SCIENCE CHINA Chemistry, Volume 61 , Issue 12 : 1600-1608(2018) https://doi.org/10.1007/s11426-018-9319-1

Sequential co-immobilization of β-glucosidase and yeast cells on single polymer support for bioethanol production

More info
  • ReceivedMay 3, 2018
  • AcceptedJun 22, 2018
  • PublishedSep 21, 2018


Funded by

the National Natural Science Foundation of China(51521062,51103009,51473015)

the Innovation and Promotion Project of Beijing University of Chemical Technology and the Beijing Natural Science Foundation(2162035)


This work was supported by the National Natural Science Foundation of China (51521062, 51103009, 51473015), the Innovation and Promotion Project of Beijing University of Chemical Technology and the Beijing Natural Science Foundation (2162035).

Interest statement

The authors declare that they have no conflict of interest.


The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.


[1] Cannella D, Jørgensen H. Biotechnol Bioeng, 2014, 111: 59-68 CrossRef PubMed Google Scholar

[2] Paulova L, Patakova P, Branska B, Rychtera M, Melzoch K. Biotech Adv, 2015, 33: 1091-1107 CrossRef PubMed Google Scholar

[3] Sarkar N, Ghosh SK, Bannerjee S, Aikat K. Renew Energy, 2012, 37: 19-27 CrossRef Google Scholar

[4] Meng X, Ragauskas AJ. Curr Opin Biotech, 2014, 27: 150-158 CrossRef PubMed Google Scholar

[5] Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. Bioresource Tech, 2010, 101: 4851-4861 CrossRef PubMed Google Scholar

[6] Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Chem Rev, 2015, 115: 1308-1448 CrossRef PubMed Google Scholar

[7] Holtzapple M, Cognata M, Shu Y, Hendrickson C. Biotechnol Bioeng, 1990, 36: 275-287 CrossRef PubMed Google Scholar

[8] Dekker RFH, Wallis AFA. Biotechnol Bioeng, 1983, 25: 3027-3048 CrossRef PubMed Google Scholar

[9] Chauve M, Mathis H, Huc D, Casanave D, Monot F, Lopes Ferreira N. Biotechnol Biofuels, 2010, 3: 3-8 CrossRef PubMed Google Scholar

[10] Teugjas H, Väljamäe P. Biotechnol Biofuels, 2013, 6: 104 CrossRef PubMed Google Scholar

[11] Castro RCA, Roberto IC. Appl Biochem Biotechnol, 2014, 172: 1553-1564 CrossRef PubMed Google Scholar

[12] Cao LC, Wang ZJ, Ren GH, Kong W, Li L, Xie W, Liu YH. Biotechnol Biofuels, 2015, 8: 202 CrossRef PubMed Google Scholar

[13] Gupta VK, Kubicek CP, Berrin JG, Wilson DW, Couturier M, Berlin A, Filho EXF, Ezeji T. Trends Biochem Sci, 2016, 41: 633-645 CrossRef PubMed Google Scholar

[14] Goldemberg J. Biotech Biofuels, 2008, 1: 6 CrossRef PubMed Google Scholar

[15] Kossatz HL, Rose SH, Viljoen-Bloom M, van Zyl WH. Process Biochem, 2016, 53: 10-16 CrossRef Google Scholar

[16] Saha BC, Nichols NN, Qureshi N, Kennedy GJ, Iten LB, Cotta MA. Bioresour Tech, 2015, 175: 17-22 CrossRef PubMed Google Scholar

[17] de Barros EM, Carvalho VM, Rodrigues THS, Rocha MVP, Gonçalves LRB. Chem Eng J, 2016, 307: 939-947 CrossRef Google Scholar

[18] Brethauer S, Robert Lawrence S, Michael Hans-Peter S. Bioresource Tech, 2017, 237: 135-138 CrossRef PubMed Google Scholar

[19] Tran CTH, Nosworthy N, Bilek MMM, McKenzie DR. Biomass Bioenergy, 2015, 81: 234-241 CrossRef Google Scholar

[20] Watanabe I, Miyata N, Ando A, Shiroma R, Tokuyasu K, Nakamura T. Bioresource Tech, 2012, 123: 695-698 CrossRef PubMed Google Scholar

[21] Wirawan F, Cheng CL, Kao WC, Lee DJ, Chang JS. Appl Energy, 2012, 100: 19-26 CrossRef Google Scholar

[22] Choi IS, Lee YG, Khanal SK, Park BJ, Bae HJ. Appl Energy, 2015, 140: 65-74 CrossRef Google Scholar

[23] Karagöz P, Özkan M. Bioresource Tech, 2014, 158: 286-293 CrossRef PubMed Google Scholar

[24] Chen CC, Wu CH, Wu JJ, Chiu CC, Wong CH, Tsai ML, Lin HTV. Process Biochem, 2015, 50: 1509-1515 CrossRef Google Scholar

[25] Zhou Y, Pan S, Wei X, Wang L, Liu Y. Bioresources, 2013, 8: 2605-2619 CrossRef Google Scholar

[26] Martino A, Pifferi PG, Spagna G. Process Biochem, 1996, 31: 287-293 CrossRef Google Scholar

[27] Hahn-Hägerdal B. Biotechnol Bioeng, 1984, 26: 771-774 CrossRef PubMed Google Scholar

[28] Grosová Z, Rosenberg M, Gdovin M, Sláviková L, Rebroš M. Food Chem, 2009, 116: 96-100 CrossRef Google Scholar

[29] Staniszewski M, Kujawski W, Lewandowska M. J Food Eng, 2009, 91: 240-249 CrossRef Google Scholar

[30] Giordano RLC, Trovati J, Schmidell W. Appl Biochem Biotechnol, 2008, 147: 47-61 CrossRef PubMed Google Scholar

[31] Bandaru VVR, Somalanka SR, Mendu DR, Madicherla NR, Chityala A. Enzyme Microbial Tech, 2006, 38: 209-214 CrossRef Google Scholar

[32] Zhu X, Ma Y, Zhao C, Lin Z, Zhang L, Chen R, Yang W. Langmuir, 2014, 30: 15229-15237 CrossRef PubMed Google Scholar

[33] Bradford MM. Anal Biochem, 1976, 72: 248-254 CrossRef Google Scholar

[34] Ma J, Luan S, Song L, Jin J, Yuan S, Yan S, Yang H, Shi H, Yin J. ACS Appl Mater Interfaces, 2014, 6: 1971-1978 CrossRef PubMed Google Scholar

[35] Yan S, Luan S, Shi H, Xu X, Zhang J, Yuan S, Yang Y, Yin J. Biomacromolecules, 2016, 17: 1696-1704 CrossRef PubMed Google Scholar

[36] Klis FM. Yeast, 1994, 10: 851-869 CrossRef PubMed Google Scholar

[37] Figueira JA, Sato HH, Fernandes P. J Agric Food Chem, 2013, 61: 626-634 CrossRef PubMed Google Scholar

[38] Albino Gomes A, Pazinatto Telli E, Miletti LC, Skoronski E, Gomes Ghislandi M, Felippe da Silva G, Borba Magalhães ML. Biotech Appl Biochem, 2018, 65: 246-254 CrossRef PubMed Google Scholar

[39] Kazan A, Heymuth M, Karabulut D, Akay S, Yildiz-Ozturk E, Onbas R, Muderrisoglu C, Sargin S, Heils R, Smirnova I, Yesil-Celiktas O. Eng Life Sci, 2017, 17: 714-722 CrossRef Google Scholar

[40] Carvalho Y, Almeida JMAR, Romano PN, Farrance K, Demma Carà P, Pereira N, Lopez-Sanchez JA, Sousa-Aguiar EF. Appl Biochem Biotechnol, 2017, 182: 1619-1629 CrossRef PubMed Google Scholar

[41] Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Ind Eng Chem Res, 2016, 55: 6354-6364 CrossRef Google Scholar

[42] Olofsson K, Bertilsson M, Lidén G. Biotechnol Biofuels, 2008, 1: 7 CrossRef PubMed Google Scholar

  • Figure 1

    XPS C 1s and N 1s core-level spectra of the PPF-g-P(PEGDA), PPF-g-P(PEGDA)/BG and PPF-g-P(PEGDA)/cells film (color online).

  • Scheme 1

    The synthetic route of sequential co-immobilization sheet (color online).

  • Figure 2

    CLSM images of staining of (a, b) PPF-g-P(PEGDA)/BG layer and (c, d) the whole layered structure without stained enzymes (color online).

  • Figure 3

    The glucose consumption and bioethanol yield of free BG and yeast cells system (open circles) and co-immobilization film (open square) in SSF process with cellobiose and glucose as carbon resources (color online).

  • Figure 4

    Effect of changing cellobiose concentration on glucose consumption and bioethanol yield for co-immobilization sheet in SSF process with cellobiose and glucose as carbon resources (color online).

  • Figure 5

    (a) Ethanol yield and (b) the release behaviour of BG in repeated batch SSF by co-immobilization sheet. The concentration of cellobiose and glucose are 30 and 20 g L−1, respectively. Each batch performed 48 h. Error bars represent the standard deviation of three replications.

  • Figure 6

    Ethanol yield in repeated batch SSF by layered co-immobilization sheet (open square) and mixed co-immobilization system (open circles) using (a) cellobiose and (b) filter paper as carbon resource (color online).

  • Table 1   Enzyme kinetic parameters of immobilized and free BG



    (mg mL−1)


    (μmol min−1 mL−1)

    Free BG






    co-immobilized BG




Contact and support