wang X, Guo Z, Liu W. Chem Commun, 2014, 50: 5586-5589 CrossRef PubMed Google Scholar

[32] Li L, Liu Z, Zhang Q, Meng C, Zhang T, Zhai J. J Mater Chem A, 2015, 3: 1279-1286 CrossRef Google Scholar

[33] Lin L, Yi H, Guo X, Zhang P, Chen L, Hao D, Wang S, Liu M, Jiang L. Sci China Chem, 2018, 61: 64-70 CrossRef Google Scholar

[34] Chen PC, Xu ZK. Sci Rep, 2013, 3: 2776 CrossRef PubMed ADS Google Scholar

[35] Zhang L, Zhong Y, Cha D, Wang P. Sci Rep, 2013, 3: 2326 CrossRef PubMed ADS Google Scholar

[36] Xue Z, Wang S, Lin L, Chen L, Liu M, Feng L, Jiang L. Adv Mater, 2011, 23: 4270-4273 CrossRef Google Scholar

[37] Gao X, Xu LP, Xue Z, Feng L, Peng J, Wen Y, Wang S, Zhang X. Adv Mater, 2014, 26: 1771-1775 CrossRef PubMed Google Scholar

[38] Gao S, Sun J, Liu P, Zhang F, Zhang W, Yuan S, Li J, Jin J. Adv Mater, 2016, 28: 5307-5314 CrossRef PubMed Google Scholar

[39] Dunderdale GJ, Urata C, Sato T, England MW, Hozumi A. ACS Appl Mater Interfaces, 2015, 7: 18915-18919 CrossRef Google Scholar

[40] Ge J, Ye YD, Yao HB, Zhu X, Wang X, Wu L, Wang JL, Ding H, Yong N, He LH, Yu SH. Angew Chem, 2014, 126: 3686-3690 CrossRef Google Scholar

[41] Wang Z, Xu Y, Liu Y, Shao L. J Mater Chem A, 2015, 3: 12171-12178 CrossRef Google Scholar

[42] Qiu S, Hou L, Liu J, Guo F, Zhang Y, Zhang L, Liu K, Wang N, Zhao Y. RSC Adv, 2017, 7: 19434-19438 CrossRef Google Scholar

[43] Zhang W, Liu N, Cao Y, Lin X, Liu Y, Feng L. Adv Mater Interfaces, 2017, 4: 1600029 CrossRef Google Scholar

[44] Rana D, Matsuura T. Chem Rev, 2010, 110: 2448-2471 CrossRef PubMed Google Scholar

[45] Lee S, Aurelle Y, Roques H. J Membr Sci, 1984, 19: 23-38 CrossRef Google Scholar

[46] Fan JB, Song Y, Wang S, Meng J, Yang G, Guo X, Feng L, Jiang L. Adv Funct Mater, 2015, 25: 5368-5375 CrossRef Google Scholar

[47] Tao M, Xue L, Liu F, Jiang L. Adv Mater, 2014, 26: 2943-2948 CrossRef PubMed Google Scholar

[48] Liu D, He L, Lei W, Klika KD, Kong L, Chen Y. Adv Mater Interfaces, 2015, 2: 1500228 CrossRef Google Scholar

[49] Liu N, Zhang M, Zhang W, Cao Y, Chen Y, Lin X, Xu L, Li C, Feng L, Wei Y. J Mater Chem A, 2015, 3: 20113-20117 CrossRef Google Scholar

[50] Si Y, Yu J, Tang X, Ge J, Ding B. Nat Commun, 2014, 5: 5802 CrossRef PubMed ADS Google Scholar

[51] Zhang W, Shi Z, Zhang F, Liu X, Jin J, Jiang L. Adv Mater, 2013, 25: 2071-2076 CrossRef PubMed Google Scholar

[52] Chen Y, Wang N, Guo F, Hou L, Liu J, Liu J, Xu Y, Zhao Y, Jiang L. J Mater Chem A, 2016, 4: 12014-12019 CrossRef Google Scholar

[53] Wang L, Zhao Y, Tian Y, Jiang L. Angew Chem Int Ed, 2015, 54: 14732-14737 CrossRef PubMed Google Scholar

[54] Qiu M, Wang N, Cui Z, Liu J, Hou L, Liu J, Hu R, Zhang H, Zhao Y. J Mater Chem A, 2017, 6: 817-822 CrossRef Google Scholar

[55] Liu J, Wang L, Wang N, Guo F, Hou L, Chen Y, Liu J, Zhao Y, Jiang L. Small, 2017, 13: 1600499 CrossRef PubMed Google Scholar

[56] Wang Y, Di J, Wang L, Li X, Wang N, Wang B, Tian Y, Jiang L, Yu J. Nat Commun, 2017, 8: 575 CrossRef PubMed ADS Google Scholar

[57] Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM. Nature, 2008, 452: 301-310 CrossRef PubMed ADS Google Scholar

[58] Montgomery MA, Elimelech M. Environ Sci Technol, 2007, 41: 17-24. Google Scholar

[59] Bolisetty S, Mezzenga R. Nat Nanotech, 2016, 11: 365-371 CrossRef PubMed ADS Google Scholar

[60] Gao SJ, Qin H, Liu P, Jin J. J Mater Chem A, 2015, 3: 6649-6654 CrossRef Google Scholar

[61] Hong S, Elimelech M. J Membrane Sci, 1997, 132: 159-181 CrossRef Google Scholar

[62] Tan Z, Chen S, Peng X, Zhang L, Gao C. Science, 2018, 360: 518-521 CrossRef PubMed ADS Google Scholar

[63] Wang Z, Wang Z, Lin S, Jin H, Gao S, Zhu Y, Jin J. Nat Commun, 2018, 9: 2004 CrossRef PubMed Google Scholar

[64] Ulbricht M. Polymer, 2006, 47: 2217-2262 CrossRef Google Scholar

[65] Kidambi PR, Jang D, Idrobo JC, Boutilier MSH, Wang L, Kong J, Karnik R. Adv Mater, 2017, 29: 1700277 CrossRef PubMed Google Scholar

[66] Suk ME, Aluru NR. J Phys Chem Lett, 2010, 1: 1590-1594 CrossRef Google Scholar

[67] Koenig SP, Wang L, Pellegrino J, Bunch JS. Nat Nanotech, 2012, 7: 728-732 CrossRef PubMed ADS arXiv Google Scholar

[68] Wang L, Drahushuk LW, Cantley L, Koenig SP, Liu X, Pellegrino J, Strano MS, Scott Bunch J. Nat Nanotech, 2015, 10: 785-790 CrossRef PubMed ADS arXiv Google Scholar

[69] Peng J, Cheng Q. Adv Mater, 2017, 29: 1702959 CrossRef PubMed Google Scholar

[70] Liang B, Zhan W, Qi G, Lin S, Nan Q, Liu Y, Cao B, Pan K. J Mater Chem A, 2015, 3: 5140-5147 CrossRef Google Scholar

[71] Liang B, Zhang P, Wang J, Qu J, Wang L, Wang X, Guan C, Pan K. Carbon, 2016, 103: 94-100 CrossRef Google Scholar

[72] Hu R, Zhu H. Sci China Mater, 2018, 61: 429-431 CrossRef Google Scholar

[73] Qiu L, Zhang X, Yang W, Wang Y, Simon GP, Li D. Chem Commun, 2011, 47: 5810-5812 CrossRef PubMed Google Scholar

[74] Joshi RK, Carbone P, Wang FC, Kravets VG, Su Y, Grigorieva IV, Wu HA, Geim AK, Nair RR. Science, 2014, 343: 752-754 CrossRef PubMed ADS arXiv Google Scholar

[75] Abraham J, Vasu KS, Williams CD, Gopinadhan K, Su Y, Cherian CT, Dix J, Prestat E, Haigh SJ, Grigorieva IV, Carbone P, Geim AK, Nair RR. Nat Nanotech, 2017, 12: 546-550 CrossRef PubMed ADS arXiv Google Scholar

[76] Huang H, Song Z, Wei N, Shi L, Mao Y, Ying Y, Sun L, Xu Z, Peng X. Nat Commun, 2013, 4: 2979 CrossRef PubMed ADS Google Scholar

[77] Sun L, Ying Y, Huang H, Song Z, Mao Y, Xu Z, Peng X. ACS Nano, 2014, 8: 6304-6311 CrossRef PubMed Google Scholar

[78] Wang Z, Knebel A, Grosjean S, Wagner D, Bräse S, Wöll C, Caro J, Heinke L. Nat Commun, 2016, 7: 13872 CrossRef PubMed ADS Google Scholar

[79] Wang Y, Chen S, Qiu L, Wang K, Wang H, Simon GP, Li D. Adv Funct Mater, 2015, 25: 126-133 CrossRef Google Scholar

[80] Liu J, Wang N, Yu LJ, Karton A, Li W, Zhang W, Guo F, Hou L, Cheng Q, Jiang L, Weitz DA, Zhao Y. Nat Commun, 2017, 8: 2011 CrossRef PubMed ADS Google Scholar

  • Figure 1

    Illustration of the applications of bioinspired separation membranes. The applications are divided into four fields, including oil/water separation, multi-phase organic liquids mixture separation [13], emulsion separation [12], and small molecules separation (color online).

  • Figure 2

    Bioinspired separation membranes with superhydrophobic/superoleophilic or superhydrophilic/underwater superoleophobic wettability. (a, b) SEM images of the coating mesh film, demonstrating that the prepared membrane had a micro/nanoscale rough sur-face structure. (c) A water droplet on the membrane with water CA about 156°. (d) Spreading and permeating behavior of a diesel oil droplet on the membrane [23]. (e) Oil/water separation using amination polyacrylonitrile nanofiber membrane immobilized with Ag nanocluster [24]. (f, g) SEM images of the mesh with underwater superoleophobicity. The mesh was composed of microscale porous metal substrates and rough nanostructure hydrogel coatings. (h, i) This mesh has an underwater oil CA of about 155° and SA of about 3° [36]. (j) PAA-g-PVDF membrane with underwater superoleophobicity. (k) This PAA-g-PVDF membrane could effectively separate crude oil/water mixtures with a long-term-use stability [38] (color online).

  • Figure 3

    Continuous oil/water separation system. (a) Schematic illustration of an oil/water continuous separation device, being able to separate large volumes of oil/water mixuture. (b) Continuous separation process for water and hexane. (c) Long-term-use stability of the dual-membrane separation system [29]. (d) An oil spill collection cloth boat composed of superhydrophobic fabric membranes for in situ oil spill cleanup [41]. (e) Top, a digital photograph of a hydrophobic/oleophilic nanofibrous container by assembling the stainless steel supported electrospinning PVDF-HFP nanofiber membranes. Bottom, the cross-section SEM image of this membrane. (f) The high separation abilities of the in situ separation system towards kinds of oil/water mixtures [42] (color online).

  • Figure 4

    Emulsions separation membranes. (a) The prepared superhydrophlic and under water superoleophobic fabric membranes had water CA of about 0° and large oil CA of about 152°. Scale bar, 5 mm. Inset is the surface SEM image of this membrane. Scale bar, 500 μm. (b) Hygro-responsive membranes with superhydrophilic and superoleophobic in air and under water, could separate both water-in-oil and oil-in-water emulsions with high separation efficiency driven only by gravity [17]. (c) A PVDF membrane with superhydrophobic/superoleophilic wettability for high efficient surfactant-free and surfactant-stabilized water-in-oil emulsions separation. Insets are SEM images of the surface and cross-section of the as-prepared PVDF membrane [51]. (d, e) Pine-branches like TiO2 membrane with superhydrophilic/underwater superoleophobic wettability, could separate oil-in-water emulsion with high efficiency and high flux. (f) The TiO2 membrane demonstrated good separation efficiency towards oil-in-water emulsion even in harsh acid, base and salt environments [12] (color online).

  • Figure 5

    Membranes for organic liquids mixture separation. (a) SEM and transmission electron microscopy images of the TiO2 nanofibrous membrane, showing that it had random pores and uniform submicrometer fibers with continuous nanoporous structure. (b) FA and CCl4 were separated using the membrane [53]. (c) Schematic showed that the membrane blocked the liquid with high ST and allowed the liqud with low ST to pass through. (d) The prepared polymeric nanofibrous membrane showed well-tunable lyophobicity [13]. (e) The mechanism and separation process of infused-liquid-switchable porous nanofibrous membranes applied for multiphase organic liquid separation [56] (color online).

  • Figure 6

    NF membranes for small molecules separation. (a) Schematic illustration of fabricating PA NF membrane with nanoscale Turing structures. The reaction conditions of trimesoyl chloride in organic phase and piperazine together with PVA in aqueous phase were controlled to produce the Turing structures. (b) Separation performance of the Turing-type PA membranes [62]. (c, d) The separation performance of the templated polyamide NF membrane [63]. (e, f) GO separation membrane could block all solutes with hydrated radii larger than 4.5 Å when immersed in aqueous solutions [74]. (g, h) A temperature responsive reduced GO membrane exhibited a larger permeance at 50 °C than 20 °C [79] (color online).

  • Figure 7

    Boinspired GO membrane with temperature tunable channels for molecular separation. (a) A temperature responsive GO/PNIPAM membrane showed the negative temperature-response gating behavior. (b–d) Precise small molecules separation and gradually separating multiple molecules of different sizes using the smart temperature responsive GO membrane [80] (color online).

qqqq

Contact and support