Numerical simulation on metallic additive manufacturing

Abstract

<p indent="0mm">The metallic additive manufacturing process is a multi-scale and multi-physics coupling problem, including complex physics phenomena, i.e., mass and heat transfer, phase transformation, and material microstructure evolution. Therefore, in this work, we thoroughly reviewed the numerical simulation studies on metallic additive manufacturing in two folds, the mass and heat transfer, and material microstructure evolution. In light of the physics phenomena and the length scale of the problems concerned, we summarized the commonly used heat source models, mass and heat transfer numerical models (including powder scale high fidelity thermo-fluid flow coupling model, continuum-based thermo-fluid coupling model, and continuum-based heat conduction model), and the microstructure prediction models (including phase-field model, cellular automaton method, kinetic Monte Carlo method) followed by the discussions on their advantages and applicability. Furthermore, the “process-structure-property” integrated numerical models are reviewed. The numerical simulation challenges for the metallic additive manufacturing are finally presented in addition to the prospect.</p>

References

SciEngine
CART
CUSTOMER
中文
LOGIN