论批数不限定情况下一维 优选问题的最优策略

洪 加 威 (北京市计算中心)

摘 要

引 言

Kiefer 证明了单峰函数优选问题的如下结果:如果每批可作一个试验,共限定做 n 批试验,那末斐波那契分数法 ℱ "是最优的^[1]. Wilde 等人把这个结果推广到第一批作 ½ 个试验,……第 n 批作 ½ 个试验,一共限定做 n 批的情形^[2-4]. 总之,他们都假定了试验的批数是预定的. 事实上,在大多数情形,开始试验前并不能确切预言试验的次数,总要等得到了满意的结果后,才终止试验. 如果用斐波那契级数法,原定做 n 次试验,但第 n 次后结果还不满意而想再作一次,就不是最优的方法了. 因此在实用上,往往用黄金分割法而不用分数法.

本文企图从理论上探讨批数不限定情况下的最优策略。首先,因为批数不限定,我们必须假定每个策略 \mathcal{P} 是可以连续做下去,不致于到某一批试验以后就不能进行了。其次,我们应该假定 \mathcal{P} 的确定性,即对固定的 \mathcal{P} ,某固定的单峰函数 f 和自然数 n, \mathcal{P} 作用在 f 上 n 步之后的剩余区间是一个确定的区间,其长度 $\delta(\mathcal{P},f,n)$ 是一个确定的数。第三,和限定批数的情形一样,采用"极小极大"的原则,把 $\delta(\mathcal{P},n)=\sup_{f}\delta(\mathcal{P},f,n)$ 当作 \mathcal{P} 在第 n 批试验后精确度的标准。最后,如果 \mathcal{P} 对于一切 \mathcal{P} ,当 n 充分大后,就有 $\delta(\mathcal{P},n)$ $\leq \delta(\mathcal{P},n)$,则 \mathcal{P} 就是一个最优策略。它定义了一个偏序关系,在批数不限定的情况下具有一定的合理性。

试验批数不限定情况下最优策略的研究,最早华罗庚同志曾利用连分数的性质巧妙地证明了,在上述意义下,如果每次作一个试验,则"0.618"法是一切对折法中的最优策略。作者

本文 1973 年 4 月 14 日收到。

对每次取 2k - 1 个试验点的情况作了探讨[5].

本文进一步考虑第 n 批可作 k_n 个试验的情形,这里 $K = \{k_n\}$ 是正整数的一个无限叙列。如果 K 是正规的,即 K 中有无穷多个奇数,或 k_n 为奇数而其余均为偶数,我们可设计出上述意义下的一个最优策略。而在相反的情形,最优策略不存在,但是可以设计出"充分近似于最优"的策略。也即对任一 $\theta < 1$,可设计策略 \mathcal{W} θ ,使对一切策略 \mathcal{P} ,当 n 充分大后都有

$$0\delta(\mathcal{W}_{\theta}, n) \leq \delta(\mathcal{P}, n).$$

证明的大致轮廓如下:对任一个策略 \mathcal{P} ,用 $\delta(\mathcal{P}, n)$ 代表 \mathcal{P} 在 n 批试验后剩余区间长度的上确界,用 $\Delta(\mathcal{P}, n)$ 代表 \mathcal{P} 在 n 批试验后剩余区间中已试点到端点距离的上确界,令 $\binom{u_n}{v_n} = \binom{\Delta(\mathcal{P}, n)}{\delta(\mathcal{P}, n)}, 则恒有递推不等式$

$$\mathfrak{B}: \binom{u_n}{v_n} \leqslant C(k_{n+1})\binom{u_{n+1}}{v_{n+1}}, \ v_n \geqslant u_n \geqslant 0, \ u_0 = b - a \ (n = 0, 1, 2, \cdots),$$

这里
$$C(2i) = \begin{pmatrix} 1 & i \\ 0 & i+1 \end{pmatrix}$$
, $C(2i-1) = \begin{pmatrix} 0 & i \\ 1 & i \end{pmatrix}$, $b-a$ 是试验区间的长度.

然后,证明方程式

$$\mathfrak{A}: \binom{x_n}{y_n} = C(k_{n+1})\binom{x_{n+1}}{y_{n+1}}, \ y_n \geqslant x_n \geqslant 0, \ x_0 = b - a \ (n = 0, 1, 2, \cdots)$$

的解存在,而且当K正规(见定义 5)时,确可构造一个策略 \mathscr{W} , 使 $\delta(\mathscr{W}, n) = y_n$ (在K 不正规时,这样的 \mathscr{W} 不存在,但对任一 $\theta < 1$,存在策略 \mathscr{W} 0,使得 $\theta \delta(\mathscr{W}_{\theta}, n) \leq y_n$).

最后,我们将证明:如果 $\binom{u_n}{v_n}$ 满足 \mathfrak{B} 而 $\binom{x_n}{y_n}$ 满足 \mathfrak{A} ,则或者有 $y_n = v_n (n \ge 1)$;或者存在 $\theta < 1$,使当 n 充分大后就有 $y_n < \theta v_n$.

于是按照定义, \mathcal{W} 就是一个最优的策略,而当 θ 充分接近于1 时, \mathcal{W} 。就是"充分接近于最优"的策略。

一、定义和记号

定义 1. 一个函数 f 在某区间 [a, b] 上是单峰的,如果存在一个点 $c_f \in [a, b]$,使得 f(x) 在 $[a, c_f]$ 严格递增而在 $(c_f, b]$ 严格递降,或者在 $[a, c_f)$ 严格递增而在 $[c_f, b]$ 严格递降.

容易见到,对于一个单峰函数 f(x) 而言, c_1 是唯一确定的, c_1 称为 f 的峰值点。今后, 我们用 g 来标记 [a,b] 上所有单峰函数的集合。

仅仅在区间的有限个点上有定义的函数 s(x), 如果在它的定义域上和某个单峰函数有相同的值,就称 s(x) 为 [a,b] 上的一个可允许函数。 一份试验结果的清单就是一个可允许函数。在 [a,b] 上全体可允许函数的集合记为 [a,b] 是全体可允许函数的集合记为 [a,b] 是一个可允许函数的集合记为 [a,b] 是一个可允许函数,如果在它的定义域上和某个单峰函数有相同的值,就称 [a,b] 是一个可允许函数。

所谓一个试验策略,就是根据已经做过的前几批试验的结果,来确定下一批试验应该在那些点上进行的一种方法. 从现在起,我们假定第n批可作 k_n 个试验,这里 $K = \{k_n\}$ 是正整数的一个无限序列. 我们把 [a,b] 中 k_n 个数组成的集合称为一个 k_n —组,用 \mathfrak{R}_n 标记全体 k_n —组的集合. 于是可以给出下列的

定义 2. 一个试验策略 \mathscr{D} , 就是一组从 \mathfrak{S} 到 \mathfrak{R}_n 的映射 $\varphi_n:\mathfrak{S} \to \mathfrak{R}_n$ $(n=1,2,3,\cdots)$.

令 $T \in [a, b]$ 中有限个点的集合, $f \in \mathfrak{S}$. 我们用记号 s(f, T) 代表 \mathfrak{S} 中这样一个函数,它定义在 T 上,而且在 T 上与 f 有相同的值,对于一个试验策略 $\mathfrak{D}: \{\varphi_n, n=1, 2, \cdots\}$,令

$$\begin{cases}
T_1(\mathscr{P}, f) = \varphi_1(s_0), \\
T_2(\mathscr{P}, f) = T_1(\mathscr{P}, f) \cup \varphi_2(s(f, T_1(\mathscr{P}, f))), \\
\vdots \\
T_{n+1}(\mathscr{P}, f) = T_n(\mathscr{P}, f) \cup \varphi_{n+1}(s(f, T_n(\mathscr{P}, f))).
\end{cases} (1.1)$$

在这里, $T_n(\mathcal{P}, f)$ 代表在头 n 批试验之后全体作过试验的点的集合, $s(f, T_n(\mathcal{P}, f))$ 代表在头 n 批试验之后所得到的全部试验结果。 $\varphi_{n+1}(s(f, T_n(\mathcal{P}, f)))$ 代表根据以往 n 批试验的结果,按照策略 \mathcal{P} ,在第 n+1 批试验应该取的 k_{n+1} 个试验点的集合。 $T_{n+1}(\mathcal{P}, f)$ 代表在 n+1 批试验之后作过试验点的集合,因而是 $T_n(\mathcal{P}, f)$ 和 $\varphi_n(s(f, T_n(\mathcal{P}, f)))$ 的并集。 上面这一串等式描述了优选的过程。只要 \mathcal{P} 和 f 确定了,这个过程就是唯一确定的。

设 $f \in \mathfrak{F}$,

$$T = \{\alpha_1 < \alpha_2 < \dots < \alpha_t\}. \tag{1.2}$$

定义 \mathfrak{S} 的子集 $\mathfrak{S}(t,T)$ 如下:

$$\mathfrak{F}(f,T) = \{g \in \mathfrak{F} | g(\alpha_i) = f(\alpha_i), i = 1, 2, \dots, t\}. \tag{1.3}$$

再定义 [a, b] 的子集 [f, T] 如下:

$$[f, T] = \{c_g | g \in \mathfrak{F}(f, T)\}. \tag{1.4}$$

c, 即单峰函数 8 的峰值点. 容易证明下列的引理.

引理 1. [f, T] 的构造如下:

(1) 如果有某个 $j(1 \leq j < t)$, 使得 $f(\alpha_i) = f(\alpha_{i+1})$, 那末就有

$$f(\alpha_1) < \dots < f(\alpha_t) = f(\alpha_{t+1}) > \dots > f(\alpha_t), \tag{1.5}$$

并且 $[f, T] = [\alpha_i, \alpha_{i+1}].$

(2) 如果(1)不出现,那就一定有某个 $i(1 \le i \le i)$,使得

$$f(\alpha_1) < \dots < f(\alpha_i) > \dots > f(\alpha_i),$$
 (1.6)

并且 $[f, T] = [\alpha_{j-1}, \alpha_{j+1}]$ 。这里 $\alpha_0 = a$, $\alpha_{j+1} = b$,代表试验区间的端点。

(3) 因此,如果y是 [f, T] 的内点,则存在 $g \in \mathfrak{S}(f,T)$,使得g 在y 点达到极大值。引理 1 的证明从略。

引理 2. 如果 $g \in \mathfrak{F}(f, T_n(\mathcal{D}, f))$,则有

$$T_{n+1}(\mathcal{P}, g) = T_{n+1}(\mathcal{P}, f). \tag{1.7}$$

证. 因为 $g \in \mathfrak{F}(f, T_n(\mathcal{P}, f))$, 所以 g 和 f 在 $T_n(\mathcal{P}, f)$ 上有相同的值,故在 $T_i(\mathcal{P}, f)$ ($i \leq n$) 上有相同的值. 也就是说 $s(f, T_i(\mathcal{P}, f))$ 和 $s(g, T_i(\mathcal{P}, f))$ 是同一个可允许函数. 一开始,我们有

$$T_1(\mathcal{P}, g) = \varphi_1(s_0) = T_1(\mathcal{P}, f),$$

现在假定 $T_i(\mathcal{P}, g) = T_i(\mathcal{P}, f), i \leq n, 那么,$

$$T_{i+1}(\mathcal{P}, g) = T_{i}(\mathcal{P}, g) \cup \varphi_{i+1}(s(g, T_{i}(\mathcal{P}, g)))$$

$$= T_{i}(\mathcal{P}, f) \cup \varphi_{i+1}(s(g, T_{i}(\mathcal{P}, f)))$$

$$= T_{i}(\mathcal{P}, f) \cup \varphi_{i+1}(s(f, T_{i}(\mathcal{P}, f)))$$

$$= T_{i+1}(\mathcal{P}, f).$$

这样就证明了引理 2.

现在,我们令

$$[\mathscr{P}, f, n] = [f, T_n(\mathscr{P}, f)], \tag{1.8}$$

它代表在 n 批试验之后的剩余区间。 根据引理 1, $[\mathcal{D}, f, n] \cap T_n(\mathcal{D}, f) = [f, T_n(\mathcal{D}, f)] \cap T_n(\mathcal{D}, f)$ 不超过三个点,包括 $[\mathcal{D}, f, n]$ 的两个端点 a_1 和 b_1 在内。 如果还有一个点,就记为 c_1 , 我们令

$$[\mathcal{P}, f, n]' = \begin{cases} [a_1, b_1], & \text{m} \in c_1 \text{ and } c_1$$

于是, $[\mathscr{P}, t, n]' \cap T_n(\mathscr{P}, t)$ 恰包含两个点, 即 $[\mathscr{P}, t, n]'$ 的端点. 再定义

$$\Delta(\mathscr{P},\mathfrak{f},0)=\delta(\mathscr{P},\mathfrak{f},0)=b-a,$$

$$\Delta(\mathscr{D}, f, n) = |[\mathscr{D}, f, n]'| \quad (n = 1, 2, \cdots), \tag{1.10}$$

$$\delta(\mathcal{P}, f, n) = |[\mathcal{P}, f, n]| \quad (n = 1, 2, \dots), \tag{1.11}$$

$$\Delta(\mathscr{D}, n) = \sup_{f \in \mathfrak{F}} \Delta(\mathscr{D}, f, n) \quad (n = 0, 1, 2, \cdots), \tag{1.12}$$

$$\delta(\mathcal{P}, n) = \sup_{t \in \mathfrak{P}} \delta(\mathcal{P}, f, n) \quad (n = 0, 1, 2, \cdots). \tag{1.13}$$

定义 3. $\delta(\mathcal{D}, n)$ 称为策略 \mathcal{D} 在 n 批试验之后的精度.

定义 4. 如果策略 \mathscr{W} 对任何策略 \mathscr{P} 当 n 充分大后都有 $\delta(\mathscr{W}, n) \leq \delta(\mathscr{P}, n)$,就称 \mathscr{W} 为一个最优策略.

定义 5. 序列 $K = \{k_n\}$ 称为正规的,如果其中有无穷多个奇数,或者 k_1 是奇数而其余全是偶数.

二、递推的矩阵不等式

引理 3. [\mathscr{P} , f, n] \cap $T_{n+1}(\mathscr{P}$, f) 不超过 $k_{n+1}+3$ 个点,[\mathscr{P} , f, n]' \cap $T_{n+1}(\mathscr{P}$, f) 不超过 $k_{n+1}+2$ 个点.

证. 因为

$$[\mathscr{P}, f, n] \cap T_{n+1}(\mathscr{P}, f) = [\mathscr{P}, f, n] \cap \{T_n(\mathscr{P}, f) \cup \varphi_{n+1}(s(f, T_n(\mathscr{P}, f)))\}$$

$$\subseteq \{[\mathscr{P}, f, n] \cap T_n(\mathscr{P}, f)\} \cup \varphi_{n+1}(s(f, T_n(\mathscr{P}, f))).$$

根据引理 1, [\mathscr{P} , f, n] \cap $T_n(\mathscr{P}$, f) = [f, $T_n(\mathscr{P}$, f)] \cap $T_n(\mathscr{P}$, f) 最多只有三个点,而 $\varphi_{n+1}(s(f,T_n(\mathscr{P},f)))$ 最多只有 k_{n+1} 个不同点,故 [\mathscr{P} , f, n] \cap $T_{n+1}(\mathscr{P}$, f) 最多只有 k_{n+1} + 3 个点。引理 3 的另一半可以同样证明。

引理 4. 设

$$[\mathscr{P}, f, n] \cap T_{n+1}(\mathscr{P}, f) = \{\alpha_1 < \alpha_2 < \cdots < \alpha_t\},$$

则存在 g, h ∈ 5, 使

$$\Delta(\mathcal{P}, h, n+1) \geqslant \alpha_{i+1} - \alpha_i, i = 1, 2, \dots, t-1, \qquad (2.1)$$

$$\delta(\mathcal{P}, g, n+1) \geqslant \alpha_{i+2} - \alpha_i, i = 1, 2, \dots, t-2.$$
 (2.2)

证. 因为 $\alpha_{i+1}(i=1,2,\dots,t-2)$ 是 $[\mathscr{P},f,n]$ 的内点,故也是 $[f,T_n(\mathscr{P},f)]$ 的内点,根据引理 1,存在单峰函数 $g_i \in \mathfrak{F}(f,T_n(\mathscr{P},f))$,使 g_i 在 α_{i+1} 处达到极大值。根据引理 2,

 $T_{n+1}(\mathcal{P}, g_i) = T_{n+1}(\mathcal{P}, f)$. 因为 $g_i(\alpha_i) < g_i(\alpha_{i+1}) > g_i(\alpha_{i+2})$, 根据引理 1 有 $[g_i, T_{n+1}(\mathcal{P}, f)] = [\alpha_i, \alpha_{i+2}]$.

故得

$$[\mathscr{P}, g_i, n+1] = [g_i, T_{n+1}(\mathscr{P}, g_i)] = [g_i, T_{n+1}(\mathscr{P}, f)] = [\alpha_i, \alpha_{i+1}].$$

所以

$$\delta(\mathcal{P}, g_i, n+1) = \alpha_{i+2} - \alpha_i,$$

$$\Delta(\mathcal{P}, g_i, n+1) = \max\{\alpha_{i+2} - \alpha_{i+1}, \alpha_{i+1} - \alpha_i\}.$$

于是可在gi中取g及h,使

$$\delta(\mathcal{P}, g, n+1) \geqslant \alpha_{i+2} - \alpha_i, \quad i = 1, 2, \dots, t-2,$$

$$\Delta(\mathcal{P}, h, n+1) \geqslant \alpha_{i+1} - \alpha_i, \quad i = 1, 2, \dots, t-1.$$

引理 5. 如果 $\ell_{n+1} = 2i(n = 0, 1, 2, \dots)$,则对任何 ℓ_n , ℓ_n , 存在 ℓ_n , ℓ_n , 存在 ℓ_n , ℓ_n

$$\Delta(\mathcal{P}, h, n) \leqslant \Delta(\mathcal{P}, h', n+1) + i\delta(\mathcal{P}, g', n+1), \tag{2.3}$$

$$\delta(\mathcal{P}, g, n) \leqslant (i+1)\delta(\mathcal{P}, g', n+1). \tag{2.4}$$

证.设

$$[\mathscr{P}, g, n] \cap T_{n+1}(\mathscr{P}, g) = \{\alpha_1 < \alpha_2 < \cdots < \alpha_t\}.$$

根据引理 3, $t \le 2i + 3$. 不妨设 t = 2i + 3, 于是根据引理 4, 可取到 $g_1' \in \mathcal{F}$, 使 $\delta(\mathcal{P}, g_1', n+1) \ge \max\{\alpha_{i+2} - \alpha_i | i = 1, 2, \dots, t-2\}$.

所以

$$\delta(\mathcal{P}, g, n) = \alpha_i - \alpha_1 = (\alpha_{2i+3} - \alpha_{2i+1}) + (\alpha_{2i+1} - \alpha_{2i-1}) + \dots + (\alpha_3 - \alpha_1)$$

 $\leq (i+1)\delta(\mathcal{P}, g'_1, n+1).$

若 t < 2i + 3,不等式更应成立. 再设

$$[\mathscr{P}, h, n]' \cap T_{n+1}(\mathscr{P}, h) = \{\alpha_1 < \alpha_2 < \dots < \alpha_t\}.$$

根据引理 3, $t \le 2i + 2$. 不妨设 t = 2i + 2, 根据引理 4, 可取到 h', g'_2 使

$$\Delta(\mathcal{P}, h', n+1) \geq \max\{\alpha_{i+1} - \alpha_i | i = 1, 2, \dots, t-1\},$$

$$\delta(\mathscr{D}, g_2', n+1) \geqslant \max\{\alpha_{i+2} - \alpha_i | i = 1, 2, \dots, t-2\}.$$

于是

$$\Delta(\mathcal{P}, h, n) = \alpha_{t} - \alpha_{1} = (\alpha_{2i+2} - \alpha_{2i+1}) + (\alpha_{2i+1} - \alpha_{2i-1}) + \cdots + (\alpha_{3} - \alpha_{1})$$

$$\leq \Delta(\mathcal{P}, h', n+1) + i\delta(\mathcal{P}, g'_{2}, n+1).$$

取 g' 为 g'_1 和 g'_2 中 $\delta(\mathcal{D}, g'_i, n+1), j=1, 2$ 值较大者,就有

$$\Delta(\mathcal{D}, h, n) \leq \Delta(\mathcal{D}, h', n+1) + i\delta(\mathcal{D}, g', n+1),$$

$$\delta(\mathcal{P}, g, n) \leq (i+1)\delta(\mathcal{P}, g', n+1).$$

用同样的方法可以证明

引理 6. 如果 $k_{n+1} = 2i - 1(n = 0, 1, 2, \cdots)$,则对任何 $g, h \in \mathcal{F}$,都存在 $g', h' \in \mathcal{F}$,使

$$\Delta(\mathcal{P}, h, n) \leq i\delta(\mathcal{P}, g', n+1), \tag{2.5}$$

$$\delta(\mathcal{P}, g, n) \leq \Delta(\mathcal{P}, h', n+1) + i\delta(\mathcal{P}, g', n+1). \tag{2.6}$$

定义矩阵

$$C(2i) = \begin{pmatrix} 1 & i \\ 0 & i+1 \end{pmatrix}, C(2i-1) = \begin{pmatrix} 0 & i \\ 1 & i \end{pmatrix}.$$
 (2.7)

从引理5及引理6立刻得到

引理 7. 对任何策略 \mathcal{P} , 存在 g_n , $h_n \in \mathfrak{F}(n=0,1,2,\cdots)$, 使得

$$\binom{\Delta(\mathcal{P}, h_n, n)}{\delta(\mathcal{P}, g_n, n)} \leqslant C(k_{n+1}) \binom{\Delta(\mathcal{P}, h_{n+1}, n+1)}{\delta(\mathcal{P}, g_{n+1}, n+1)}, n = 0, 1, 2, \cdots.$$
(2.8)

令
$$Z_n = {\Delta(\mathcal{P}, n) \choose \delta(\mathcal{P}, n)} = \sup_{t \in \mathfrak{F}} {\Delta(\mathcal{P}, t, n) \choose \delta(\mathcal{P}, t, n)}$$
, 由引理 5 及引理 6 得到:

引理 8. Z_n 满足不等式组

$$\mathfrak{B}: Z_n \leq C(k_{n+1})Z_{n+1}, (0,1)Z_n \geq (1,0)Z_n \geq 0, (1,0)Z_0 = b-a$$

$$(n=0,1,2,\cdots).$$

三、最优策略的构造

设
$$W_n = {x_n \choose y_n}$$
 $(n = 0, 1, 2, \dots)$ 满足下列方程
 $\mathfrak{A}: W_n = C(k_{n+1})W_{n+1}, (0, 1)W_n \ge (1, 0)W_n \ge 0, (1, 0)W_0 = b - a$

$$(n = 0, 1, 2, \dots)$$

我们将在第六节证明⁹¹的解的存在唯一性,本节不妨假定解的存在性已获证明,进而讨论最优策略的构造。

引理 9.
$$2x_n \geqslant y_n \geqslant x_n > 0. \tag{3.1}$$

若 k_m 是一个奇数,则 $y_n > x_n$ (n < m). 若 k_m 是 K 中最后一个奇数,则 $y_n = x_n (n \ge m)$. 证. 从方程 $\mathfrak A$ 得到

$$2x_{n}-y_{n}=(2,-1)C(k_{n+1})\binom{x_{n+1}}{y_{n+1}}\geqslant\begin{cases}2x_{n+1}\geqslant0,& \text{if }k_{n+1}\neq\emptyset,\\y_{n+1}-x_{n+1}\geqslant0,& \text{if }k_{n+1}\neq\emptyset,\end{cases}$$

故有 $2x_n \ge y_n \ge x_n \ge 0$. 若 $x_n = 0$, 则 $y_n = 0$. 从方程 \mathfrak{A} 推知 $x_0 = b - a = 0$, 这不可能, 故 $x_n > 0$. 这就证明了 (3.1) 式.

我们观察

$$y_n - x_n = (-1, 1)C(k_{n+1}) {x_{n+1} \choose y_{n+1}} = {y_{n+1} - x_{n+1}, \quad \text{if } k_{n+1} \text{ elgh}, \\ x_{n+1} > 0, \quad \text{if } k_{n+1} \text{ elgh}, \end{cases}$$
(3.3)

故若 $y_n - x_n = 0$,则 k_{n+1} 是偶数,且 $y_{n+1} - x_{n+1} = 0$.因此对一切整数 $j \ge 0$, k_{n+i} 全是偶数,而且 $y_{n+j} - x_{n+i} = 0$. 所以当 k_m 是奇数时,对 n < m, 有 $y_n > x_n$.

若 k_m 是最后一个奇数, k_{m+i+1} ($i \ge 0$) 全是偶数,则有

$$y_{m+j} = \left(\frac{k_{m+j+1}}{2} + 1\right) y_{m+j+1} \quad (j \ge 0). \tag{3.4}$$

故有 $\lim_{n\to\infty} y_n = 0$, 对任一 $\epsilon > 0$, 有 $j \ge 0$, 使 $y_{m+j} < \epsilon$. 从 (3.3) 式得到

$$0 \leqslant y_m - x_m = y_{m+i} - x_{m+i} \leqslant y_{m+i} < \varepsilon.$$

所以 $y_m - x_m = 0$, 从而 $y_{m+1} = x_{m+j} (j \ge 0)$. 引理 9 证毕.

现在,如果K中有无穷多个奇数,则 $y_n > x_n$,就可以在长为b - a的区间上按照下列规则 究 定义一个策略 \mathcal{W} .

 $\mathfrak{R}_{:}$ 在第 n 批试验时,把试验点分配得使上批试验后的剩余区间恰被分成大小相间的**段,**大段长为 x_n ,小段长为 $y_n - x_n$.

为了说明 St 的合理,需要证明下列的命题。

命题 1. 如果 K 中有无穷多个奇数,且 $W_n = {x_n \choose v_n}$ 是 \mathfrak{A} 的解,则 \mathfrak{R} 确实能在长为 b-a的初始区间上定义一个优选策略 "八满足

$$\Delta(\mathcal{W}, n) = x_n, \quad \delta(\mathcal{W}, n) = y_n \quad (n \geqslant 1), \tag{3.5}$$

$$\Delta(\mathcal{W}, 0) = x_0 = b - a, \tag{3.6}$$

证. 在第一批试验时,如果 $k_1 = 2i$,则

$$x_0 = b - a = x_1 + iy_1 = (i+1)x_1 + i(y_1 - x_1). \tag{3.7}$$

于是我们可以选择 2i 个分点,使得长为 x_i 的区间被分成 2i+1 段,其中有 i+1 段(大段)长 为 x_1 ,有i段(小段)长为 y_1-x_1 ,并且可以一大一小相间排列(见图 1).

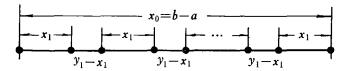


图 1 $k_1 = 2i$ 时,按规则 \Re 第一批应取的 2i 个试验点

如果 $k_1 = 2i - 1$, 则

$$x_0 = b - a = iy_1 = ix_1 + i(y_1 - x_1). (3.8)$$

于是我们可以选择 2i-1 个分点,把初始区间分成大小相间的 2i 段,大段长为 x_1 ,小段长为 $y_1 - x_1$. (见图 2).

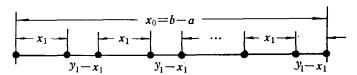


图 2 $k_i = 2i - 1$ 时,按规则 \Re 第一批应取的 2i - 1 个试验点

这样一来,在第一批试验之后,根据引理 1, 剩余区间的长度为 $x_1 + (y_1 - x_1) = y_1$ (容易 看出,如果剩余区间的长度是 x_1 或 y_1-x_1 ,可以把它适当放宽到 y_1 这么长),而且中间有一已 试点,把剩余区间分成长为 x_1 和 y_1-x_1 的两部分。

设在第n-1步后剩余区间的长为 y_{n-1} ,中间有一已试点,把剩余区间分成长为 x_{n-1} 和 $y_{i-1} - x_{n-1}$ 的两段. 当 $k_n = 2i$ 时,

$$\begin{cases} x_{n-1} = x_n + iy_n = (i+1)x_n + i(y_n - x_n), \\ y_{n-1} - x_{n-1} = (i+1)y_n - (x_n + iy_n) = (y_n - x_n). \end{cases}$$
(3.9)

$$\begin{cases} x_{n-1} = iy_n = ix_n + i(y_n - x_n), \\ y_{n-1} - x_{n-1} = (x_n + iy_n) - iy_n = x_n. \end{cases}$$
(3.11)

$$y_{n-1} - x_{n-1} = (x_n + iy_n) - iy_n = x_n. (3.12)$$

无论在那种情况,我们总可以选择 k, 个分点,使它们连同原来的已试点,恰把剩余区间分成 $k_n + 2$ 个大小相间的段,大段长为 x_n ,小段长为 $y_n - x_n$ (见图 3 和图 4)。于是第 n 批试验后, 剩余区间的长度就是 $x_n + (y_n - x_n) = y_n$ 。中间有一已试点,把区间分成长为 x_n 和 $y_n - x_n$ 的两部分.

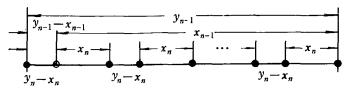


图 3 当 $k_n = 2i$ 时,按规则 \Re 第 n 批应取的 2i 个试验点 (其中〇处是已试点)

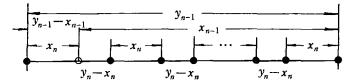


图 4 当 $k_n = 2i - 1$ 时,按规则 \mathfrak{R} 第 n 批应取的 2i - 1 个试验点 (其中〇处是已试点)

这样,就归纳地证明了命题 1. 不难按照定义 2,用一组映射 φ_n 的形式把 \mathcal{Y}^{α} 写出来.

当K中只有 k_1 是奇数时,我们可以在长为 b-a 的区间上按照下列规则 \mathfrak{R}' 定义一个策略 \mathscr{W} :

究':每次都把剩余区间等分.

命题 2. 设 $k_1=2i_1+1$, $k_n=2i_n$ $(n\geq 2)$, 则可根据规则 \mathfrak{R}' 设计一个策略 \mathscr{W} ,使得 $\delta(\mathscr{W},n)=y_n$.

证. 第一批试验点应取为:

$$a+\frac{b-a}{2(i_1+1)}$$
, $a+\frac{b-a}{2(i_1+1)}\cdot 2$, ..., $a+\frac{b-a}{2(i_1+1)}(2i_1+1)$.

剩余区间 $[a_1, b_1]$ 长为 $\frac{b-a}{i_1+1} = x_0/(i_1+1) = y_1$,在中点处已作过一次试验。 在第二 批 试验时(包括中间已试点),取分点为:

$$a_1 + \frac{b_1 - a_1}{2(i_2 + 1)}, \ a_1 + \frac{b_1 - a_1}{2(i_2 + 1)} \cdot 2, \ \cdots, \ a_1 + \frac{b_1 - a_1}{2(i_2 + 1)} (2i_2 + 1).$$

故剩余区间 $[a_2, b_2]$ 长为 $\frac{b_1-a_1}{i_2+1}=y_1/(i_2+1)=y_2$. 利用归纳法就证明了命题 2.

命题 3. 若K不正规,则对任一 $\theta < 1$,存在一个策略 \mathcal{W}_{θ} ,使当n 充分大后有 $\theta \delta (\mathcal{W}_{\theta}, n) \leq y_n$.

证. 令 $e^{-\epsilon} = \theta$,于是 e > 0. 设 K 中最后一个奇数是 k_m . 令 $k_m = 2i_0 - 1$, $k_{m+j} = 2i_i$ (j > 0). 我们这样设计策略 \mathcal{W} e: 从第一步到第 m - 1 步,按照规则 \mathfrak{R} 进行。根据命题 1,这个规则在头 m - 1 步是可行的,而且第 m - 1 批试验之后,剩余区间的长度是 y_{m-1} ,中间还有一已试点,把它分成长为 x_{m-1} 和 $y_{m-1} - x_{m-1}$ 的两段。但是据引理 9,

$$\begin{cases} y_{m-1} = x_m + i_0 y_m = (i_0 + 1) x_m = (i_0 + 1) y_m, \\ y_{m-1} - x_{m-1} = x_m = y_m. \end{cases}$$
(3.13)

设在第m-1步后,剩余区间为 $[a_{-1},b_{-1}],b_{-1}=a_{-1}+(i_0+1)x_m$. 我们这样设计: 第m步的 $2i_0-1$ 个分点为:

$$a_{-1} + x_m + \epsilon_0$$
, $a_{-1} + 2x_m$, $a_{-1} + 2x_m + \epsilon_0$, $\cdots a_{-1} + i_0 x_m + \epsilon_0$.

$$x_m + \varepsilon_0 = y_m + \varepsilon_0 = y_m (1 + \varepsilon/2). \tag{3.15}$$

在第 m+j 步,设上批试验后的剩余区间为 $[a_{j-1}, b_{j-1}]$,取 $\epsilon_i = \frac{b_{j-1} - a_{j-1}}{i_j + 1} \cdot \frac{\epsilon}{2^{j+1}}$, $k_{m+j} = 2i_j$ 个分点这样取:

$$a_{i-1} + \frac{b_{i-1} - a_{i-1}}{i_i + 1}, \ a_{i-1} + \frac{b_{i-1} - a_{i-1}}{i_i + 1} + e_i,$$

$$a_{i-1} + 2 \frac{b_{i-1} - a_{i-1}}{i_i + 1}, \cdots, \ a_{i-1} + i_i \frac{b_{i-1} - a_{i-1}}{i_i + 1} + e_i,$$

于是,在m+1批试验之后,剩余区间的长度不超过

$$\frac{b_{j-1} - a_{j-1}}{i_{j} + 1} + e_{j} = \frac{b_{j-1} - a_{j-1}}{i_{j} + 1} \left(1 + \frac{e}{2^{j+1}} \right)$$

$$\leq \frac{1 + \frac{e}{2^{j+1}}}{i_{j} + 1} \cdot \frac{1 + \frac{e}{2^{j}}}{i_{j-1} + 1} (b_{j-2} - a_{j-2})$$

$$\leq \left(\prod_{\nu=0}^{j} \frac{1 + \frac{e}{2^{\nu+1}}}{i_{\nu} + 1} \right) (b_{-1} - a_{-1})$$

$$= \left(\prod_{\nu=0}^{j} \frac{1 + \frac{e}{2^{\nu+1}}}{i_{\nu} + 1} \right) y_{m-1}.$$
(3.16)

但是从 21 得到

$$y_{m+j} = \left(\prod_{\nu=0}^{j} \frac{1}{i_{\nu}+1}\right) y_{m-1}. \tag{3.17}$$

收

$$\frac{\delta(\mathcal{W}_{\theta}, m+j)}{y_{m+j}} \leqslant \prod_{\nu=0}^{j} \left(1 + \frac{e}{2^{\nu+1}}\right) < \prod_{\nu=0}^{j} e^{\frac{\epsilon}{2^{\nu+1}}} < \prod_{\nu=0}^{\infty} e^{\frac{\epsilon}{2^{\nu+1}}} = e^{\epsilon} = \theta^{-1}.$$
 (3.18)

于是

$$\theta\delta(\mathcal{W}_{\theta}, n) \leqslant y_n$$
.

上面的证明对于 K 中不存在任何奇数的特殊情况也是适用的。不难按照定义 2, 用一组映射 φ_n 的形式把 \mathcal{W}_{θ} 写出来。

四、限定做 m 批试验的情况

本文主要讨论批数不限的情况,但是从引理 8 和命题 1 很容易推出批数限定情况下的基本定理,顺便叙述如下:设 Δ 和 δ 是满足

$$\Delta \geqslant \delta - \Delta > 0 \tag{4.1}$$

的两个实数,对 $n \leq m$,令

$$F(\Delta, \delta, n, m) = C(k_{n+1})C(k_{n+2})\cdots C(k_m)\binom{\Delta}{\delta} = \binom{x_n}{y_n} = W_{nm}, \tag{4.2}$$

显然, $W_{nm}(n=0,1,2,\cdots,m)$ 满足

$$\mathfrak{A}': W_n = C(k_{n+1})W_{n+1}, (0,1)W_n \geqslant (1,0)W_n \geqslant 0 \quad (n=0,1,\dots,m-1).$$

采用引理9同样的证明方法及条件(4.1),容易知道

$$x_n \geqslant y_n - x_n > 0 \quad (n = 0, 1, 2, \dots, m),$$
 (4.3)

根据命题 1 的论断,我们从 W_{nm} $(n=0,1,2,\cdots,m)$, 遵照规则 \mathfrak{R} , 可构造出一个策略 $\mathscr{S}_{m}(\Delta,\delta)$, 它满足 $\Delta(\mathscr{S}_{m}(\Delta,\delta),m)=\Delta$, $\delta(\mathscr{S}_{m}(\Delta,\delta),m)=\delta$, 且有 $\Delta(\mathfrak{F}_{m}(\Delta,\delta),0)$ $=(1,0)F(\Delta,\delta,0,m).$

另一方面,设 $\mathscr D$ 满足 $\Delta(\mathscr D,m) \leqslant \Delta$, $\delta(\mathscr D,m) \leqslant \delta$, 则根据引理 8,应该有

$$\Delta(\mathscr{D}, 0) \leqslant (1, 0)C(k_1)C(k_2)\cdots C(k_m)\binom{\Delta}{\delta} = (1, 0)F(\Delta, \delta, 0, m). \tag{4.4}$$

于是我们得到:

定理 1. 设 Δ , δ 满足 (4.1) 式,则策略 $\mathscr{F}_{m}(\Delta, \delta)$ 满足:

$$\Delta(\mathscr{F}_m(\Delta, \delta), m) = \Delta, \, \delta(\mathscr{F}_m(\Delta, \delta), m) = \delta, \tag{4.5}$$

$$\Delta(\mathcal{F}_m(\Delta, \delta), 0) = (1, 0)F(\Delta, \delta, 0, m). \tag{4.6}$$

而且对任何满足

$$\Delta(\mathcal{P}, m) \leqslant \Delta, \quad \delta(\mathcal{P}, m) \leqslant \delta$$
 (4.7)

的策略 少,都有

$$\Delta(\mathscr{F}, 0) \leqslant \Delta(\mathfrak{F}_m(\Delta, \delta), 0). \tag{4.8}$$

定理1有各种推论和变形。例如:

推论 1. 设初始区间的长度为 L,并规定两试验点的距离不得小于 d(分辨距离),设 t 为 一次方程

$$(1,0)F(t-d,t,0,m) = L (4.9)$$

的解, 9 为任意策略,则有

(1) 如果 $t \ge 2d$. 则

$$\delta(\mathcal{D}, m) \geqslant t = \delta(\mathcal{F}_m(t-d, t), m), \tag{4.10}$$

(2) 如果 t < 2d,则

$$\delta(\mathcal{P}, m) \geq 2d$$

而且确有 Ø 使等号成立。

推论 2. 设初始区间的长度为 L, r 为一次方程

$$(1, 0)F(r, 2r, 0, m) = L (4.11)$$

的解, 罗为任意试验策略,则

$$\Delta(\mathcal{P}, m) \geqslant r = \Delta(\mathcal{F}_m(r, 2r), m). \tag{4.12}$$

推论 1 和推论 2 按不同的标准 (δ 或 Δ) 给出了批数限定情况下的最优策略 ($\mathcal{F}_m(\iota-d)$ t)或 矛 "(r, 2r)).

五、讲一步的一组不等式

引理 10. 设 α , β , x, y, z, u, ν , ω 都是正实数,满足

$$\begin{cases} \alpha x + \beta y \leqslant z, \\ \alpha u + \beta v \geqslant w. \end{cases}$$
(5.1)

$$(\alpha u + \beta v \geqslant w. \tag{5.2})$$

则 $\alpha^2 x u > \beta^2 y v$ 或 $z^2 u v \ge w^2 x y$ 或 v z > w y.

证. 设 $\alpha^2 x u \leq \beta^2 y v$, 其 $u \cdot y \geq v z$, 则有

$$\beta vz \geqslant \beta v(\alpha x + \beta y) = \alpha \beta xv + \beta^2 yv \geqslant \alpha \beta xv + \alpha^2 xu$$
$$= \alpha x(\alpha x + \beta v) \geqslant \alpha xw$$
 (5.3)

把(5.2) െ(5.1) 式分別乘以 \approx 和 w, 然后相减得:

$$\alpha uz - \alpha xw \geqslant \beta yw - \beta vz,$$

$$\alpha uz \geqslant \alpha xw + \beta yw - \beta vz,$$

$$\frac{uz}{xw} \geqslant 1 + \frac{\beta}{\alpha xw} (yw - vz).$$
(5.4)

因为假定 $yw - vz \ge 0$ 及 (5.3) 式成立,故有

$$\frac{uz}{xw} \ge 1 + \frac{\beta}{\beta vz} (yw - vz) = \frac{vw}{vz}$$

所以 $z^2uv \ge w^2xy$. 引理 10 证毕.

设
$$W_n = \binom{x_n}{y_n}$$
 是 \mathfrak{A} 的解, $Z_n = \binom{u_n}{v_n}$ 满足不等式组 \mathfrak{B} . 令

$$\mu(m,n) = \frac{v_n x_m}{u_m y_n},\tag{5.5}$$

$$\lambda(m, n) = \frac{\nu_n y_m}{\nu_m y_n},\tag{5.6}$$

$$\rho(m, n) = \frac{u_n x_m}{u_m x_n},\tag{5.7}$$

显然有下列的引理.

引理 11.

$$\lambda(m, l)\lambda(l, n) = \lambda(m, n), \tag{5.8}$$

$$\rho(m, l)\rho(l, n) = \rho(m, n), \tag{5.9}$$

$$\mu(m, l)\lambda(l, n) = \mu(m, n), \tag{5.10}$$

$$\rho(m, l)\mu(l, n) = \mu(m, n). \tag{5.11}$$

引理 12. 如果 $k_{n+1} = 2i$, 则

$$\lambda(n, n+1) \geqslant 1, \tag{5.12}$$

$$\mu(n, n+1) \ge i/(i+1) \ge \frac{1}{2}.$$
 (5.13)

如果 $k_{n+1} = 2i - 1$, 则

$$\lambda(n, n+1) \geqslant i/(i+1) \geqslant \frac{1}{2}, \tag{5.14}$$

$$\mu(n, n+1) \geqslant 1. \tag{5.15}$$

证. 当 $k_{n+1}=2i$ 时, $y_n=(i+1)y_{n+1}$, $v_n \leq (i+1)v_{n+1}$, 故 $\lambda(n,n+1)=v_{n+1}y_n/v_ny_{n+1} \geq 1$. 同时,从 $\lambda(n,n+1)=v_n$

$$x_{n+1}/x_n + iy_{n+1}/x_n = 1, (5.16)$$

$$u_{n+1}/u_n + iv_{n+1}/u_n \geqslant 1, \tag{5.17}$$

两式相减得

$$i\left(\frac{y_{n+1}}{x_n}-\frac{v_{n+1}}{u_n}\right)\leqslant \frac{u_{n+1}}{u_n}-\frac{x_{n+1}}{x_n}<\frac{u_{n+1}}{u_n}\leqslant \frac{v_{n+1}}{u_n}.$$

所以 $i \frac{y_{n+1}}{x_n} \leq (i+1) \frac{v_{n+1}}{u_n}$ 或

$$\mu(n, n+1) \ge i/(i+1) \ge \frac{1}{2}$$
.

引理 12 的另一半可同样证明。

引理 13. 如果 $\lambda(n, n+1) < 1$, 则 $\mu^{-1}(n+1, n) \ge \lambda^{-1}(n, n+1)$. 如果 $\mu(n, n+1) < 1$, 则 $\rho(n, n+1) \ge \mu^{-1}(n, n+1)$.

证. 如果 $\lambda(n, n+1) < 1$,根据引理 12, k_{n+1} 是奇数,设 $k_{n+1} = 2i - 1$. 这时

$$\begin{cases} x_{n+1} + iy_{n+1} = y_n, \\ u_{n+1} + iv_{n+1} \ge v_n. \end{cases}$$

根据引理 10,应当有 $1^2 \cdot x_{n+1} u_{n+1} > i^2 y_{n+1} v_{n+1}$,或者 $y_n^2 u_{n+1} v_{n+1} > v_n^2 x_{n+1} y_{n+1}$,或者 $v_{n+1} y_n > y_{n+1} v_n$. 但因 $x_{n+1} \leq y_{n+1}$, $u_{n+1} \leq v_{n+1}$, $1 \leq i$,故第一式不能成立.又因 $\lambda(n, n+1) < 1$,第三式也不能成立.故只能第二式成立,也就是

$$\mu^{-1}(n+1, n) \geqslant \lambda^{-1}(n, n+1).$$

引理 13 的另一半可以同样证明。

引理 14. 设 c > 0, $a_i \ge 1$ $(i = 1, 2, 3, \cdots)$.

$$A_i \geqslant \max\{a_1 a_2 \cdots a_i a_{i+1}^{-1}, a_1 a_2 \cdots a_i c\}$$

则或者存在一个 $\theta < 1$, 使当 n 充分大后有 $A_n \ge \theta^{-1}$, 或者 $a_i = 1$.

证. 设有 j, 使 $a_i > 1$. 令 $B_i = a_1 a_2 \cdots a_i$. 因为 $a_i \ge 1$, 所以 $\lim_{i \to \infty} B_i = B \ge 1$. 如果 $B = \infty$, 则因 $A_i \ge B_i C$, 故 $\lim_{i \to \infty} A_i = \infty$, 引理为真. 故可设 $B < \infty$, 这时 $\lim_{i \to \infty} a_i = 1$, $\lim_{i \to \infty} a_i^{-1} = 1$. 可以找到 N > 0, 当 $n \ge N$ 后便有 $a_n^{-1} \ge a_j^{-1/2}$. 于是当 $n \ge \max\{N, j\}$ 后就有

$$A_n \geqslant a_1 a_2 \cdots a_j \cdots a_n a_{n+1}^{-1} \geqslant a_j \cdot a_j^{-1/2} = a_j^{1/2} > 1$$
.

取 $\theta = a_i^{-1/2} < 1$,便得到我们的结论。

引理 15. 如果存在 m,使对一切 $j \ge 0$ 均有 $\mu(m+j, m+j+1) < 1$,则存在 $\theta < 1$,当 n 充分大后有

$$\mu(m, n) > \theta^{-1}$$
.

证。根据引理13,我们有

$$\rho(m+j, m+j+1) \geqslant \mu^{-1}(m+j, m+j+1) \quad (j \geqslant 0). \tag{5.18}$$

所以从引理 11

$$\mu(m, n) = \rho(m, n-1)\mu(n-1, n)$$

$$= \rho(m, m+1)\rho(m+1, m+2)\cdots\rho(n-2, n-1)\mu(n-1, n)$$

$$\geq \mu^{-1}(m, m+1)\mu^{-1}(m+1, m+2)\cdots\mu^{-1}(n-2, n-1)\mu(n-1, n).$$

令 $a_i = \mu^{-1}(m+i-1, m+i)$, 根据引理 12, $1 < a_i \le 2$, 于是

$$\mu(m, m+1+i) \geqslant \max\{a_1 a_2 \cdots a_i a_{i+1}^{-1}, a_1 a_2 \cdots a_i/2\}.$$

故引理 14 可以应用,所以存在 $\theta < 1$, 当 n 充分大后就有

$$\mu(m, n) > \theta^{-1}$$

引理 16. 如果引理15的条件不成立(即那样的m不存在),并且设 $\lambda(m, m+1) < 1$. 这 时必有唯一的一个 m' > m+1, 使对一切 j: m < j < m'-1, 有 $\mu(j, j+1) < 1$, 但是 $\mu(m'-1, m') \ge 1$. 我们有、

(1)
$$\lambda(m, m') \ge \lambda^{-1}(m, m+1) > 1, \tag{5.19}$$

(2)
$$\lambda(m,j) \geqslant \lambda(m,m+1) \quad (m < j \leqslant m'). \tag{5.20}$$

证. 根据引理 13, $a^{-1}(m+1,m) \ge \lambda^{-1}(m,m+1)$. 同时, 对满足 m < j < m'-1的 j 有 $\rho(j,j+1) \ge \mu^{-1}(j,j+1) > 1$. 根据引理 12, k_{j+1} 都是偶数, 因此 $\lambda(j,j+1) \ge 1$. 于是

 $\lambda(m, j+1) = \lambda(m, m+1)\lambda(m+1, m+2)\cdots\lambda(j, j+1) \ge \lambda(m, m+1).$ 其中 j 适合 m < j < m'-1. 又 j = m 时,上式显然也成立。把 j+1 改写为 j,就得到 (2)。根据引理 11 可以写为

$$\lambda(m, m') = \mu^{-1}(m'-1, m)\mu(m'-1, m') \geqslant \mu^{-1}(m'-1, m)$$

$$= \mu^{-1}(m+1, m)\rho(m+1, m'-1)$$

$$\geqslant \lambda^{-1}(m, m+1)\rho(m+1, m+2)\rho(m+2, m+3)\cdots\rho(m'-2, m'-1)$$

$$\geqslant \lambda^{-1}(m, m+1)\mu^{-1}(m+1, m+2)\mu^{-1}(m+2, m+3)\cdots\mu^{-1}(m'-2, m'-1)$$

$$\geqslant \lambda^{-1}(m, m+1).$$

这就证明了(1)。引理16得证。

引理 17. 对任一自然数 $m_1 \ge 0$,或者存在 $\theta < 1$,当 n 充分大后有 $\lambda(m_1, n) > \theta^{-1}$,或者对一切 $n \ge m_1$ 有 $\lambda(m_1, n) \equiv 1$.

证. 设 m 是一个自然数,如果 $\lambda(m, m+1) \ge 1$,我们就称 m+1 为 m 的直接后继者.如果 $\lambda(m, m+1) < 1$,则m 的直接后继者不存在.但若这时满足引理 16 条件的 m' 存在,就说 m' 是m 的间接后继者。令 m_1 的后继者为 m_2 , m_2 的后继者为 m_3 , · · · . 这时一般地有 $\lambda(m_i, m_{i+1}) \ge 1$,并且等号仅在 $m_{i+1} = m_i + 1$ 也即 m_{i+1} 是 m_i 的直接后继者时才有可能成立。

首先,设到某一个 m_k 之后, m_k 的后继者不存在了。 这时,对一切 $j \ge 0$ 均有 $\mu(m_k + j, m_k + j + 1) < 1$,根据引理 15,用 $m_k + 1$ 代替 m,就可知当 n 充分大后有 $\mu(m_k + 1, n) > \theta^{-1}$ 对某个 $\theta < 1$ 成立。 因 m_k 的直接后继者不存在,故 $\lambda(m_k, m_k + 1) < 1$ 。 根据引理 13, $\mu^{-1}(m_k + 1, m_k) \ge \lambda^{-1}(m_k, m_k + 1) > 1$,于是从引理 11 有

$$\lambda(m_1, n) = \lambda(m_1, m_2)\lambda(m_2, m_3)\cdots\lambda(m_{k-1}, m_k)\lambda(m_k, n)$$

 $= \lambda(m_1, m_2)\lambda(m_2, m_3)\cdots\lambda(m_{k-1}, m_k)\mu^{-1}(m_k+1, m_k)\mu(m_k+1, n). \quad (5.21)$ 从 (5.19) 式知 $\lambda(m_1, m_2) \geq 1$, $\lambda(m_2, m_3) \geq 1$, \cdots , $\lambda(m_{k-1}, m_k) \geq 1$ (当 m_{i+1} 是 m_i 的直接后继者时等号可能成立). 就得

 $\lambda(m_1, n) \ge \mu^{-1}(m_k + 1, m_k)\mu(m_k + 1, n) > \mu(m_k + 1, n) > \theta^{-1}$. (5.22) 引理 17 为真. 故我们可以假设引理 15 中的条件不成立,也即寻找后继者的过程可以无限继续、设 $m_k < j + m_k \le m_{k+1}$,则有

$$\lambda(m_1, m_k + j) = \lambda(m_1, m_2)\lambda(m_2, m_3) \cdots \lambda(m_{k-1}, m_k)\lambda(m_k, m_k + j)$$

$$\geq \lambda(m_1, m_2)\lambda(m_2, m_3) \cdots \lambda(m_{k-1}, m_k)\lambda(m_k, m_k + 1)$$

$$\geq \lambda(m_1, m_2)\lambda(m_2, m_3) \cdots \lambda(m_{k-1}, m_k)\lambda^{-1}(m_k, m_{k+1}). \tag{5.23}$$

以上不等式的推导用到(5.20)和(5.19)式。令 $a_i = \lambda(m_i, m_{i+1})$ 。因为 $\lambda(m_k, m_k + 1) \ge 1/2$,

故有

$$\lambda(m_1, m_k + j) \geqslant \max\{a_1 a_2 \cdots a_{k-1} a_k^{-1}, a_1 a_2 \cdots a_{k-1} \cdot 1/2\}. \tag{5.24}$$

令 $A_k = \max\{a_1 a_2 \cdots a_{k-1} a_k^{-1}, a_1 a_2 \cdots a_{k-1} \cdot 1/2\}$ 根据引理 14, 或者对一切 i 有 $a_i = \lambda(m_i, m_{i+1}) = 1$, 于是 m_{i+1} 是 m_i 的直接后继者, $m_{i+1} = m_i + 1$, $m_i = m_1 + i - 1$.

$$\lambda(m_1, n) = \lambda(m_1, m_1 + 1)\lambda(m_1 + 1, m_1 + 2)\cdots\lambda(n - 1, n) \equiv 1.$$
 (5.25)

或者存在 $\theta < 1$, 使当 k 充分大后有 $A_k \ge \theta^{-1}$. 也即当 n 充分大后有

$$\lambda(m_1, n) \geqslant \theta^{-1}$$
.

引理 17 证毕。

引理 18. 或者对 $n \ge 1$ 有 $\mu(0, n) = 1$,或者存在 $\theta < 1$, 当 n 充分大后有 $\mu(0, n) > \theta^{-1}$.

证. 设对一切 $j \ge 0$ 均有 $\mu(j, j+1) < 1$,则根据引理 15,存在 $\theta < 1$,当 n 充分大后就有 $\mu(0, n) > \theta^{-1}$. 引理 18 为真. 故可设 l 是这样一个数: $\mu(l, l+1) \ge 1$,但对一切 j, $0 \le j < l$ 都有 $\mu(j, j+1) < 1$. 根据引理 13, $\rho(j, j+1) \ge \mu^{-1}(j, j+1) > 1$. 根据引理 11

 $\mu(0, l+1) = \rho(0, 1)\rho(1, 2)\cdots\rho(l-1, l)\mu(l, l+1) \geqslant \mu(l, l+1) \geqslant 1,$ (5.26) 等号仅当 l=0 及 $\mu(0, 1)=1$ 时成立. 进一步有

$$\mu(0, n) = \mu(0, l+1)\lambda(l+1, n) \geqslant \lambda(l+1, n). \tag{5.27}$$

如果对一切 $n \ge l+1$, 有 $\lambda(l+1,n) = 1$, 并且 l=0, $\mu(0,1) = 1$, 这时 $\mu(0,n) = \mu(0,1)\lambda(1,n) = 1$. $(n \ge 1)$ 如果上述三条件中有一条不成立,易见存在 $\theta < 1$, 当 n 充分大时就有 $\mu(0,n) > \theta^{-1}$. 引理 18 证毕.

六、21的解存在唯一

设初始区间为 [a, b], Δ_m , δ_m 是满足

$$\Delta_m \geqslant \delta_m - \Delta_m > 0, \tag{6.1}$$

$$(1, 0)F(\Delta_m, \delta_m, 0, m) = b - a \tag{6.2}$$

的一串数对. 令 $W_{nm} = F(\Delta_m, \delta_m, n, m)$, 从 (4.2) 式知 $W_{nm}(n = 0, 1, 2, \dots, m)$ 满足 \mathfrak{A}' . 从引理 9 可得:

$$2(1, 0)W_{0m} \ge (0, 1)W_{0m} > 0,$$

$$2(b-a) \ge (0, 1)W_{0m} > 0,$$
(6.3)

因此,存在自然数的子序列 m_i , 使 $(0,1)W_{0m_i}$ 有极限。 令 $W_0 = \lim_{t \to \infty} W_{0m_i}$, 但是 $W_{0m_i} = C(k_1)W_{1m_i}$, $C(k_1)$ 又是非退化的, 故 W_{1m_i} 的极限存在, 记为 $W_1 = \lim_{t \to \infty} W_{1m_i}$. 同样, 下列极限存在

$$W_n = \lim_{i \to \infty} W_{nm_i}. \tag{6.4}$$

显然, $W_n(n=0,1,2,\cdots)$ 满足方程组 \mathfrak{A} . 于是我们得到:

命题 4. 21 的解存在.

引理 19. 设 $(1,0)C(k_1)C(k_2)\cdots C(k_n)\binom{1}{0}=0$,则 k_1 为奇数, k_2 , k_3 , \cdots , k_n 为偶数.

证. 如果 D 是一个每个元素均大于 0 的 2×2 矩阵,则易见 $D \cdot C(k_i)$ 和 $C(k_i)D$ 的每

一个元素均大于 0. 设 ℓ_1 是偶数, ℓ_{1+1} 是奇数,易见 $C(\ell_1)C(\ell_{1+1})$ 的各元素均大于 0. 故 ℓ_1 , ℓ_2 , ····, ℓ_n 中偶数不能在奇数的前面出现. 设 ℓ_1 , ℓ_2 是奇数,则 $C(\ell_1)C(\ell_2)$ 的各元素均大于 0,故最多有一个奇数. 于是 ℓ_2 , ····, ℓ_n 全是偶数. 若 ℓ_1 也是偶数,易见这时有 $(1,0)C(\ell_1)C(\ell_2)\cdots C(\ell_n)\binom{1}{0}=1$. 故 ℓ_1 不能是偶数. 引理 19 证毕.

命题 5. 划的解唯一.

证. 设 $W_n = \binom{x_n}{y_n}$, $Z_n = \binom{u_n}{v_n}$ 同为 $\mathfrak A$ 的解. 并且设 $\mu(0, n) \equiv 1$ $(n \ge 1)$ 不成立. 根据引理 18, 当 n 充分大后就有 $\mu(0, n) > 1$. 因为 $\mu(0, n) = \frac{v_n x_0}{u_0 y_n} = v_n/y_n$, 故当 n 充分大后有 $v_n > y_n$. 但是 W_n 和 Z_n 的地位是对等的,我们同样可以证明当 n 充分大后有 $y_n > v_n$,得

$$\mu(0, n) \equiv 1 \quad (n \geqslant 1), \quad y_n = v_n \quad (n \geqslant 1).$$

如果对某一 $m \ge 1$ 有 $x_m = u_m$,则根据矩阵 $C(k_n)$ 的非退化性,立刻可推得 $x_n = u_n$ 对一切 n 成立. 我们设对任一 $n \ge 1$, $x_n = u_n$. 从

$$\binom{u_0}{v_0} = C(k_2)C(k_2)\cdots C(k_n) \binom{u_n}{v_n},$$
 (6.6)

两式相减得:

到矛盾. 于是只能

$$(1, 0)C(k_1)C(k_2)\cdots C(k_n)\binom{x_n-u_n}{0}=0, (6.7)$$

根据引理 19, k_1 是奇数,而 $k_n(n \ge 2)$ 全是偶数. 根据引理 9, 当 n 充分大后, $x_n = y_n = u_n$, 得到矛盾. 故只能 $x_n = u_n$ 对一切 n 成立,由此得到 $\mathfrak A$ 的解的唯一性.

因为 $F(\Delta_m, \delta_m, 0, m)$ 的任何一个极限点都给出 $\mathfrak A$ 的一组解,这个解又是唯一的,于是 $F(\Delta_m, \delta_m, 0, m)$ ($m=0,1,2,\cdots$) 只能有一个极限点。我们得到

命题 6. 设 Δ_m , δ_m 是满足

$$\Delta_m \geqslant \delta_m - \Delta_m > 0, \tag{6.8}$$

$$(1,0)F(\Delta_m, \delta_m, 0, m) = b - a \tag{6.9}$$

的一串数对. 则极限

$$W_n = \lim_{m \to \infty} F(\Delta_m, \, \delta_m, \, n, \, m) = \begin{pmatrix} x_n \\ y_n \end{pmatrix} \tag{6.10}$$

存在,它的值与 Δ_m 和 δ_m 的选择无关,而且是 \mathfrak{A} 的唯一解.

七、基 本 定 理

引理 20. 若K不正规,则不存在策略 \mathcal{P} ,使

$$\delta(\mathscr{D}, n) = y_n \quad (n = 1, 2, 3, \dots),$$
 (7.1)

其中 y_n 是 \mathfrak{A} 的解中的第二个分量.

证. 设 \mathscr{D} 是任一策略,满足 (7.1) 式,根据引理 7,存在单峰函数 h_n , $g_n \in \mathfrak{I}$, 使得

$$\binom{\Delta(\mathscr{D}, h_n, n)}{\delta(\mathscr{D}, g_n, n)} \leqslant C(k_{n+1}) \binom{\Delta(\mathscr{D}, h_{n+1}, n+1)}{\delta(\mathscr{D}, g_{n+1}, n+1)}.$$

令 $Z_n = \begin{pmatrix} \Delta(\mathcal{P}, h_n, n) \\ \delta(\mathcal{P}, g_n, n) \end{pmatrix} = \begin{pmatrix} u_n \\ v_n \end{pmatrix}$, Z_n 满足 \mathfrak{B} . 于是,根据引理 18, 有 i) $v_n > y_n$ 对充分 大的 n 成立,或 ii) $v_n = y_n (n \ge 1)$. 但因为 $v_n \le \delta(\mathcal{P}, n) = y_n$, i) 不成立,故只能 $v_n = y_n (n \ge 1)$.

设对充分大的 n 有 $u_n < x_n$,则从

$$\binom{u_0}{v_0} \leqslant C(k_1)C(k_2)\cdots C(k_n) \binom{u_n}{v_n}, \tag{7.3}$$

两式相减, 考虑到 $u_0 = b - a = x_0$, 得到 $0 \le (1, 0)C(k_1)C(k_2)\cdots C(k_n)\binom{u_n - x_n}{0}$, 故

$$(1, 0)C(k_1)C(k_2)\cdots C(k_n)\binom{1}{0} = 0. (7.4)$$

由引理 19,知 k_1 是奇数,其余全是偶数,于是 K 是正规的,和题设不合。故存在充分大的 m,使 $u_m \ge x_m$. 从引理 9 得到 $u_m \ge x_m = v_m \ge u_m$. 故 $u_m = x_m = y_m = v_m$.

$$\Delta(\mathcal{P}, h_m, m) = x_m = y_m = v_m. \tag{7.5}$$

设 [\mathscr{P} , h_m , m]'=[a_1 , b_1], 再设根据策略 \mathscr{P} ,作用在 h_m 上 m+1 步选取的不同试点为: $a_1 = a_0 < \alpha_1 < \alpha_2 < \cdots < \alpha_t < \alpha_{t+1} = b_1$, $t \leq 2i_{m+1} = k_{m+1}$.

故得

$$y_{m} = \alpha_{t+1} - \alpha_{0} = (\alpha_{t+1} - \alpha_{t-1}) + (\alpha_{t-1} - \alpha_{t-2}) + \dots + (\alpha_{3} - \alpha_{1})$$

$$+ (\alpha_{2} - \alpha_{0}) + (\alpha_{1} - \alpha_{2})$$

$$\leq (i_{m+1} + 1)\delta(\mathcal{P}, m + 1) + (\alpha_{1} - \alpha_{2})$$

$$= (i_{m+1} + 1)y_{m+1} + (\alpha_{1} - \alpha_{2}) = y_{m} + (\alpha_{1} - \alpha_{2}).$$

但 $\alpha_1 - \alpha_2 < 0$, 则矛盾,故这样的 \mathcal{P} 不存在。引理 20 证毕。

以下我们叙述和证明基本的定理。

定理 2. K正规是最优策略存在的充要条件.

(1) 如果K正规,则由规则 \mathfrak{R} 或 \mathfrak{R}' 定义的策略 \mathfrak{W}' 是最优策略。即对任一策略 \mathfrak{P} ,当 \mathfrak{n} 充分大后,就有

$$\delta(\mathcal{W}, n) \leq \delta(\mathcal{P}, n).$$

(2) 如果K不正规,则最优策略不存在。更进一步,对任一策略 \mathcal{D} ,都存在一个 $\theta < 1$ 和一个策略 \mathcal{D} ,使当n充分大后,就有

$$\theta\delta(\mathscr{P}, n) \geqslant \delta(\mathscr{Q}, n).$$

但是,对任何 $\theta < 1$,都存在一个策略 \mathcal{W}_{θ} ,使对任何策略 \mathcal{D} ,当 n 充分大后都有 $\theta \delta(\mathcal{W}_{\theta}, n) \leq \delta(\mathcal{D}, n)$.

证. 如果 K 正规,根据命题 1 及 2,可构造策略 \mathscr{W} ,满足 $\delta(\mathscr{W}, n) = y_n$. 对任一策略 \mathscr{P} , $Z_n = \begin{pmatrix} \Delta(\mathscr{P}, n) \\ \delta(\mathscr{P}, n) \end{pmatrix}$ 满足 \mathfrak{B} . 于是根据引理 18,对充分大的 n 有 $\delta(\mathscr{P}, n) \geqslant y_n = \delta(\mathscr{W}, n)$.

过就证明了定理2的(1)。

如果 K 不正规,根据命题 3,有 \mathcal{W}_{θ} ,使 $\theta\delta(\mathcal{W}_{\theta}, n) \leq y_n$ 。 同时对充分大的 n,又 有 $\delta(\mathcal{P}, n) \geq y_n$; 故对充分大的 n 有

$$\theta\delta(\mathcal{W}_{\theta}, n) \leq y_n \leq \delta(\mathcal{P}, n).$$

对于任一策略 \mathcal{P} , 由引理 20 知 $\delta(\mathcal{P}, n) = y_n(n \ge 1)$ 不可能成立, 故由引理 18 知存在 $\theta_1 < 1$, 当 n 充分大后, 有 $\theta_1 \delta(\mathcal{P}, n) \ge y_n$, 取 θ_2 , 使得 $\theta_1 < \theta_2 < 1$, 就有

$$\theta_1 \delta(\mathcal{P}, n) \geqslant y_n \geqslant \theta_2 \delta(\mathcal{H}_{\theta_1}, n),$$

 $\theta \delta(\mathcal{P}, n) \geqslant \delta(\mathcal{Q}, n)$

(这里 $\theta = \theta_1/\theta_2 < 1$, $Q = \mathcal{Y}_{\theta_2}$)。对充分大的 n 成立, 定理证毕。

在优选法的问题中,经常遇到这样的情形:需要在"充分近"的两点各作一次试验.为了讨论上的方便,我们可以把这充分近的两点就看做是在同一点上做了两次试验,而凡是做了两重试验的点,就算是知道了函数在这一点的增减性质.

不妨在这种意义下作一些非形式的讨论。这时,从定理的证明和结论中不难看出:我们不必把 K 分为正规的和非正规的,对任意的 K,限定做 m 批试验时的最优策略 \mathscr{F}_m 当 $m \to \infty$ 时,趋向于一个极限策略 \mathscr{W} ,这个极限策略 \mathscr{W} 就是在极限情形下(即在定义 4 的意义下)的最优策略。也就是说"最优"和"极限"两个词在这里具有某种可交换性。

本文以 $\delta(\mathcal{P}, n) = \sup_{f} \delta(\mathcal{P}, f, n)$ 作为精度的定义(不妨称为 δ -精度)开展了讨论,同样能以 $\Delta(\mathcal{P}, n) = \sup_{f} \Delta(\mathcal{P}, f, n)$ 作为精度的定义(不妨称为 Δ -精度)开展平行的讨论. 这时,对某些序列 K 来说,"最优"和"极限"的交换性质仍然成立. 特别,当 $k_i \equiv 1$ 时,可以先证明不等式

$$\Delta(\mathcal{P}, n) \leq \Delta(\mathcal{P}, n+1) + \Delta(\mathcal{P}, n+2).$$

然后逐字逐句搬用文献 [5] 中 \S 5 的论证,就得到黄金分割法在 Δ -精度意义下于无穷远处的最优性。但是应该指出,在 Δ -精度意义下,"最优"和"极限"一般来说不一定可交换, κ 非正规的情况就是不可交换的例子。

致谢:本文承北京师范大学王世强同志和数学研究所吴方同志仔细看过,提出了不少宝贵意见,作者在此表示衷心的感谢。

参 考 文 献

- [1] Kiefer, J., Proc. Amer. Math. Soc., 4 (1953), 502-506.
- [2] Avriel, M. & Wilde, D. J., Management Sci., 12 (1966), 722-731.
- [3] Karp, R. M. & Miranker, W. L., J. of Comb. Theory, 4 (1968), 19-35.
- [4] Beamer, J. H. & Wilde, D. J., Management Sci., 16 (1970), 529-541.
- [5] 洪加威,数学的实践与认识,1973,2,34-41。
- [6] 洪加威,科学通报,18(1973),2,70-71.