一种参数全解析的改进小推力李雅普诺夫制导方法
Abstract
小推力机动因其显著的高比冲特性, 使得其成为当前低燃耗轨道转移的首选模式. 而小推力机动策略优化问题因其强动力学非线性、初值敏感等, 成为小推力轨迹优化的核心挑战之一. 本文针对大范围、长航时小推力机动问题, 提出了一种改进的李雅普诺夫制导(Q-Law)方法, 针对传统Q-Law算法存在轨道根数奇异点的问题, 本文基于轨道指向向量重新构建了一套在Q-Law中使用的全新轨道描述元素, 确保了轨道转移过程中不存在解空间奇异点. 同时, 在Q函数基础上, 全部解析推导了根数的最大变化率, 克服了传统Q-Law部分根数最大变化率难以解析而需要迭代求解的难题, 提升了Q-Law开环制导律计算的效率. 最后在根数最大变化率基础上, 推导得到了最优推力方向的解析表达式. 数值仿真通过经典的拱线转动和倾角转移以及GTO-GEO交会问题, 验证了本文所提方法的有效性和场景适应性.