Ultrafast photoelectron imaging with high spatiotemporal and energy resolution
Abstract
<p indent="0mm">The foundation of the development of flexible semiconductor and micro-nano ultrafast response devices in the post-Moore era is to measure and manipulate ultrafast optical physical processes in new materials and devices with extreme spatiotemporal small-scale. The spatiotemporal- and energy-resolved photoemission electron microscopy (PEEM) combines the pump-probe optical scheme with the electron microscopic imaging technology and possesses femtosecond-nanometer time-space resolution. It has evolved into an excellent ultrafast microscopy technique for investigating nanophotonics and low-dimensional device physics, leading to the revolutionary development of plasmonics, semiconductor science and related cross-disciplinary studies. In this review, we have summarized the application of PEEM in micro-nano plasmonic function devices, high-order plasmonic vortex fields, plasmonic skyrmion, and low-dimensional semiconductors. Finally, we discussed the future opportunities of PEEM.</p>