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OPTIMAL FRICTION MATRIX FOR UNDERDAMPED LANGEVIN SAMPLING

Martin Chak1,* , Nikolas Kantas1, Tony Lelièvre2,3 and Grigorios
A. Pavliotis1

Abstract. We propose a procedure for optimising the friction matrix of underdamped Langevin dy-
namics when used for continuous time Markov Chain Monte Carlo. Starting from a central limit theorem
for the ergodic average, we present a new expression of the gradient of the asymptotic variance with
respect to friction matrix. In addition, we present an approximation method that uses simulations of
the associated first variation/tangent process. Our algorithm is applied to a variety of numerical exam-
ples such as toy problems with tractable asymptotic variance, diffusion bridge sampling and Bayesian
inference problems for high dimensional logistic regression.
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1. Introduction

Let 𝜋 be a probability measure on R𝑛 with smooth positive bounded density with respect to the Lebesgue
measure, also denoted 𝜋 and such that 𝜋 ∝ 𝑒−𝑈 , where 𝑈 : R𝑛 → R is the associated smooth potential or
negative log density. In a range of applications including statistics, molecular dynamics, engineering, finance,
machine learning to name a few, an important quantity of interest is the expectation of 𝑓 ∈ 𝐿2(𝜋) with respect
to 𝜋,

𝜋(𝑓) :=
∫︁

𝑓 d𝜋,

which is in most cases intractable and numerically approximated most commonly by Markov Chain Monte Carlo
(MCMC) methods. Here, 𝑓 ∈ 𝐿2(𝜋) is referred to as an observable or a test function. In this paper, we consider
the setting where the Markov process used in MCMC is an approximation of underdamped Langevin dynamics
and we focus our analysis in the continuous time setting. Denoting S𝑛

++ as the set of real symmetric 𝑛×𝑛 positive
definite matrices, the underdamped Langevin dynamics with mass 𝑀 ∈ S𝑛

++ and friction matrix Γ ∈ S𝑛
++ is

given by the R2𝑛-valued solution (𝑞𝑡, 𝑝𝑡) to

d𝑞𝑡 = 𝑀−1𝑝𝑡 d𝑡 (1.1a)

d𝑝𝑡 = −∇𝑈(𝑞𝑡)− Γ𝑀−1𝑝𝑡 d𝑡 +
√

2Γd𝑊𝑡, (1.1b)
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where 𝑊𝑡 denotes a standard Wiener process on R𝑛 and
√

Γ ∈ R𝑛×𝑛 is any matrix satisfying
√

Γ
√

Γ
⊤

= Γ.
Under general conditions, the probability distribution of the solution to underdamped Langevin dynamics (1.1)
converges to a unique invariant probability measure given by

𝜋̃(d𝑞, d𝑝) = 𝑍−1𝑒−𝑈(𝑞)− 𝑝⊤𝑀−1𝑝
2 d𝑞 d𝑝, (1.2)

where 𝑍 =
∫︀

R𝑛

∫︀
R𝑛 𝑒−𝑈(𝑞)− 𝑝⊤𝑀−1𝑝

2 d𝑞 d𝑝 is the normalising constant. Since the marginal distribution of 𝜋̃ in
the 𝑞 variable is 𝜋, the expression

𝜋𝑇 (𝑓) :=
1
𝑇

∫︁ 𝑇

0

𝑓(𝑞𝑡) d𝑡 (1.3)

is used to approximate 𝜋(𝑓).
In this paper, we will focus mainly on the effect of the choice of friction matrix Γ on the efficiency of the

estimator 𝜋𝑇 (𝑓). In the literature, authors have used crude methods to tune Γ. For example, multiple chains
with different values of scalar Γ > 0 have been numerically simulated and subsequently compared in terms of
the empirical correlations or other observation criteria, see e.g. [2,11,44]. This is an expensive and cumbersome
process, which calls for systematic approaches to design Γ. However, in order to design Γ, it is important to
fix a criterion to optimise. Possible choices of criterion include the spectral gap [53], rate of convergence in
Wasserstein distance [19], autocorrelation or integrated autocorrelation time (IACT) [41,67], or the asymptotic
variance [23,24]. Different criteria may lead to different optimal friction matrices Γ; we show this in Section 1.2
below by looking at cases where 𝜋 is Gaussian. First, we present our approach in the following.

Out of the possible criteria, we aim to optimise Γ with respect to the asymptotic variance in the convergence
of 𝜋𝑇 (𝑓) to 𝜋(𝑓) as 𝑇 → ∞ for any particular observable(s) 𝑓 in a wide class of observables that depend only
on 𝑞. In what follows, we will concentrate on the asymptotic variance for any given observable, but this can be
extended trivially to multiple observables using for example the sum of asymptotic variances for the different
observables. The main ideas for the procedure to optimise Γ are given in Section 1.1. To the best of our knowledge,
the present work constitutes the first systematic procedure for choosing the friction in an optimal manner and
the first result on optimal Γ in the space of matrices. Finally, we note that for practical implementation, one
needs to discretise the dynamics in time. There are different discretisation methods, the convergence properties
of which have been studied actively in numerous recent works, see e.g. [16, 19, 26, 29, 38, 48, 54, 64]. Since the
main question in the present work is on the choice of Γ, we will focus solely on the continuous time dynamics
and leave development and investigations to discretisations as future work.

1.1. Outline of approach

We proceed with a informal description of our approach, precise statements can be found in Theo-
rems 3.2 and 3.3. It is known that under suitable assumptions on 𝑈 and 𝑓 , a central limit theorem

1√
𝑇

∫︁ 𝑇

0

(𝑓(𝑞𝑡)− 𝜋(𝑓)) d𝑡
𝒟→ 𝒩 (0, 𝜎2) as 𝑇 →∞ (1.4)

holds (see for example [12]) and that 𝜎2, the asymptotic variance [23], has the form

𝜎2 = 2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃, (1.5)

where 𝜑 is a solution to the Poisson equation

−𝐿𝜑 = 𝑓 − 𝜋(𝑓) (1.6)

and 𝐿 denotes the infinitesimal generator associated to (1.1) (precise statements based on [9, 63] will follow
below). Two key observations are then made. The first and main observation is an explicit formula for the
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direction derivative (a definition will be presented in Sect. 3.1) of 𝜎2 with respect to any direction in Γ. For any
Γ ∈ S𝑛

++ and direction 𝛿Γ ∈ R𝑛×𝑛, the derivative of 𝜎2 at Γ in the direction 𝛿Γ, denoted d𝜎2.𝛿Γ, is shown to
be given as follows

d𝜎2.𝛿Γ = −2
∫︁

(∇𝑝𝜑)⊤𝛿Γ∇𝑝𝜑 d𝜋̃, (1.7)

where 𝜑 is the solution to (1.6) at Γ and 𝜑 is given by

𝜑(𝑞, 𝑝) = 𝜑(𝑞,−𝑝). (1.8)

A direction that guarantees a decrease in 𝜎2 is then 𝛿Γ = ∆Γ defined by

∆Γ :=
∫︁
∇𝑝𝜑⊗∇𝑝𝜑 d𝜋̃, (1.9)

where ⊗ denotes the outer product. Note in addition, one could also take either 𝛿Γ to be the diagonal elements
of (1.9) or 𝛿Γ = 𝐼𝑛

∫︀
∇𝑝𝜑 · ∇𝑝𝜑 d𝜋̃, since both cases give a negative variation in asymptotic variance.

The second observation is on the form of ∇𝑝𝜑. The solution of the Poisson equation in (1.6) admits the
representation (see for example [51], Cor. 2.21)

𝜑(𝑞, 𝑝) =
∫︁ ∞

0

E[𝑓(𝑞𝑡)− 𝜋(𝑓)] d𝑡, (1.10)

where (𝑞𝑡, 𝑝𝑡) solves (1.1) with initial condition (𝑞0, 𝑝0) = (𝑞, 𝑝). Under convexity of the potential 𝑈 and other
suitable assumptions, we have

∇𝑝𝜑(𝑞, 𝑝) =
∫︁ ∞

0

E
[︀
∇𝑓(𝑞𝑡)⊤𝐷𝑝𝑞𝑡

]︀
d𝑡, (1.11)

where 𝐷𝑝𝑞𝑡 denotes the R𝑛×𝑛-matrix made of partial derivatives of 𝑞𝑡 with respect to the initial velocity 𝑝0. The
process 𝐷𝑝𝑞𝑡 is in fact known to satisfy a stochastic differential equation (SDE). The SDE satisfied by 𝐷𝑝𝑞𝑡 is
obtained by simultaneously taking partial derivatives in all of the terms of (1.1); the form of the SDE is given
below in (3.3). Moreover, this SDE may be simulated numerically, which allows us to approximate (1.11) and
subsequently (1.9) by using any suitable discretisation of the SDE. From a numerical viewpoint, the advantage
of considering (1.11) rather than a finite difference derivative of the right-hand side of (1.10) is that we may use
theoretical properties of 𝐷𝑝𝑞𝑡 to inform us of the behaviour of numerical approximations to (1.11). In particular,
we will show that 𝐷𝑝𝑞𝑡 decays to zero exponentially quickly in time given convexity assumptions on 𝑈 , so that
the infinite time integral (1.11) can be accurately approximated with a finite time integral using only short
simulations of 𝐷𝑝𝑞𝑡. More details are given in Section 3.2.

Since the SDE satisfied by 𝐷𝑝𝑞𝑡 may be simulated alongside (1.1), the expressions (1.10) and (1.11) enable
the direction ∆Γ in (1.9) to be estimated “on the fly” in parallel to (1.1) and leads to an adaptive MCMC
algorithm (see [3] for a review) where Γ is adaptively updated over time in (1.1). Note that in order to save on
computational cost, it is also possible to approximate (1.11) and (1.9) for only an initial period, then to use
the resulting Γ to simulate just (1.1) in the remaining computational effort. We will apply this algorithm to
different simulation problems and show that in some cases this leads to a significant performance improvement.
In particular, for posterior mean estimation in logistic regression for two datasets of hundreds of dimensions,
improved friction matrices were found to reduce the Monte Carlo variance by almost an order of magnitude
compared to the default choice of Γ = 𝐼𝑛; details will be presented in Section 5, see in particular Tables 2 and 3.

1.2. On the choice of criterion

We illustrate here on a simple example the difference of choosing 𝜎2 compared to autocorrelation time or
other equivalent performance measures considered in [2, 11, 19, 41, 44, 67] and note that they can be conflicting
goals. Following the early work [41], consider the problem of optimal friction for scalar Gaussian distribution 𝜋
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Figure 1. min𝑖(|Re(𝜆𝑖)|) for different values of 𝛾, where 𝜆𝑖 are the eigenvalues of the matrix
appearing in (1.12), also the spectral gap for the generator of (1.1) with 𝑛 = 1, 𝜔 > 0,
𝑈(𝑞) = 1

2𝜔2𝑞2, 𝑀 = 1 and Γ = 𝛾. Critical values of 𝛾 are given by 2𝜔.

in case that the autocorrelation time is used as criterion. Let 𝑛 = 1, 𝜔, 𝛾 > 0, 𝑈(𝑞) = 1
2𝜔2𝑞2, 𝑀 = 1, Γ = 𝛾,

then the autocorrelation functions for (1.1) satisfy

d
d𝑡

(︂
E(𝑞𝑡𝑞0)
E(𝑝𝑡𝑞0)

)︂
=
(︂

0 1
−𝜔2 −𝛾

)︂(︂
E(𝑞𝑡𝑞0)
E(𝑝𝑡𝑞0)

)︂
. (1.12)

By considering the eigenvalues of the 2-by-2 matrix appearing on the right-hand side of (1.12), the conclusion
in [42] is that the optimal 𝛾 for minimising the magnitude of E(𝑞𝑡𝑞0) is given by the critical damping 𝛾 = 2𝜔,
see Figure 1. A similar conclusion can be made when considering the spectral gap [60]. On the other hand,
for the observable 𝑓 given by 𝑓(𝑞) = 𝑞, a formal calculation gives 𝜎2 = 2

∫︀∫︀∞
0

E(𝑞𝑡𝑞0) d𝑡 d𝜋̃(𝑞0, 𝑝0) due to (1.5)
and (1.10). Despite the appearance of E(𝑞𝑡𝑞0) as before, our results assert that 𝛾 = 0 is optimal for the asymptotic
variance (see Cor. 4.9 and discussion below for more precise statements). This highlights the discrepancy between
prioritising the asymptotic variance for observables and prioritising the autocorrelation time (similarly, the
spectral gap). Of course, the central limit theorem criterion is dependent on the test function 𝑓 , but we emphasise
that multiple asymptotic variances can be used to construct a composite objective function to minimise, so that Γ
can be optimised with respect to several observables of interest simultaneously. In particular, Remark B.1
describes the implementation for a linear combination of asymptotic variances at no extra cost in terms of
evaluations of 𝜋 or its gradients.

1.3. Outline of the paper

The rest of the paper is organised as follows. In Section 2, we provide a mathematical setting in which the
underdamped Langevin dynamics with a friction matrix and in particular (1.1) has a well-defined solution and
satisfies the central limit theorem for suitable observables, together with notations used throughout the paper.
In Section 3, prerequisite results and the main formulae (1.7) and (1.11) are precisely stated. The main results
of this section and of this paper are Theorems 3.2 and 3.3. In Section 4, we study mainly the case where 𝑈
is quadratic and 𝑓 is polynomial up to fourth order. In Section 5, numerical methods in approximating (1.9)
together with an adaptive algorithm in Algorithm 1 resulting from (1.7) and (1.11) is outlined, alongside
examples of 𝑈 and 𝑓 where improvements in variance are observed. In Section 6, deferred proofs are given. In
Section 7, we conclude and discuss future work.
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2. Setting

Let (Ω,ℱ , P) be a complete probability space, (ℱ𝑡)𝑡≥0 be a normal (satisfying the usual conditions) filtration
with (𝑊𝑡)𝑡≥0 a standard Wiener process on R𝑛 with respect to (ℱ𝑡)𝑡≥0, 𝜋̃ be a probability measure given by (1.2)
for some potential function 𝑈 : R𝑛 → R and mass matrix 𝑀 ∈ S𝑛

++.
The set of smooth compactly supported functions is denoted 𝐶∞𝑐 . Following the notation of [27], we denote

the infinitesimal generator (see (A.5) for a definition) associated to (1.1) as 𝐿, which is given formally by its
differential operator form, denoted ℒ, when acting on the subset 𝐶∞𝑐 (R2𝑛),

ℒ = 𝑝⊤𝑀−1∇𝑞 −∇𝑈(𝑞)⊤∇𝑝 − 𝑝⊤𝑀−1Γ∇𝑝 +∇⊤𝑝 Γ∇𝑝. (2.1)

Its formal 𝐿2(R𝑛)-adjoint ℒ⊤ satisfies
ℒ⊤𝜋̃ = 0, (2.2)

so that 𝜋̃ (see (1.2)) is an invariant probability measure for (1.1) for a normalisation constant 𝑍. Let

𝐿2
0(𝜋) :=

{︂
𝑔 ∈ 𝐿2(𝜋) :

∫︁
𝑔 d𝜋 = 0

}︂
and similar for 𝐿2

0(𝜋̃). The notation 𝐷2𝑈 will be used for the Hessian matrix of 𝑈 . As in the introduction, 𝐼𝑛 ∈
R𝑛×𝑛 denotes the identity matrix. For a matrix 𝐴, |𝐴| denotes the operator norm associated with the Euclidean
norm. The notation 𝑒𝑖 is used to denote the 𝑖th Euclidean basis vector. For 𝐴, 𝐵 ∈ R𝑛×𝑛, 𝐴 : 𝐵 :=

∑︀
𝑖,𝑗 𝐴𝑖𝑗𝐵𝑖𝑗

and 𝐴𝑆 = 1
2 (𝐴 + 𝐴⊤). Finally, ⟨·, ·⟩𝜋̃ denotes the inner product in 𝐿2(𝜋̃) and similar for 𝜋.

2.1. Semigroup bound, Poisson equation and central limit theorem

In this section, a central limit theorem for the solution to (1.1) is established, where the resulting asymptotic
variance will be used as a cost function for the optimisation of Γ. Specifically, it will be shown that under some
weighted 𝐿∞ bound on the observable 𝑓 ∈ 𝐿2(𝜋), the estimator 𝜋𝑇 (𝑓) (defined in (1.3)) converges to 𝜋(𝑓)
as 𝑇 →∞ such that (1.4) holds with (1.5).

It is well known that the asymptotic variance can be expressed in terms of the solution to the Poisson
equation (1.6) using for example the Kipnis–Varadhan framework, see Chapter 2 in [46], Section 3.1.3 in [51],
[12] and references therein. We will first present the exponential decay of the semigroup (see (A.4)). This will
allow us to show that the expression (1.10) makes sense as an element in 𝐿2(𝜋̃) with zero mean and also that
it solves the Poisson equation (1.6). Furthermore, in Theorem 2.2 below, we establish convergence in law to the
invariant measure for the Langevin dynamics (1.1).

We will pose the following assumptions on 𝑈 :

Assumption 2.1. The function 𝑈 ∈ 𝐶∞(R𝑛) satisfies 𝑈 ≥ 0. Moreover, there exist constants 𝛽1, 𝛽2 > 0
and 𝛼 ∈ R such that

∀𝑞 ∈ R𝑛, ⟨𝑞,∇𝑞𝑈(𝑞)⟩ ≥ 𝛽1𝑈(𝑞) + 𝛽2|𝑞|2 + 𝛼. (2.3)

The following Lyapunov function 𝒦𝑙 : R2𝑛 → R for all 𝑙 ∈ N will be used:

𝒦𝑙(𝑧) = 𝒦𝑙(𝑞, 𝑝) =
(︁
𝑐𝑈(𝑞) + 𝑎|𝑞|2 + 𝑏⟨𝑞, 𝑝⟩+

𝑐

2
|𝑝|2 + 1

)︁𝑙

(2.4)

for constants 𝑎, 𝑏, 𝑐 > 0. The well-posedness of equation (1.1) is stated in the appendix in Theorem A.1.

Theorem 2.2. Under Assumption 2.1, 𝜋̃ is the unique invariant probability measure for the SDE (1.1) and for
all 𝑙 ∈ N, there exist constants 𝜅𝑙, 𝐶𝑙 > 0 depending on 𝑙 and constants 𝑎, 𝑏, 𝑐 > 0 independent of 𝑙 such that the
solution 𝑧𝑧

𝑡 = (𝑞𝑡, 𝑝𝑡) to (1.1) with initial condition 𝑧 satisfies

|E[𝜙(𝑧𝑧
𝑡 )]− 𝜋̃(𝜙)| ≤ 𝐶𝑙𝑒

−𝑡𝜅𝑙𝒦𝑙(𝑧)
⃦⃦⃦⃦

𝜙− 𝜋̃(𝜙)
𝒦𝑙

⃦⃦⃦⃦
𝐿∞

(2.5)
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for Lebesgue almost all initial 𝑧 ∈ R2𝑛, 𝒦𝑙 ≥ 1 given by (2.4) and all Lebesgue measurable 𝜙 satisfying

𝜙

𝒦𝑙
∈ 𝐿∞ (2.6)

Moreover for any 𝑙 ∈ N, 𝒦𝑙 satisfies ∫︁
𝒦𝑙 d𝜋̃ < ∞ (2.7)

and
ℒ𝒦𝑙 ≤ −𝑎𝑙𝒦𝑙 + 𝑏𝑙 (2.8)

for some constants 𝑎𝑙, 𝑏𝑙 > 0.

For the sake of brevity we omit the proof. The fact that 𝜋̃ is invariant is thanks to (2.2). For the rest of the
statements, the proof is contained in Theorem 3 from [63]. In the latter the setting is more general than (1.1)
in that the friction matrix is dependent on 𝑞 and the drift is not necessarily conservative, i.e. the forcing term
is not the gradient of a scalar function and the fluctuation-dissipation theorem (see Eq. (6.2) in [60]) does not
hold, but of course, Theorem 3 of [63] applies in particular to our setting.

Remark 2.3. Inequality (2.5) holds for all initial 𝑧 ∈ R2𝑛, as opposed to almost all 𝑧, given any bounded
measurable 𝜙. This is a consequence of combining (2.5) together with the strong Feller property given by
Theorem 4.2 in [22].

The following corollary holds by taking 𝜙 as indicator functions and Remark 2.3.

Corollary 2.4. Under Assumption 2.1, for all initial 𝑧 ∈ R2𝑛, the transition probability 𝜌𝑧
𝑡 of (1.1), given

by 𝜌𝑧
𝑡 (𝐴) = P(𝑧𝑧

𝑡 ∈ 𝐴), satisfies
‖𝜌𝑧

𝑡 − 𝜋̃‖TV → 0 as 𝑡 →∞

where ‖ · ‖TV denotes the total variation norm.

The solution to the Poisson equation is given next following [12].

Theorem 2.5. Under Assumption 2.1, if 𝑓 ∈ 𝐿2
0(𝜋̃) satisfies 𝑓

𝒦𝑙
∈ 𝐿∞ for some 𝑙 ∈ N, then there exists a

unique solution 𝜑 ∈ 𝐿2
0(𝜋̃) to the Poisson equation (1.6). Moreover, the solution is given for almost all 𝑧 ∈ R2𝑛

by

𝜑(𝑧) =
∫︁ ∞

0

(𝑃𝑡(𝑓))(𝑧) d𝑡. (2.9)

Theorem 2.5 can be proved using the strategy of Corollary 3.2 from [12]. For the reader’s convenience, a
complete proof of Theorem 2.5 is given in Appendix A.

We proceed to state the central limit theorem for the solution to (1.1).

Theorem 2.6. Under Assumption 2.1, if 𝑓 ∈ 𝐿2(𝜋̃) satisfies 𝑓
𝒦𝑙

∈ 𝐿∞ for some 𝑙 ∈ N, then the random

variable 1√
𝑡

∫︀ 𝑡

0
(𝑓(𝑧𝑠)−𝜋(𝑓)) d𝑠 converges in distribution to 𝒩 (0, 𝜎2

𝑓 ) as 𝑡 →∞ for any initial distribution of 𝑧𝑡,
where

𝜎2
𝑓 = 2

∫︁
𝜑(𝑧)(𝑓(𝑧)− 𝜋(𝑓))𝜋̃(d𝑧) (2.10)

and 𝜑 ∈ 𝐿2
0(𝜋̃) is the solution to (1.6).

Proof. By Corollary 2.4 and Theorem 2.5, the result follows by Theorem 2.6 in [9]. Note that the joint mea-
surability assumption in [9] of the transition probability is verified in Theorem A.1. See also Theorem 3.1
in [12]. �
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3. Directional derivative of 𝜎2

In this section, we give a number of natural preliminary results that pave the path for the main result in
Theorem 3.2, in which a formula for the derivative (1.7) of 𝜎2 with respect to Γ is provided.

3.1. Main derivative formula

In order for the integral in a formula like (1.7) to be finite, control on the derivatives in 𝑝 is required. This
will also be used in the proof of Theorem 3.2 and it is given by the following lemma.

Lemma 3.1. Under Assumption 2.1, if 𝑓 ∈ 𝐿2
0(𝜋̃) satisfies 𝑓

𝒦𝑙
∈ 𝐿∞ for some 𝑙 ∈ N, then the weak derivative

in 𝑝 of the solution 𝜑 to −𝐿𝜑 = 𝑓 satisfies
∫︀
|∇𝑝𝜑|2 d𝜋̃ < ∞.

The proof of Lemma 3.1 is stated in Appendix A for completeness.
The main result of this section is the expression for the directional derivative of the asymptotic variance

and is given next. Since Lemma 3.1 is available only for observable functions of position 𝑞, the formula for the
derivative is given for such observables. The directional derivative of 𝐸 : S𝑛

++ → R at Γ ∈ S𝑛
++ in a symmetric

matrix direction 𝛿Γ ∈ R𝑛×𝑛 is denoted by 𝑑𝐸(Γ).𝛿Γ = lim𝜖→0
1
𝜖 (𝐸(Γ + 𝜖𝛿Γ)−𝐸(Γ)) whenever the limit exists.

The dependence on Γ is omitted in the notation when no confusion is possible. The proof of Theorem 3.2 is
deferred to Section 6.

Theorem 3.2. Under Assumption 2.1, if 𝑓 = 𝑓(𝑞) ∈ 𝐿2
0(𝜋) is continuous, satisfies 𝑓

𝒦𝑙
∈ 𝐿∞ for some 𝑙 ∈ N

and there exists 𝜖′ > 0 such that Γ, Γ + 𝜖𝛿Γ ∈ S𝑛
++ for |𝜖| ≤ 𝜖′, then the directional derivative of the asymptotic

variance 𝜎2 at Γ in the direction 𝛿Γ has the form

d𝜎2(Γ).𝛿Γ = −2
∫︁

(∇𝑝𝜑)⊤𝛿Γ∇𝑝𝜑 d𝜋̃, (3.1)

where 𝜑 is the solution (2.9) to the Poisson equation (1.6) with 𝐿 associated with Γ and 𝜑 is given by (1.8).

As mentioned in the introduction, from (3.1), the direction (1.9) guarantees a decrease in asymptotic variance
at the infinitesimal level; similarly the scalar change in Γ given by (1.9) where the outer product is replaced by a
dot product guarantees a decrease in 𝜎2. This is easily verified by substituting such an expression for 𝛿Γ = ∆Γ
into the right-hand side of (3.1).

3.2. A formula using a tangent process

The directional derivative d𝜎2.𝛿Γ of the asymptotic variance can be written in a more useful form than in (3.1)
for analysis and for simulation based approximation. In this section, the derivatives (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) with respect
to the initial conditions, also known as the first variation process of (1.1), will be shown to approximate ∇𝑝𝜑
according to (1.11), which is in turn used to approximate d𝜎2.𝛿Γ. The main methodology in the numerical
sections will then be to approximate (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) by simulating the SDE it satisfies.

This alternative formula given in Theorem 3.3 provides a way to avoid using a direct finite difference Monte
Carlo estimate of the derivative of an expectation. It also allows us to give assumptions on 𝑈 such that the
approximated quantities have desirable properties. We elaborate on the advantage over the finite difference
approach for a moment. The expression ∇𝑝𝜑 may be written, from the expression (1.10), as

∇𝑝𝜑 = ∇𝑝

∫︁ ∞

0

E[𝑓(𝑞𝑡)− 𝜋(𝑓)] d𝑡, (3.2)

where the derivative is with respect to the initial velocity 𝑝0 of the trajectory (𝑞𝑡, 𝑝𝑡). The right-hand side
of (3.2) can be approximated by simulating realisations of the Langevin process at any given initial value,
then perturbing the initial velocities and repeating each simulation. In this approach, one can choose how
the Brownian realisations in the trajectories with perturbed initial velocities are correlated to those without.
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However, if for example the realisations are made independent, then the Monte Carlo variance is magnified for
small perturbations in initial velocity, unless increased computational cost is spent corresponding to the smallness
of the perturbation in initial velocity. The other natural choice is to synchronise the Brownian realisations (that
is, to use a common random number approach for variance reduction). In numerical experiments, this approach
seems to work well and is similar compared to our approach using (1.11). However, a simple calculation using the
fundamental theorem of calculus shows that, for small perturbations in initial velocity, the resulting procedure is
closely related to an approximation of (1.11) by simulating the SDE satisfied by (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡), because 𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡

are partial derivatives with respect to fixed 𝜔 ∈ Ω.
In both of the described approaches that respectively use (3.2) and (1.11), we would like to know if a finite

time integral approximation of either expression is a good approximation. The results in this section provides
justification in this direction by proving (1.10) and providing exponential decay estimates on (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡)
under suitable conditions on 𝑈 . In the numerical experiments of Section 5, we choose then to also approxi-
mate (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) by simulating directly the SDE it satisfies, rather than use the finite difference procedure
based on (3.2), since that aligns more directly with the analysis in this section. An alternative approach to the
analysis here is to work with bounds on the derivatives of the associated semigroups, see e.g. [4, 18]. In partic-
ular, such bounds would also justify a finite time integral approximation of ∇𝑝𝜑, but they provide less direct
information on trajectories of the numerical approximations. Finally, note that the approach of passing the
derivative under the expectation to analyse derivatives of semigroups is far from new, see for example [17,47].

We proceed with the main result of this section. For simplicity, we set 𝑀 = 𝐼𝑛 here. The first variation
process with respect to the initial momenta 𝑝 associated to (1.1), denoted by (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) ∈ R𝑛×2𝑛 for 𝑡 ≥ 0,
is defined as the matrix-valued solution to

𝜕𝑡

(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂
=
(︂

0 𝐼𝑛

−𝐷2𝑈(𝑞𝑡) −Γ

)︂(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂
(3.3)

with the initial condition 𝐷𝑝𝑞0 = 0, 𝐷𝑝𝑝0 = 𝐼𝑛. By Theorem V.39 in [62], the partial derivatives of (𝑞𝑡, 𝑝𝑡) with
respect to the initial values in 𝑝 is the unique solution to (3.3) and (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) is continuous with respect to
those initial values. We omit the notational dependence of (𝑞𝑡, 𝑝𝑡) on its initial condition (𝑞0, 𝑝0) = (𝑞, 𝑝) = 𝑧
whenever convenient in the following.

Theorem 3.3. Let Assumption 2.1 and 𝑀 = 𝐼𝑛 hold. If in addition,

– there exist 𝑈0 > 0 and 𝑄 ∈ S𝑛
++ such that for all 𝑞 ∈ R𝑛, 𝑣 ∈ R𝑛,

𝑣⊤𝐷2𝑈(𝑞)𝑣 ≥ 𝑈0|𝑣|2, 𝐷2𝑈(𝑞) = 𝑄 + 𝐹 (𝑞),

where 𝐹 : R𝑛 → R𝑛×𝑛 is small enough everywhere in the following sense:

|𝐹 (𝑞)| ≤ 𝜆̂ := min
(︂

𝜆𝑚

2
,
𝜆𝑚𝑈2

0

8𝜆2
𝑀

,
𝜆𝑚𝑈0

16
,
𝑈0

8

√︀
𝜎min(𝑄)

)︂
, (3.4)

where 𝜆𝑚, 𝜆𝑀 > 0 are respectively the smallest and largest eigenvalue of Γ and 𝜎min(𝑄) denotes the smallest
eigenvalue of 𝑄;

– 𝑓 = 𝑓(𝑞) ∈ 𝐿2
0(𝜋) ∩ 𝐶1(R𝑛) and satisfies |𝑓 |+|∇𝑓 |

𝒦𝑙
∈ 𝐿∞ for some 𝑙 ∈ N,

then the weak derivative ∇𝑝𝜑 has the form (1.11), where 𝑞𝑡 solves (1.1) with initial condition (𝑞0, 𝑝0) = (𝑞, 𝑝)
and (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) solves (3.3), the latter satisfying

|𝐷𝑝𝑞𝑡|2 + |𝐷𝑝𝑝𝑡|2 ≤ 𝐶 ′𝑒−𝐶𝑡 (3.5)

almost surely for some constants 𝐶, 𝐶 ′ > 0 independent of (𝑞0, 𝑝0) and 𝜔 ∈ Ω.
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The additional assumptions on 𝑈 are made in order to ensure that the process (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) converges to
zero exponentially quickly so that the integral in (1.11) is finite. In particular, (3.4) requires 𝑈 to be close to
a quadratic function 𝑞⊤𝑄𝑞; see also [10] for a situation where a similar assumption is made for the long time
behaviour for the Vlasov–Fokker–Planck equation.

Remark 3.4. It will become evident in the proof that exponential decay of the first variation process is not
necessary for the derivation of equation (1.11). On the other hand, Proposition 1 in [19] and Proposition 4
in [55] explores more detailed conditions under which exponential contractivity holds and does not hold for
scalar friction Γ = 𝛾 > 0; our result places the focus on conditions on 𝑈 such that contractivity holds for
all Γ ∈ 𝑆𝑛

++. The exponential decay (3.5) may also be viewed within the context of Lyapunov exponents for
random dynamical systems.

Proof. Let 𝑏 > 0 be the constant

𝑏 = min
(︂

𝜆𝑚𝑈0

2𝜆2
𝑀

,
𝜆𝑚

4
,

1
2

√︀
𝜎min(𝑄)

)︂
(3.6)

so that 𝜆̂ reduces to 𝜆̂ = min
(︂

𝜆𝑚

2 , 𝑏𝑈0
4

)︂
and, since 𝑏 ≤ 1

2

√︀
𝜎min(𝑄), the matrix

(︂
𝑄 𝑏𝐼𝑛

𝑏𝐼𝑛 𝐼𝑛

)︂
is positive definite.

We have the following bound.

1
2
𝜕𝑡

[︃
𝑒⊤𝑖

(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂⊤(︂
𝑄 𝑏𝐼𝑛

𝑏𝐼𝑛 𝐼𝑛

)︂(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂
𝑒𝑖

]︃
= 𝑒⊤𝑖 𝐷𝑝𝑞

⊤
𝑡 𝑄𝐷𝑝𝑝𝑡𝑒𝑖 + 𝑏|𝐷𝑝𝑝𝑡𝑒𝑖|2

− 𝑒⊤𝑖 (𝑏𝐷𝑝𝑞𝑡 + 𝐷𝑝𝑝𝑡)⊤(𝐷2𝑈(𝑞)𝐷𝑝𝑞𝑡 + Γ𝐷𝑝𝑝𝑡)𝑒𝑖

= −𝑏𝑒⊤𝑖 𝐷𝑝𝑞
⊤
𝑡 𝐷2𝑈(𝑞𝑡)𝐷𝑝𝑞𝑡𝑒𝑖 + 𝑒⊤𝑖 𝐷𝑝𝑞

⊤
𝑡 (−𝑏Γ− 𝐹 (𝑞𝑡))𝐷𝑝𝑝𝑡𝑒𝑖

− 𝑒⊤𝑖 𝐷𝑝𝑝
⊤
𝑡 (Γ− 𝑏𝐼𝑛)𝐷𝑝𝑝𝑡𝑒𝑖

≤
(︂
− 𝑏𝑈0 +

𝑏𝑈0

2
+

𝜆̂

2

)︂
|𝐷𝑝𝑞𝑡𝑒𝑖|2 +

(︂
− 𝜆𝑚 + 𝑏 +

𝑏𝜆2
𝑀

2𝑈0
+

𝜆̂

2

)︂
|𝐷𝑝𝑝𝑡𝑒𝑖|2

≤ −𝑏𝑈0

4
|𝐷𝑝𝑞𝑡𝑒𝑖|2 −

𝜆𝑚

4
|𝐷𝑝𝑝𝑡𝑒𝑖|2

≤ −𝐶𝑒⊤𝑖

(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂⊤(︂
𝑄 𝑏𝐼𝑛

𝑏𝐼𝑛 𝐼𝑛

)︂(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂
𝑒𝑖 (3.7)

for some generic constant 𝐶 > 0 independent of the initial values (𝑞0, 𝑝0) and 𝜔 ∈ Ω. Consequently, it holds for
any 1 ≤ 𝑖 ≤ 𝑛 that [︂

𝑒⊤𝑖

(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂⊤(︂
𝑄 𝑏𝐼𝑛

𝑏𝐼𝑛 𝐼𝑛

)︂(︂
𝐷𝑝𝑞𝑡

𝐷𝑝𝑝𝑡

)︂
𝑒𝑖

]︂
≤ 𝑒−2𝐶𝑡,

which implies (3.5) and, using the (weighted) boundedness assumption on |∇𝑓 |,⃒⃒
(∇𝑓(𝑞𝑡)⊤𝐷𝑝𝑞𝑡)𝑖

⃒⃒
≤ 𝐶 ′𝑒−𝐶𝑡|∇𝑓(𝑞𝑡)|
≤ 𝐶 ′𝑒−𝐶𝑡(|∇𝑓(𝑞𝑡)| − 𝜋(|∇𝑓 |)) + 𝐶 ′𝑒−𝐶𝑡 (3.8)

for a generic 𝐶 ′ > 0 independent of (𝑞0, 𝑝0) and 𝜔 ∈ Ω. Due to (3.8) together with Fubini’s theorem, it holds
for 𝑇 > 0 and a test function 𝑔 ∈ 𝐶∞𝑐 (R2𝑛) that∫︁ ∫︁ 𝑇

0

E[𝑓(𝑞𝑧
𝑡 )] d𝑡∇𝑝𝑔(𝑧) d𝑧 =

∫︁ 𝑇

0

E
[︂∫︁

𝑓(𝑞𝑧
𝑡 )∇𝑝𝑔(𝑧) d𝑧

]︂
d𝑡
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= −
∫︁ 𝑇

0

E
[︂∫︁

∇𝑓(𝑞𝑧
𝑡 )⊤𝐷𝑝𝑞

𝑧
𝑡 𝑔(𝑧) d𝑧

]︂
d𝑡

= −
∫︁ ∫︁ 𝑇

0

E
[︁
∇𝑓(𝑞𝑧

𝑡 )⊤𝐷𝑝𝑞
𝑧
𝑡

]︁
d𝑡𝑔(𝑧) d𝑧.

Using Theorem 2.2, (3.8) again and dominated convergence to take 𝑇 → ∞ on both sides concludes the
proof. �

The following is a brief discussion about how equation (1.11) can be used in practice to approximate
the gradient direction

∫︀
∇𝑝𝜑 ⊗ ∇𝑝𝜑 d𝜋̃ from realisations (𝑞𝑡, 𝑝𝑡) of (1.1). The underlying idea is to approx-

imate ∇𝑝𝜑(𝑞, 𝑝) ⊗ ∇𝑝𝜑(𝑞, 𝑝) for points (𝑞, 𝑝) along the trajectory of (𝑞𝑡, 𝑝𝑡), so that (𝑞, 𝑝) is approximately
distributed according to 𝜋̃ due to the ergodicity of (𝑞𝑡, 𝑝𝑡). We have in mind at first setting for exam-
ple (𝑞, 𝑝) = (𝑞0, 𝑝0), where (𝑞0, 𝑝0) is the initial condition from equation (1.1), so that equation (1.11)
implies ∇𝑝𝜑(𝑞, 𝑝)⊗∇𝑝𝜑(𝑞, 𝑝) can be approximated using

𝛿Γ =
∫︁ 𝑇

0

∇𝑓
(︁
𝑞(𝑞,𝑝)
𝑠

)︁⊤
𝐷𝑝𝑞

(𝑞,𝑝)
𝑠 d𝑠⊗

∫︁ 𝑇

0

∇𝑓
(︁
𝑞(𝑞,−𝑝)
𝑠

)︁⊤
𝐷𝑝𝑞

(𝑞,−𝑝)
𝑠 d𝑠, (3.9)

where (𝑞(𝑞,𝑝)
𝑠 , 𝑝

(𝑞,𝑝)
𝑠 ) solves (1.1) with initial condition (𝑞, 𝑝), and (𝑞(𝑞,−𝑝)

𝑠 , 𝑝
(𝑞,−𝑝)
𝑠 ) denotes a parallel solution

of (1.1) with initial condition (𝑞,−𝑝) and independent realisations for 𝑊 , moreover, (𝐷𝑝𝑞𝑠)0≤𝑠≤𝑇 denotes
corresponding solutions to (3.3) for both initial conditions. At time 𝑇 , we then update Γ with Γ + 𝛿𝛿Γ for
a stepsize 𝛿 > 0 using equation (3.9). After the update in Γ, in order to proceed with further updates, we
set (𝑞, 𝑝) = (𝑞𝑇 , 𝑝𝑇 ) and repeat the described procedure above using (3.9) with the updated (𝑞, 𝑝) = (𝑞𝑇 , 𝑝𝑇 ),
then with (𝑞, 𝑝) = (𝑞2𝑇 , 𝑝2𝑇 ) and so on. Note that we expect (𝑞𝑗𝑇 , 𝑝𝑗𝑇 ) to be distributed approximately as 𝜋̃ for
nonzero 𝑗 ∈ N, so that the approximations (3.9) of the integrand ∇𝑝𝜑(𝑞, 𝑝)⊗∇𝑝𝜑(𝑞, 𝑝) with (𝑞, 𝑝) = (𝑞𝑗𝑇 , 𝑝𝑗𝑇 )
indeed makes for an approximation of the integral

∫︀
∇𝑝𝜑⊗∇𝑝𝜑 d𝜋̃. There can be sources of bias from not being

at stationarity and using finite 𝑇 , in the sense that the points (𝑞, 𝑝) along the trajectory of (𝑞𝑡, 𝑝𝑡) are clearly not
exactly distributed according 𝜋̃ and the finite time integrals in (3.9) are not equal to the infinite time integral
as required. However, both of these factors may be mitigated in practice. For example, we may choose the first
point (𝑞, 𝑝) above to be a point in the trajectory of (𝑞𝑡* , 𝑝𝑡*) for some burn-in time 𝑡* instead of (𝑞, 𝑝) = (𝑞0, 𝑝0).
We may also choose 𝑇 large enough so that (𝐷𝑝𝑞𝑇 , 𝐷𝑝𝑝𝑇 ) has converged to zero with satisfaction (which will
happen for large enough 𝑇 thanks to Thm. 3.3), so that the finite time integral is a good approximation of the
infinite time one. The overall approach is summarised in Algorithm 1 and given with more detail in Algorithm 2.

The next result is that the estimator (3.9) has finite variance.

Theorem 3.5. Let the assumptions of Theorem 3.3 and 𝑀 = 𝐼𝑛 hold. For Lebesgue almost-all (𝑞, 𝑝) ∈ R2𝑛,
each entry of 𝛿Γ defined in (3.9) has finite variance.

Proof. It suffices to show that (3.9) has finite second moment, for which it suffices to show that each element
in the vector of time integrals

∫︀ 𝑇

0
∇𝑓(𝑞(𝑞,𝑝)

𝑡 )⊤𝐷𝑝𝑞
(𝑞,𝑝)
𝑡 d𝑠 has finite second moments by independence. For each

index 𝑖, using (3.5),⃒⃒(︀
∇𝑓(𝑞𝑡)⊤𝐷𝑝𝑞𝑡

)︀
𝑖

⃒⃒2 ≤ 𝐶 ′2𝑒−2𝐶𝑡|∇𝑓(𝑞𝑡)|2

≤ 𝐶 ′2𝑒−2𝐶𝑡
(︁
|∇𝑓(𝑞𝑡)|2 − 𝜋

(︁
|∇𝑓 |2

)︁)︁
+ 𝐶 ′2𝑒−2𝐶𝑡𝜋

(︁
|∇𝑓 |2

)︁
,

so that using the (weighted) boundedness assumption on |∇𝑓 | together with Theorem 2.2 and Fubini’s theorem,
the proof concludes. �
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4. Gaussian cases

Throughout this section, the target measure 𝜋 is assumed to be Gaussian, when 𝜋 is mean zero this is 𝜋 ∝
exp(− 1

2𝑞⊤Σ−1𝑞) for Σ ∈ S𝑛
++, in other words, the potential is quadratic, 𝑈(𝑞) = 1

2𝑞⊤Σ−1𝑞. For polynomial
function observables, we look for solutions to the Poisson equation (1.6) by using a polynomial ansatz and
comparing coefficients in order to obtain an explicit expression for the asymptotic variance. The results provide
benchmarks to test the performance of the algorithms that arise from using the gradient in Theorem 3.2 as well
as intuition for how Γ can be improved in concrete cases. We will consider the following cases for the observables:

(1) Quadratic 𝑓(𝑞) = 1
2𝑞⊤𝑈0𝑞 under the assumption of commutativity between 𝑈0 and Σ (Prop. 4.6), also 𝑓(𝑞) =

1
2𝑈0𝑞

2 + 𝑙𝑞 in one dimension (Prop. 4.7);
(2) Odd polynomial 𝑓 , where the asymptotic variance will be shown to decrease to zero as Γ → 0 (Props. 4.8, 4.10

and Cor. 4.9);
(3) Quartic 𝑓 in one dimension, in which case the situation is similar to quadratic 𝑓 (Prop. 4.11).

All of the proofs and derivations for the results in this section can be found in Section 6, except the short
proofs of Proposition 4.4, 4.6 and 4.7 that are stated in this section for clarity of presentation. We proceed with
stating in more detail the general situation of this section.

Let Σ ∈ S𝑛
++, 𝑈0 ∈ S𝑛

++ and 𝑙 ∈ R𝑛. The Gaussian invariant measure 𝜋̃ and the observable 𝑓 : R2𝑛 → R are
given by

𝜋̃ ∝ exp
(︂
− 1

2
𝑞 · Σ−1𝑞 − 1

2
𝑝 ·𝑀−1𝑝

)︂
, 𝑓(𝑞) =

1
2
𝑞 · 𝑈0𝑞 + 𝑙 · 𝑞 (4.1)

and the value 𝜋(𝑓) becomes

𝜋(𝑓) =
∫︁

𝑓 d𝜋 =
∫︁

1
2
𝑞 · 𝑈0𝑞 d𝜋 =

1
2
𝑈0 : Σ. (4.2)

The infinitesimal generator ℒ becomes in this case

ℒ =
(︂

0 𝑀−1

−Σ−1 −Γ𝑀−1

)︂(︂
𝑞
𝑝

)︂
· ∇+∇𝑝 · Γ∇𝑝

= 𝑀−1𝑝 · ∇𝑞 − Σ−1𝑞 · ∇𝑝 − Γ𝑀−1𝑝 · ∇𝑝 +∇𝑝 · Γ∇𝑝. (4.3)

Consider the natural candidate solution 𝜑 to the Poisson equation (1.6) given by

𝜑(𝑞, 𝑝) =
1
2
𝑞 ·𝐺𝑞 + 𝑞 · 𝐸𝑝 +

1
2
𝑝 ·𝐻𝑝 + 𝑔 · 𝑞 + ℎ · 𝑝− 1

2
(𝐺 : Σ + 𝐻 : 𝑀) (4.4)

for some constant matrices 𝐺, 𝐸, 𝐻 ∈ R𝑛×𝑛 and vectors 𝑔, ℎ ∈ R𝑛. Note that we allow 𝐺 and 𝐻 not to be
symmetric and specify 𝐺𝑆 and 𝐻𝑆 as the respective symmetric parts in order to make a clear distinction.

Lemma 4.1. Given 𝑓 and 𝜋̃ in (4.1) and ℒ of the form (4.3), it holds that 𝜑 given by (4.4) is a solution to
the Poisson equation (1.6) if and only if

Σ−1𝑞 ·
(︀
𝐸⊤𝑞 + ℎ

)︀
− Γ : 𝐻𝑆 −

1
2
𝑞 · 𝑈0𝑞 − 𝑙 · 𝑞 +

1
2
𝑈0 : Σ = 0, (4.5)

−𝑀−1(𝐺𝑆𝑞 + 𝑔) + 𝐻𝑆Σ−1𝑞 + 𝑀−1Γ
(︀
𝐸⊤𝑞 + ℎ

)︀
= 0, (4.6)

−𝐸⊤𝑀−1 + 𝐻𝑆Γ𝑀−1 = 𝐴1, (4.7)

for some antisymmetric 𝐴1 ∈ R𝑛×𝑛.
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4.1. Quadratic observable

Similar calculations in this situation have appeared previously in Proposition 1 in [23], where explicit expres-
sions analogous to 𝐺, 𝐸, 𝐻 and for 𝜎2 are given. For our purposes of finding an optimal Γ, the approach take
here is different. Instead of taking these explicit expressions, we keep unknown antisymmetric matrices (such
as 𝐴1) as they appear as an alternative to the aforementioned explicit expressions. Eventually the commu-
tativity property between Σ and 𝑈0 is used to show that the antisymmetric matrices are zero. We continue
from (4.5) to (4.7) with finding explicit expressions for the coefficients 𝐺, 𝐸, 𝐻 of 𝜑.

Lemma 4.2. Given 𝑓 and 𝜋̃ in (4.1) and ℒ of the form (4.3), 𝜑 given by (4.4) is a solution to the Poisson
equation (1.6) with (4.3) if and only if there exist antisymmetric matrices 𝐴1, 𝐴2 such that

𝐺𝑆 =
1
2
𝑀(Σ𝑈0 − Σ𝐴2 − 2𝐴1𝑀)Γ−1Σ−1 +

1
2

Γ(𝑈0Σ−𝐴2Σ), (4.8)

𝐸 =
1
2
𝑈0Σ +

1
2
𝐴2Σ, (4.9)

𝐻𝑆 =
1
2

(Σ𝑈0 − Σ𝐴2 − 2𝐴1𝑀)Γ−1, (4.10)

ℎ = Σ𝑙 and 𝑔 = ΓΣ𝑙. (4.11)

The asymptotic variance from Theorem 2.6 can be given by a formula in terms of Σ, 𝑈0 and the coefficients
of 𝜑. Before substituting the expressions from Lemma 4.2 into the formula, we give the formula itself, which is
adapted from the proof of Proposition 1 in [23].

Lemma 4.3. Let 𝑓 and 𝜋̃ be given by (4.1) and ℒ be given by (4.3). If the solution 𝜑 to the Poisson equa-
tion (1.6) is of the form (4.4), then the asymptotic variance 𝜎2 given by (2.10) has the expression

2⟨𝜑, 𝑓 − 𝜋(𝑓)⟩𝜋̃ = Tr(𝐺𝑆Σ𝑈0Σ) + 2𝑔 · Σ𝑙. (4.12)

From the expressions (4.8) and (4.10) for 𝐺𝑆 and 𝐻𝑆 respectively, it is not straightforward to check that
there exist antisymmetric 𝐴1 and 𝐴2 such that the right hand sides are indeed symmetric at this point, which
is necessary for the ansatz (4.4) for 𝜑 to be a valid solution. On the other hand, if Σ, 𝑈0, Γ, 𝑀 all commute,
then the right hand sides of (4.8) and (4.10) are symmetric for 𝐴1 = 𝐴2 = 0 and the coefficients 𝐺 and 𝐻
become explicit, which allows taking derivatives of 𝜎2 with respect to the entries of Γ. Moreover, the explicit
coefficients allow optimisation of 𝑀 , which is given by the following proposition.

Proposition 4.4. Suppose Σ, 𝑈0 and Γ all commute. Let 𝑓 be as in (4.1), 𝜋(𝑓) be as in (4.2), ℒ be of the
form (4.3) and 𝜑 be the solution to the Poisson equation (1.6). It holds that

lim
𝑀=𝑚𝐼𝑛,𝑚↓0

∫︁
𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = inf

𝑀∈SΣ++

∫︁
𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃, (4.13)

where SΣ++ is the set of symmetric positive definite matrices commuting with Σ.

Proof. Let

𝐺 =
1
2
𝑀Σ𝑈0Γ−1Σ−1 +

1
2

Γ𝑈0Σ, 𝐸 =
1
2
𝑈0Σ, 𝐻 =

1
2

Σ𝑈0Γ−1, (4.14a)

𝑔 = ΓΣ𝑙, ℎ = Σ𝑙 (4.14b)

so that by Lemma 4.2, 𝜑 given by (4.4) is the solution to the Poisson equation (1.6) and inserting 𝐺, 𝑔 into (4.12)
gives

2⟨𝜑, 𝑓 − 𝜋(𝑓)⟩𝜋̃ =
1
2

Tr
(︀
𝑀Σ𝑈0Γ−1𝑈0Σ + Γ𝑈0Σ2𝑈0Σ

)︀
+ 2𝑙⊤ΣΓΣ𝑙. (4.15)

The result follows since 𝐴 : 𝐵 > 0 for 𝐴, 𝐵 ∈ S𝑛
++. �
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Remark 4.5. The limit (4.13) in Proposition 4.4 is, together with a rescaling in the velocity space, the over-
damped limit of the Langevin dynamics, see Section 2.2.4 in [52]. However, equation (4.13) does not necessarily
mean overdamped dynamics are better in practice. For example when Γ is a small scalar, the overdamped
limit corresponding to (4.13) results in a time speed-up inversely proportional to Γ over the overdamped limit
corresponding to Γ = 𝐼𝑛. Consequently, any such comparison between Langevin dynamics and the overdamped
limit should include constraints such as those in [33] for both sets of dynamics. We focus on the optimisation
of Γ and fix 𝑀 = 𝐼𝑛 in the following.

As before, we denote SΣ++ to be the set of symmetric positive definite matrices commuting with Σ.

Proposition 4.6. Let Σ, 𝑈0, 𝑙, 𝑀 be such that

Σ𝑈0 = 𝑈0Σ, 𝑙 = 0, 𝑀 = 𝐼𝑛, (4.16)

𝑓 be as in (4.1), 𝜋(𝑓) be as in (4.2), ℒ be of the form (4.3) and 𝜑 be the solution to the Poisson equation (1.6).
It holds that

min
Γ∈SΣ++

2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = Tr
(︁
𝑈2

0 Σ
5
2

)︁
,

where the minimum is attained by Γ = Σ−
1
2 .

Proof. Let Σ = 𝑃⊤Σ𝑑𝑃 be the eigendecomposition of Σ for orthogonal 𝑃 . Since all symmetric matrices in the
set commuting with Σ share eigenvectors with Σ, it suffices to find a unique extremal point of the asymptotic
variance with respect to the eigenvalues of Γ, call them (𝜆𝑖)1≤𝑖≤𝑛, 𝜆𝑖 ≥ 0. Setting again (4.14), 𝜑 given by (4.4)
is the solution to the Poisson equation (1.6) and the asymptotic variance 𝜎2 given by (2.10) becomes

2⟨𝜑, 𝑓 − 𝜋(𝑓)⟩𝜋̃ =
1
2

Tr
(︀
Σ𝑈0Γ−1𝑈0Σ + Γ𝑈0Σ2𝑈0Σ

)︀
, (4.17)

which reduces to a sum of functions of the form 𝑎𝑖𝜆
−1
𝑖 +𝑏𝑖𝜆𝑖, 𝑎𝑖, 𝑏𝑖 > 0 after diagonalising with 𝑃 and the result

follows. �

In the scalar case, we can remove the restriction on 𝑙.

Proposition 4.7. If 𝑛 = 1, 𝑈0 ̸= 0, 𝑙 ̸= 0, 𝑓 : R → R is given by (4.1), 𝜋(𝑓) is given by (4.2), ℒ is of the
form (4.3) and 𝜑 is the solution to the Poisson equation (1.6), then minΓ>0 2

∫︀
𝜑(𝑓 −𝜋(𝑓)) d𝜋̃ = 𝑀

1
2 Σ2𝑈2

0 (Σ +

4𝑙2𝑈−2
0 )

1
2 and the minimum is attained by Γ = 𝑀

1
2

(Σ+4𝑙2𝑈−2
0 )

1
2
.

Proof. By Lemma 4.2, the solution (4.4) to the Poisson equation (1.6) is

𝜑 =
(︂

𝑈0ΓΣ
4

+
𝑀𝑈0

4Γ

)︂
𝑞2 +

𝑈0Σ
2

𝑞𝑝 +
𝑈0Σ
4Γ

𝑝2 + ΣΓ𝑙𝑞 + Σ𝑙𝑝− 𝑈0ΓΣ2

4
− 𝑀𝑈0Σ

2Γ
·

By Lemma 4.3, the asymptotic variance is given by

2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = 2Σ2

(︂
𝑈2

0 Σ
4

+ 𝑙2
)︂

Γ +
𝑈2

0 Σ2

2Γ
,

which attains the stated minimum at the stated Γ. �
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4.2. Odd polynomial observable

Another special case within (4.1) where the solution 𝜑 can be readily identified is when 𝑈0 = 0, that is, for
linear observables. More generally, (almost) zero variance can be attained in the following special case.

Proposition 4.8. Under Assumption 2.1, for a general target measure 𝜋 ∝ 𝑒−𝑈 on R𝑛, if the observable 𝑓 is
of the form 𝑓(𝑞) = 𝛼 · ∇𝑈, for 𝛼 = (𝛼1, . . . , 𝛼𝑛), 𝛼𝑖 ∈ R, ℒ is of the general form (2.1) and 𝜑 is the solution to
the Poisson equation (1.6), then the asymptotic variance satisfies

inf
Γ∈{𝛾𝐼𝑛:𝛾>0}

2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = 0. (4.18)

Corollary 4.9. Given a Gaussian target measure with density 𝜋 ∝ 𝑒−𝑈 on R𝑛, observable 𝑓 : R𝑛 → R given
by 𝑓(𝑞) = 𝑙 · 𝑞 with 𝑙 ∈ R𝑛, ℒ of the form (2.1) and 𝜑 the solution to the Poisson equation (1.6), then
identity (4.18) holds.

Corollary 4.9 follows from Proposition 4.8 as the special case where 𝑈 is a quadratic function. Note that
Corollary 4.9 is also a consequence of (4.15) in the proof of Lemma 4.4. Furthermore, the setting in Corollary 4.9
is included in that of Proposition 4.4 and the results are consistent by Remark 4.5.

We give here some intuition for the situation in Corollary 4.9. First note that the Langevin diffusion with Γ = 0
reduces to deterministic Hamiltonian dynamics and that it is the limit case for the Γ attaining arbitrarily small
asymptotic variance in the proof of Proposition 4.8. The result indicates that this is optimal in the linear
observable, Gaussian measure case (i.e. (4.1), 𝑈0 = 0) and this aligns with the fact that the value (4.2) to be
approximated is exactly the value at the 𝑞 = 𝑝 = 0, so that Hamiltonian dynamics starting at 𝑞 = 0, staying
there for all time, approximates the integral (4.2) with perfect accuracy. A similar idea holds for when the initial
condition is not 𝑞 = 𝑝 = 0, where (4.2) is approximated exactly after any integer number of orbits in (𝑞, 𝑝)
space.

Continuing on this idea, it seems reasonable that the same statement holds more generally for any odd
observable. At least, the following holds in one dimension.

Proposition 4.10. If 𝑛 = 1, 𝑘 ∈ N0 and 𝑓 : R → R is an odd finite order polynomial observable given by

𝑓(𝑞) =
𝑘̂∑︁

𝑖=0

𝑎𝑖𝑞
2𝑖+1, (4.19)

𝜋(𝑓) = 0, ℒ is of the form (4.3) and 𝜑 is the solution to the Poisson equation (1.6), then the asymptotic variance
satisfies (4.18).

4.3. Quartic observable

The situation in the quartic observable case, at least in one dimension, is similar to quadratic observable
case.

Proposition 4.11. If 𝑛 = 1 and 𝑓 : R → R is a quartic observable given by

𝑓(𝑞) = 𝑞4, (4.20)

𝜋(𝑓) = 3Σ2 for some Σ > 0, ℒ is of the form (4.3), 𝑀 = 1 and 𝜑 is the solution to the Poisson equation (1.6),
then there exists 𝜎quar > 0 such that minΓ=𝛾>0 2

∫︀
𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = 𝜎quar.
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5. Computation of the change in Γ

Throughout this section, the 𝑀 = 𝐼𝑛 case is considered. As mentioned, the formula (3.1) gives a natural
gradient descent direction (1.9) to take Γ in order to optimise 𝜎2 from Theorem 2.6. We focus the discussion on a
Monte Carlo method to approximate ∇𝑝𝜑 and gradient directions in Γ (e.g. (1.9)) based on Theorems 3.2 and 3.3
as discussed at the beginning of Section 3.2. Note that it is also possible to use a spectral method to solve (1.6)
in order to compute the change in Γ, but this is only computationally feasible in low dimensions. Algorithm 1
summarises the resulting procedure, where all expectations within (1.9) are approximated by single realisations;
further justifications, alternative methods, refinements and a concrete implementation (Algorithm 2) can be
found in Appendix B. We proceed with applications of the algorithm in examples.

Algorithm 1: Continuous-time outline of Γ update using (1.7) and (1.11).
Result: Γ ∈ S𝑛

++

Start from arbitrary (𝑞0, 𝑝0) ∈ R2𝑛 and set (𝑞0, 𝑝0) = (𝑞0,−𝑝0), 𝐷𝑞0 = 𝐷𝑞0 = 0, 𝐷𝑝0 = 𝐷𝑝0 = 𝐼𝑛, 𝜁 = 𝜁 = 0,
Γ = 𝐼𝑛, 𝑡 = 𝑡0 = 0;
for 𝑁 epochs do

simulate one time-step in (𝑞𝑡, 𝑝𝑡), (𝑞𝑡, 𝑝𝑡) then in (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) and (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡);

add to 𝜁, 𝜁 to approximate the row vectors

𝜁 =

∫︁ 𝑡

𝑡0

∇𝑓(𝑞𝑠)
⊤𝐷𝑝𝑞𝑠 d𝑠, 𝜁 =

∫︁ 𝑡

𝑡0

∇𝑓(𝑞𝑠)
⊤𝐷𝑝𝑞𝑠 d𝑠;

if (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) is small enough in magnitude then

update Γ with the gradient direction −𝜁 ⊗ 𝜁;

reset (𝑞𝑡, 𝑝𝑡)← (𝑞𝑡,−𝑝𝑡); (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡), (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡)← (0, 𝐼𝑛); 𝑡0 ← 𝑡; 𝜁, 𝜁 ← 0;

end
𝑡← 𝑡 + Δ𝑡.

end

Section 5.1 contains the simplest one-dimensional Gaussian case where the optimal Γ is known and it is
shown that the algorithm approximates it quickly. A different Gaussian problem extracted from a diffusion
bridge context is explored in Section 5.2, where the algorithm is shown to approximate a Γ matrix that exhibits
an even better empirical asymptotic variance than the one given by Proposition 4.6. Finally, the algorithm is
applied to finding the optimal Γ in estimating the posterior mean in a Bayesian inference problem in Section 5.3,
where the situation is shown to be similar to Proposition 4.9, in the sense that the optimal Γ is close to 0; after
and separately from such a finding, the empircal asymptotic variance for a small Γ is compared that for Γ = 𝐼𝑛,
with dramatic improvement in both the full gradient and minibatch gradient cases.

5.1. One dimensional quadratic case

Here the algorithm given in Section B.1.3 is used in the simplest one dimensional

𝑈(𝑞) =
𝑉0

2
𝑞2, 𝑓(𝑞) =

1
2
𝑞2, (5.1)

𝑉0 > 0, case to find the optimal constant friction. Since commutativity issues disappear in the one-dimensional
case, the optimal constant friction is known analytically and is given by Proposition 4.6 to be Γ =

√
𝑉0, with

the asymptotic variance 𝑉
− 5

2
0 . Moreover, the relationship between the asymptotic variance and Γ is explicitly

given by equations (4.8) and (4.12), which reduces in this case to

𝜎2(Γ) =
1

4𝑉 2
0

(︂
Γ−1 +

1
𝑉0

Γ
)︂

.
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Figure 2. Left: relationship between asymptotic variance and Γ for (5.1). Middle and right:
trajectory of Γ for (5.1) and (5.2) respectively by (B.8) with 𝛼𝑖 = 1, 𝐺 = 1, 𝑟 = 0.5 and 𝜇 = 0.2.
Middle: red line is the optimal value Γ =

√
5 given by Proposition 4.6. All plots are for 𝑉0 = 5.

The case 𝑉0 = 5 is illustrated in Figure 2. In the middle and right plot of Figure 2, the procedure in Section B.1.3
is used for 5 × 104 epochs, with ∆𝑡 = 0.08, block-size 𝑇 = 125, 𝐿 = 1 and 𝐷conv = 2 × 10−4. Changing the
observable to the linear

𝑓(𝑞) = 𝑞 (5.2)

gives that the “optimal” (but unreachable in the algorithm due to the constraints) friction is 0 by Corollary 4.9.
The right plot in Figure 2 shows that the procedure arrives at a similar conclusion in the sense that the Γ hits
and stays at 𝜇 = 0.2. The value 𝜇 = 0.2 is precisely where the algorithm imposes a lower bound on the value
of Γ. This is expected since it is the closest value to the “optimal” value 0 as mentioned.

5.2. Diffusion bridge sampling

The algorithm in Section B.1.3 is applied in the context of diffusion bridge sampling [35, 36] (see also for
example [7, 20,37]), where the SDE

d𝑥𝑡 = −∇𝑉 (𝑥𝑡) d𝑡 +
√︀

2𝛽−1 d𝑊 ′
𝑡 (5.3)

for a suitable 𝑉 : R𝑑 → R, 𝛽 > 0 and 𝑊 ′
𝑡 standard Wiener process on R𝑑, is conditioned on the events

𝑥0 = 𝑥− and 𝑥1 = 𝑥+ (5.4)

for some fixed 𝑥0, 𝑥+ ∈ R𝑑 and the problem setting is to sample from the path space of solutions to (5.3)
conditioned on (5.4). For the derivation of the following formulations, we refer to Section 5 in [36] and Section 6.1
in [8]; here we extract a simplified potential 𝑈 to apply our algorithm on after a brief description.

Let

𝑉 (𝑥) =
1
2
|𝑥|2, 𝑥− = 𝑥+ = 0, 𝛽 = 1, 𝑑 = 1.

Using the measure given by Brownian motion conditioned on (5.4) as the reference measure 𝜈0 on the path
space of continuous functions 𝐶([0, 1], R), the measure 𝜈 on 𝐶([0, 1], R) associated to (5.3) conditioned on (5.4)
satisfies d𝜈

d𝜈0
(𝑥·) ∝ exp(− 1

4

∫︀ 1

0
|𝑥𝑡|2 d𝑡), where the left hand side denotes the Radon–Nikodym derivative, so that

discretising 𝜈 on a grid in [0, 1] with grid-size 𝛿 > 0 gives the approximating measure 𝜋(𝑞1, . . . , 𝑞𝑛) ∝ 𝑒−𝑈(𝑞1,...,𝑞𝑛)
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Figure 3. Diagonal values of Γ over iterations of (B.8) with 𝛼𝑖 = 0.2, 𝐺 = 5, 𝑟 = 1 and 𝜇 = 0.2.

where 𝑈 is given by

𝑈(𝑞) =
1
2
𝑞⊤Σ−1𝑞 =

1
2
𝑞⊤

⎛⎜⎜⎜⎜⎜⎜⎝

2
𝛿 + 𝛿

4 − 1
𝛿

− 1
𝛿

2
𝛿 + 𝛿

4 − 1
𝛿

. . .

− 1
𝛿

2
𝛿 + 𝛿

4 − 1
𝛿

2
𝛿 + 𝛿

4 − 1
𝛿

⎞⎟⎟⎟⎟⎟⎟⎠𝑞.

From here the Langevin system (1.1) can be used to sample from 𝜋 and the algorithm given in Section B.1.3 is
applied. For this purpose, the observable 𝑓(𝑞) = 1

2 |𝑞|
2 is used together with the parameters 𝛿 = 1

21 , 𝑛 = 20, 𝐾 =
1, 𝐿 = 5, 𝑇 = 60, 𝐵 = 100 and 𝐷conv = 0.01. Only the diagonal values of Γ are updated and their trajectories
are shown in Figure 3.

At the end of approximately 30 000 epochs of simulation (of the Langevin process and of the first variation
process), Γ at the end of the update period shown in Figure 3 is given by

Γfinal = diag(1.2129, 1.5673, 1.8199, 1.8055, 1.2858, 0.9013, 0.3588, 0.2631,

0.2000, 0.2000, 0.2252, 0.2579, 0.3621, 0.4715, 1.3842, 1.9467,

1.9289, 1.6326, 1.3730, 1.1153).

Note that the value 𝑇 = 60 above is the number of time steps in the approximation of (1.1) to be taken between
subsequent updates in Γ. The number of iterations in the bottom axis of Figure 3 then indicates the number
of updates in Γ, not to be confused with 𝑇 or the total number of epochs. The value Γ= Γfinal is then fixed
and used for a standard sampling procedure for the same potential and observable. The asymptotic variance
is approximated by grouping the epochs after 𝐵 = 100 burn-in iterations into 𝑁𝐵 = 999 blocks of 𝑇 = 300
epochs, specifically,

𝜎approx =
1

𝑁𝐵

𝑁𝐵−1∑︁
𝑙=0

⎡⎣ 1√
𝑇∆𝑡

𝑇∑︁
𝑖=1

∆𝑡

⎛⎝𝑓
(︀
𝑞𝑖+𝑇𝑙+𝐵

)︀
− 1

𝑁

𝑁∑︁
𝑗=1

∆𝑡𝑓
(︀
𝑞𝑗+𝐵

)︀⎞⎠⎤⎦2

, (5.5)

where 𝑞𝑖 are iterates in the numerical approximation of 𝑞𝑡, and this is compared to the estimate from the same
procedure using different values of fixed Γ in Table 1. Note that Γ = Σ−

1
2 is the optimal Γ in the restricted

class of matrices commuting with Σ given by Proposition 4.6, where the asymptotic variance is known to
be Tr(Σ

5
2 ) ≈ 6.4785. This is well approximated by the relevant value in Table 1, which validates (5.5) as an

approximation of the asymptotic variance. Table 1 also shows that fixing Γ = Γfinal gives an improved value of
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Table 1. Empirical asymptotic variances with 𝑁𝐵 = 999, 𝑇 = 300, 𝐵 = 100, 𝑁 = 299 700.

𝜎approx

Γ = 𝐼𝑛 6.9834

Γ = Σ−
1
2 6.5096

Γ = Γfinal 6.1667

estimated asymptotic variance over Γ = Σ−
1
2 . There is an extra computational cost to obtain Γfinal by using

the update procedure in Γ that is illustrated in Figure 3; however, this constitutes a one-time initial cost at the
beginning of a simulation, which looks to improve the variance over arbitrarily long simulations.

5.3. Bayesian inference

We adopt the binary regression problem as in [25] on a dataset1 with datapoints encoding information about
images on a webpage and each labelled with “ad” or “non-ad”. The labels {𝑌𝑖}1≤𝑖≤𝑝, taking values in {0, 1},
of the 𝑝 = 2359 datapoints (counting only those without missing values) given in the dataset are modelled as
conditionally independent Bernoulli random variables with probability {𝜌(𝛽⊤𝑋𝑖)}1≤𝑖≤𝑝, where 𝜌 is the logistic
function given by 𝜌(𝑧) = 𝑒𝑐𝑧/(1 + 𝑒𝑐𝑧) for all 𝑧 ∈ R, 𝑐 ∈ R is given by (5.8), {𝑋𝑖}1≤𝑖≤𝑝, 𝛽, both taking
values in R𝑛, are respectively vectors of known features from each datapoint and regression parameters to be
determined. The parameter 𝛽 has prior distribution 𝒩 (0, Σ), where Σ−1 = 1

𝑝

∑︀𝑝
𝑖=1 𝑋⊤

𝑖 𝑋𝑖 ∈ R𝑛×𝑛, and the
density of the posterior distribution of 𝛽 is given up to proportionality by

𝜋𝛽

(︁
𝛽|{(𝑋𝑖, 𝑌𝑖)}1≤𝑖≤𝑝

)︁
∝ exp

(︃
𝑝∑︁

𝑖=1

{︁
𝑐𝑌𝑖𝛽

⊤𝑋𝑖 − log
(︁

1 + 𝑒𝑐𝛽⊤𝑋𝑖

)︁}︁
− 1

2
𝛽⊤Σ−1𝛽

)︃
,

so that the log-density gradient, in our notation −∇𝑈 , is given by −∇𝑈(𝛽) =
∑︀𝑝

𝑖=1 𝑐𝑋𝑖(𝑌𝑖−(1+𝑒−𝑐𝛽⊤𝑋𝑖)−1)−
Σ−1𝛽. The observable vector 𝑓𝑖(𝛽) = 𝛽𝑖, 1 ≤ 𝑖 ≤ 𝑛, corresponding to the posterior mean is used. The coordinate
transform 𝛽 = Σ−

1
2 𝛽 is made before applying the symmetric preconditioner Σ

1
2 on the Hamiltonian part of the

dynamics so that the dynamics simulated are as in (1.1) with 𝑀 = 𝐼𝑛 and

−∇𝑈
(︁
𝛽
)︁

= Σ
1
2

𝑝∑︁
𝑖=1

𝑐𝑋𝑖

(︃
𝑌𝑖 −

(︂
1 + 𝑒

−𝑐
(︁
Σ

1
2 𝛽
)︁⊤

𝑋𝑖

)︂−1
)︃
− 𝛽. (5.6)

We use the observable vector 𝑓𝑖(𝛽) = 𝛽𝑖, 1 ≤ 𝑖 ≤ 𝑛 and the sum of their corresponding asymptotic variances
as the value to optimise with respect to Γ, but show in Figures 4 and 5 the estimated asymptotic variances for
both sets 𝑓𝑖(𝛽), 𝑓𝑖(𝛽) of observables. In order to estimate each of the asymptotic variances, point evaluations
of each ∇𝑝𝜑 are approximated as in the vector on the left of the outer product in (B.9), which are then used to
approximate the asymptotic variances in accordance to

𝜎𝑓 = 2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ = 2
∫︁
∇𝜑⊤Γ∇𝜑 d𝜋̃. (5.7)

Equation (5.7) follows from the formula (2.10) after integrating by parts. The approximation (B.5) for the
term(s) including the Hessian in (B.4) has been used to test the method despite the explicit availability of the

1http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements. Note that besides missing values at some datapoints,
the dataset comes with many quantitatively duplicate features and also some linear dependence between the vectors made up of a
single feature across all datapoints; here features have been removed so that the said vectors remaining are linearly independently.
In particular, 𝑛 = 642.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
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Figure 4. Left: diagonal values of Γ over iterations of (B.8) with 𝛼𝑖 = 0.1, 𝐺 = 1, 𝑟 = 1
and 𝜇 = 0.2. Note that the mean of the absolute values of all entries of Γ at the end of the
iterations is 0.0039. Middle: sum over 𝑖 of estimated asymptotic variances for 𝑓𝑖(𝛽); Right:
for 𝑓𝑖(𝛽). The simulation is based on the dataset with 𝑛 = 642 and 𝑝 = 2359.

Figure 5. The same as in the caption of Figure 4, except 𝑟 = 0.5 and a different dataset
(https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)) is used where 𝑛 = 167
and 𝑝 = 476. The mean of the absolute values of all entries of Γ at the end of the iterations
is 0.0210.

Hessian. During the execution of Algorithm 2, the constant 𝑐 in (5.6) has been set to

𝑐 :=
5

max𝑖

(︁
Σ

1
2
∑︀

𝑗 𝑋𝑗𝑌𝑗

)︁
𝑖

· (5.8)

The particular choice of 𝑐 = 𝑐 is not important, except that it gives reasonable numerics at 𝛽 = 0, which can
be seen by substitution into (5.6). In detail, 30 000 epochs are simulated; after 100 burn-in iterations of the
Langevin discretisation (B.2), 2 parallel simulations of (B.2) and 2 of the first variation discretisation (B.4) are
run according to Section B.1.3 with time-step ∆𝑡 = 0.1, block-size 𝑇 = 100, 𝐿 = 1 block per update in Γ, 𝐾 = 1
and tolerance 𝐷conv = 0.01.

In Figures 4 and 5, Γ starts initially from the identity 𝐼𝑛 and descends towards 0.2𝐼𝑛 (restricted as in (B.7)),
as expected for a linear observable and potential close to a quadratic (see Cor. 4.9). We note that in the gradient
descent procedure for Γ, using the minibatch gradient (the corresponding results of which are not shown here)
does not change the behaviour shown in Figures 4 and 5. In addition, although the trajectory of Γ seems to go
directly to zero, we expect the optimal Γ to be close but away from zero since the potential is close but not
exactly quadratic.

https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)
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Table 2. ( 1
𝑛

∑︀𝑛
𝑘=1 𝜎2

𝑘,approx,
1
𝑛

∑︀𝑛
𝑘=1(𝜎2

𝑘,approx − 1
𝑛

∑︀𝑛
𝑙=1 𝜎2

𝑙,approx)2) – Empirical asymptotic
variances, mean and variance over observable entries, where full gradients have been used for
the dataset with 𝑛 = 642, 𝑝 = 2359.

Block-size 𝑇 = 300 Block-size 𝑇 = 9900

Γ = 𝐼𝑛 (1.2669, 0.0320) (0.8667, 0.7190)
Γ = 0.2𝐼𝑛 (0.2939, 0.0018) (0.1571, 0.0243)
Γ = 0.1𝐼𝑛 (0.1739, 0.0007) (0.0890, 0.0092)
Overdamped (1.2298, 0.0319) (0.8687, 0.8662)
Irreversible overdamped (0.5642, 0.0077) (0.3835, 0.1614)

Next, the value for Γ is fixed at various values and used for hyperparameter training on the same problem
for the first dataset, using both the full gradient (5.6) and a minibatch2 version where the sum in (5.6) is
replaced by 𝑝

10 times a sum over a subset 𝑆 of {1, . . . , 𝑝} with 10 elements randomly drawn without replacement
such that 𝑆 changes once for each 𝑖 in (B.2). In the minibatch gradient case, 𝑐 is set to a fraction of (5.8),
specifically 𝑐( 𝑝

10 )−1. In Tables 2 and 3, variances for the posterior mean estimates are shown (similar variance
reduction results persist when using the probability of success for features taken from a single datapoint in the
dataset).

In detail, for each row of Tables 2 and 3, 𝑁 = 29 700 epochs of (B.2) are simulated with the same parameters
as above. The asymptotic variance for each observable entry is approximated using block averaging (Sect. 2.3.1.3
in [52]) by grouping the epochs after 𝐵 = 100 burn-in iterations into 𝑁𝐵 = 99 blocks of 𝑇 = 300 epochs, that
is,

𝜎2
𝑘,approx =

1
𝑁𝐵

𝑁𝐵−1∑︁
𝑙=0

⎡⎣ 1√
𝑇∆𝑡

𝑇∑︁
𝑖=1

∆𝑡

⎛⎝𝑓𝑘

(︀
𝑞𝑖+𝑇𝑙+𝐵

)︀
− 1

𝑁

𝑁∑︁
𝑗=1

𝑓𝑘

(︀
𝑞𝑗+𝐵

)︀⎞⎠⎤⎦2

and 𝑁𝐵 = 3 blocks of 𝑇 = 9900 epochs (respectively for each column of Tabs. 2 and 3); the values 0.8667
and 0.1571 approach and correspond to values in the middle plot of Figure 4 after multiplying by 𝑛 = 642. The
variances are compared to those using a gradient oracle: unadjusted (overdamped) Langevin dynamics [25] and
with an irreversible perturbation [23], where the antisymmetric matrix 𝐽 is given by

𝐽𝑖,𝑗 =

⎧⎪⎨⎪⎩
1 if 𝑗 − 𝑖 = 1 or 1− 𝑛,

−1 if 𝑖− 𝑗 = 1 or 1− 𝑛,

0 otherwise

for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 and the stepsizes are the same as for underdamped implementations. In addition, the Euclidean
distance from intermediate estimates of the posterior mean to a total, combined estimate is shown for each
method. Specifically, 𝑑𝑘 :=

⃒⃒⃒
1

300𝑘

∑︀300𝑘
𝑖=1 𝑓(𝑞𝑖+𝐵)− 𝜋̂(𝑓)

⃒⃒⃒
is plotted against 𝑘 in Figure 6, where 𝜋̂(𝑓) is the mean

(over the methods listed in Tabs. 2 and 3) of the final posterior mean estimates. A weighted mean with unit
weights except one half on the Γ = 0.2𝐼𝑛 and Γ = 0.1𝐼𝑛 methods also gave similar results, though this is not
shown explicitly.

These figures demonstrate improvement of an order of magnitude in observed variances for Γ close to that
resulting from the gradient procedure over Γ = 𝐼𝑛. The improvement is also seen when compared to overdamped
Langevin dynamics with and without irrreversible perturbation.

2The control variate stochastic gradient on underdamped dynamics [14,57] is not directly considered here but the benefits of an
improved Γ is expected to carry over to such variations of the stochastic gradient.
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Table 3. The same as in Table 2, except minibatch gradients have been used for the dataset
with 𝑛 = 642, 𝑝 = 2359.

Block-size 𝑇 = 300 Block-size 𝑇 = 9900

Γ = 𝐼𝑛 (1.9575, 0.0744) (1.3338, 1.6650)
Γ = 0.2𝐼𝑛 (0.4600, 0.0042) (0.2781, 0.0784)
Γ = 0.1𝐼𝑛 (0.2646, 0.0016) (0.1335, 0.0208)
Overdamped (1.9137, 0.0791) (1.3065, 1.9714)
Irreversible overdamped (0.8764, 0.0150) (0.5778, 0.3266)

Figure 6. Euclidean distances to a combined posterior mean estimate over time. Left: full
gradient. Right: minibatch gradient.

6. Proofs

Some additional preliminaries are presented here for the proof of Theorem 3.2. For small 𝜖 ∈ R and some
direction 𝛿Γ ∈ R𝑛×𝑛 such that Γ + 𝜖𝛿Γ ∈ S𝑛

++, let 𝐿𝜖 be the infinitesimal generator of (1.1) with the perturbed
friction matrix Γ + 𝜖𝛿Γ in place of Γ, given formally by the differential operator

−ℒ𝜖 = −𝑝⊤𝑀−1∇𝑞 +∇𝑈(𝑞)⊤∇𝑝 + 𝑝⊤𝑀−1(Γ + 𝜖𝛿Γ)∇𝑝 −∇⊤𝑝 (Γ + 𝜖𝛿Γ)∇𝑝.

The formal 𝐿2(𝜋̃)-adjoint of ℒ𝜖 is denoted

−ℒ*𝜖 = 𝑝⊤𝑀−1∇𝑞 −∇𝑈(𝑞)⊤∇𝑝 + 𝑝⊤𝑀−1(Γ + 𝜖𝛿Γ)∇𝑝 −∇⊤𝑝 (Γ + 𝜖𝛿Γ)∇𝑝

just as for ℒ*.

Proof of Theorem 3.2. For 𝜖 ≤ 𝜖′, by Theorem 2.5 there exists a solution 𝜑+𝛿𝜑𝜖 ∈ 𝐿2
0(𝜋̃) to the Poisson equation

with the perturbed generator −𝐿𝜖(𝜑 + 𝛿𝜑𝜖) = 𝑓 − 𝜋(𝑓). By Theorem 2.6, the directional derivative of 𝜎2(Γ) in
the direction 𝛿Γ : R𝑛 → R𝑛×𝑛 is

1
2

d𝜎2.𝛿Γ = lim
𝜖→0

1
𝜖

∫︁
𝛿𝜑𝜖𝑓 d𝜋̃. (6.1)

By Proposition A.3, there are 𝜑𝑘, 𝜑𝑘,𝜖 ∈ 𝐶∞𝑐 such that (𝜑𝑘,−ℒ𝜑𝑘)𝑘∈N, (𝜑𝑘,𝜖,−ℒ𝜖𝜑𝑘,𝜖) are approximating
sequences to (𝜑, 𝑓 − 𝜋(𝑓)), (𝜑 + 𝛿𝜑𝜖, 𝑓 − 𝜋(𝑓)) respectively in 𝐿2(𝜋̃)2. Furthermore, in the same way as in
the proof of Lemma 3.1 to obtain (A.11), it holds that

‖∇𝑝𝜑𝑘 −∇𝑝𝜑‖𝐿2(𝜋̃) + ‖∇𝑝𝜑𝑘,𝜖 −∇𝑝(𝜑 + 𝛿𝜑𝜖)‖𝐿2(𝜋̃) → 0 as 𝑘 →∞. (6.2)
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Using the obvious extension on the notation from (1.8),∫︁
(𝜑𝑘,𝜖− 𝜑𝑘)(𝑓 − 𝜋(𝑓)) d𝜋̃ =

∫︁
(𝜑𝑘,𝜖 − 𝜑𝑘)

(︁
𝑓 − 𝜋(𝑓) + ℒ*𝜑𝑘

)︁
d𝜋̃ −

∫︁
(𝜑𝑘,𝜖− 𝜑𝑘)ℒ*𝜑𝑘 d𝜋̃, (6.3)

where the first term on the right hand side is negligible as 𝑘 → ∞ for any fixed 𝜖 due to ℒ*𝜑𝑘 = ̃︂ℒ𝜑𝑘 and the
second term is

−
∫︁

(𝜑𝑘,𝜖 − 𝜑𝑘)ℒ*𝜑𝑘 d𝜋̃ =
∫︁

(−ℒ𝜖𝜑𝑘,𝜖 + ℒ𝜑𝑘)𝜑𝑘𝑑𝜋̃ −
∫︁

𝜖
(︀
𝑀−1𝑝−∇𝑝

)︀⊤
𝛿Γ∇𝑝𝜑𝑘,𝜖𝜑𝑘 d𝜋̃.

Again, the first term on the right hand side is negligible for any fixed 𝜖 as 𝑘 → ∞ since both terms in the
bracket converge to ±(𝑓 − 𝜋(𝑓)). Integration by parts on the last term gives

−
∫︁

𝜖
(︀
𝑀−1𝑝−∇𝑝

)︀⊤
𝛿Γ∇𝑝𝜑𝑘,𝜖𝜑𝑘 d𝜋̃ = −

∫︁
𝜖∇𝑝𝜑

⊤
𝑘,𝜖𝛿Γ∇𝑝𝜑𝑘 d𝜋̃.

Collecting the above, for any fixed 𝜖, taking 𝑘 →∞ and using (6.2),∫︁
𝛿𝜑𝜖𝑓 d𝜋̃ = −

∫︁
𝜖∇𝑝𝜑

⊤𝛿Γ∇𝑝

(︁
𝜑 + 𝛿𝜑𝜖

)︁
d𝜋̃

holds. Plugging into (6.1), the directional derivative becomes

1
2

d𝜎2.𝛿Γ = − lim
𝜖→0

∫︁
∇𝑝𝜑

⊤𝛿Γ∇𝑝

(︁
𝜑 + 𝛿𝜑𝜖

)︁
d𝜋̃. (6.4)

From here, for any 𝜖, the unwanted term under the limit can be controlled by approximating again with 𝜑𝑘,𝜖,

𝜆𝑚

∫︁ ⃒⃒⃒
∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁⃒⃒⃒2
d𝜋̃ ≤

∫︁
∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁⊤
(Γ + 𝜖𝛿Γ)∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁
d𝜋̃

=
∫︁ (︁

𝜑𝑘,𝜖 − 𝜑𝑘

)︁(︀
𝑀−1𝑝−∇𝑝

)︀⊤
(Γ + 𝜖𝛿Γ)∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁
d𝜋̃,

= −
∫︁ (︁

𝜑𝑘,𝜖 − 𝜑𝑘

)︁
ℒ*𝜖
(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁
d𝜋̃

= −𝜖

∫︁ (︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁(︀
𝑀−1𝑝−∇𝑝

)︀⊤
𝛿Γ∇𝑝𝜑𝑘 d𝜋̃

= −𝜖

∫︁
∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁⊤
𝛿Γ∇𝑝𝜑𝑘 d𝜋̃

≤ 𝜖𝐶

∫︁ (︂⃒⃒⃒
∇𝑝

(︁
𝜑𝑘,𝜖 − 𝜑𝑘

)︁⃒⃒⃒2
+
⃒⃒⃒
∇𝑝𝜑𝑘

⃒⃒⃒2)︂
d𝜋̃,

where 𝜆𝑚 = inf0<𝜖≤𝜖′ 𝜆
𝜖
𝑚, 𝜆𝜖

𝑚 is the smallest eigenvalue of Γ + 𝜖𝛿Γ and 𝐶 > 0 is a constant depending on 𝛿Γ
and independent of 𝑘. Therefore taking 𝑘 →∞ and using (6.2) gives∫︁ ⃒⃒⃒

∇𝑝𝛿𝜑𝜖

⃒⃒⃒2
d𝜋̃ ≤ 𝜖𝐶

𝜆𝑚 − 𝜖𝐶

∫︁ ⃒⃒⃒
∇𝑝𝜑

⃒⃒⃒2
d𝜋̃

holds for small enough 𝜖 and putting into (6.4) concludes the proof.
�

Proof of Lemma 4.1. Substituting (4.3), (4.4) and (4.1) into the Poisson equation (1.6), one obtains

−
(︂

0 𝑀−1

−Σ−1 −Γ𝑀−1

)︂(︂
𝑞
𝑝

)︂
·
(︂

𝐺𝑆𝑞 + 𝐸𝑝 + 𝑔
𝐸⊤𝑞 + 𝐻𝑆𝑝 + ℎ

)︂
− Γ : 𝐻𝑆 =

1
2
𝑞 · 𝑈0𝑞 + 𝑙 · 𝑞 − 1

2
𝑈0 : Σ.

Comparing the constant, first order and second order coefficients in 𝑝 give respectively the sufficient condi-
tions (4.5)–(4.7) as stated. �
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Proof of Lemma 4.2. Comparing coefficients in 𝑞 in equation (4.5) gives

2Γ : 𝐻𝑆 = 𝑈0 : Σ (6.5)

ℎ⊤Σ−1 = 𝑙⊤ (6.6)
2𝐸Σ−1 = 𝑈0 + 𝐴2 (6.7)

and the same for condition (4.6) gives

𝑀−1𝐺𝑆 = 𝐻𝑆Σ−1 + 𝑀−1Γ𝐸⊤, (6.8)
𝑀−1𝑔 = 𝑀−1Γℎ. (6.9)

Condition (6.7) yields (4.9). Together with (4.7), this gives (4.10). From the expression (4.10) and by symmetry
of 𝑈0 , condition (6.5) is in turn satisfied:

2Γ : 𝐻𝑆 = Γ :
(︀
(Σ𝑈0 − Σ𝐴2 − 2𝐴1𝑀)Γ−1

)︀
=
∑︁

𝑖,𝑗,𝑘,𝑙

Γ𝑗𝑖(Σ𝑖𝑘(𝑈0)𝑘𝑙 − Σ𝑖𝑘(𝐴2)𝑘𝑙 − (𝐴1)𝑖𝑘𝑀𝑘𝑙)(Γ−1)𝑙𝑗

=
∑︁
𝑖,𝑘

(𝑈0)𝑘𝑖Σ𝑘𝑖 = 𝑈0 : Σ,

where symmetry of Σ and 𝑀 have been used. Substituting (4.9) and (4.10) into equation (6.8) then gives (4.8).
Equations (6.6) and (6.9) give the equations (4.11) for 𝑔 and ℎ. �

Proof of Lemma 4.3. Denote

𝐺̄ =
(︂

𝐺𝑆 𝐸

𝐸⊤ 𝐻𝑆

)︂
, 𝑈̄0 =

(︂
𝑈0 0
0 0

)︂
, Σ̄ =

(︂
Σ 0
0 𝑀

)︂
, 𝑔 =

(︂
𝑔

ℎ

)︂
, 𝑙̄ =

(︂
𝑙

0

)︂
.

Each of 𝜑 in (4.4) and 𝑓 − 𝜋(𝑓) from (4.1), (4.2) are given by

𝜑(𝑧) =
1
2
𝑧 · 𝐺̄𝑧 − 𝑔 · 𝑧 − 1

2
𝐺̄ : Σ̄

𝑓(𝑧)− 𝜋(𝑓) =
1
2
𝑧 · 𝑈̄0𝑧 − 𝑙̄ · 𝑧 − 1

2
𝑈̄0 : Σ̄

for 𝑧 = (𝑞, 𝑝) ∈ R2𝑛. Substituting into 𝜎2 = 2⟨𝜑, 𝑓 − 𝜋(𝑓)⟩𝜋̃ gives

2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ =
1
2

∫︁ (︀
𝑧 · 𝐺̄𝑧

)︀(︀
𝑧 · 𝑈̄0𝑧

)︀
d𝜋̃ − 1

2

∫︁ (︀
𝑧 · 𝐺̄𝑧

)︀
𝑈̄0 : Σ̄ d𝜋̃ + 2

∫︁
(𝑔 · 𝑧)

(︀
𝑙̄ · 𝑧
)︀

d𝜋̃

− 1
2

∫︁
𝐺̄ : Σ̄

(︀
𝑧 · 𝑈̄0𝑧

)︀
d𝜋̃ +

1
2
(︀
𝐺̄ : Σ̄

)︀(︀
𝑈0 : Σ̄

)︀
,

where ∫︁ (︀
𝑧 · 𝐺̄𝑧

)︀(︀
𝑧 · 𝑈̄0𝑧

)︀
d𝜋̃ =

∑︁
𝑖,𝑗,𝑢,𝑣

𝐺̄𝑖𝑗

(︀
𝑈̄0

)︀
𝑢𝑣

∫︁
𝑧𝑖𝑧𝑗𝑧𝑢𝑧𝑣 d𝜋̃

=
∑︁

𝑖,𝑗,𝑢,𝑣

𝐺̄𝑖𝑗

(︀
𝑈̄0

)︀
𝑢𝑣

(︀
Σ̄𝑖𝑗Σ̄𝑢𝑣 + Σ̄𝑖𝑢Σ̄𝑗𝑣 + Σ̄𝑖𝑣Σ̄𝑗𝑢

)︀
=
(︀
𝐺̄ : Σ̄

)︀(︀
𝑈̄0 : Σ̄

)︀
+ 2Tr

(︀
𝐺̄Σ̄𝑈̄0Σ̄

)︀
.
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As a result,

2
∫︁

𝜑(𝑓 − 𝜋(𝑓)) d𝜋̃ =
1
2
(︀
𝐺̄ : Σ̄

)︀(︀
𝑈̄0 : Σ̄

)︀
+ Tr

(︀
𝐺̄Σ̄𝑈̄0Σ̄

)︀
− 1

2
(︀
𝐺̄ : Σ̄

)︀(︀
𝑈̄0 : Σ̄

)︀
+ 2

∫︁
(𝑔 · 𝑧)

(︀
𝑙̄ · 𝑧
)︀

d𝜋̃

= Tr
(︀
𝐺̄Σ̄𝑈̄0Σ̄

)︀
+ 2𝑔 · Σ̄𝑙̄.

�

Proof of Proposition 4.8. Let Γ = 𝛾𝐼𝑛, 𝛾 ∈ R. Note there is a unique solution 𝜑 ∈ 𝐿2
0(𝜋̃) to (1.6) by Theorem 2.5.

The solution 𝜑 to (1.6) has the expression 𝜑 =
∑︀

𝑖 𝛼𝑖(𝛾𝑞𝑖 + 𝑝𝑖). The asymptotic variance is equal to

2⟨𝜑, 𝑓 − 𝜋(𝑓)⟩𝜋̃ = 2𝛾
∑︁
𝑖,𝑗

𝛼𝑖𝛼𝑗

∫︁
R𝑛

𝑞𝑖𝜕𝑞𝑗
𝑈(𝑞)𝜋(d𝑞)

= −2𝛾
∑︁

𝑖

𝛼2
𝑖

∫︁
R𝑛

𝑞𝑖𝜕𝑞𝑖𝜋(𝑞) d𝑞 − 2𝛾
∑︁
𝑖̸=𝑗

𝛼𝑖𝛼𝑗

∫︁
R𝑛

𝑞𝑖𝜕𝑞𝑗 𝜋(𝑞) d𝑞

= 2𝛾
∑︁

𝑖

𝛼2
𝑖

∫︁
R𝑛

𝜋(𝑞) d𝑞 − 2𝛾
∑︁
𝑖 ̸=𝑗

𝛼𝑖𝛼𝑗

∫︁
R𝑛−1

𝑞𝑖

∫︁
R

𝜕𝑞𝑗
𝜋(𝑞) d𝑞𝑗 d𝑞−𝑗

= 2𝛾
∑︁

𝑖

𝛼2
𝑖

where d𝑞−𝑗 denotes d𝑞1 . . . d𝑞𝑗−1d𝑞𝑗+1 . . . d𝑞𝑛. Taking 𝛾 → 0 gives (4.18). �

For the proof of Proposition 4.10, some notation is introduced. For 𝑘 ∈ N0, let the tridiagonal matrix 𝑀𝑘̃ ∈
R(𝑘̃+1)×(𝑘̃+1) be given by its elements

(︀
𝑀𝑘̃

)︀
𝑖,𝑗

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑖 if 𝑖 + 1 = 𝑗,

(𝑖− 1)𝛾 if 𝑖 = 𝑗,

𝑖− 𝑘 − 2 if 𝑖− 1 = 𝑗,

0 otherwise

(6.10)

for indices 1 ≤ 𝑖, 𝑗 ≤ 𝑘 + 1.

Lemma 6.1. Let 𝑚 ∈ N and let 𝑀̃ ∈ R𝑚×𝑚 be a tridiagonal matrix of the form

(︁
𝑀̃
)︁

𝑖,𝑗
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑏𝑖 if 𝑖 + 1 = 𝑗,

𝑏′𝑖𝛾 if 𝑖 = 𝑗,

𝑏′′𝑖 if 𝑖− 1 = 𝑗,

0 otherwise

for constants 𝑏′𝑖 ∈ R, 𝑏𝑖, 𝑏
′′
𝑖 ∈ R∖{0}. The following statements hold.

(i) If 𝑚 is odd, then det(𝑀̃) = 𝒪(𝛾) as 𝛾 → 0.
(ii) If 𝑚 is even, then lim𝛾→0 det(𝑀̃) ̸= 0.

Lemma 6.1 is straightforwardly proved by repeatedly taking Laplace expansions. An explicit proof is not
given here.
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Proof of Proposition 4.10. Only a standard Gaussian and 𝑀 = 1 is considered, the arguments for the general
centered Gaussian case are the same. First consider the observable

𝑓(𝑞) = 𝑞𝑘 (6.11)

for some odd 𝑘 ∈ N0. Take the polynomial ansatz

𝜑(𝑞, 𝑝) =
𝑘∑︁

𝑖,𝑗=0

𝑎𝑖,𝑗𝑞
𝑖𝑝𝑗 (6.12)

for 𝑎𝑖,𝑗 ∈ R and Γ = 𝛾 > 0. It will be shown that arbitrarily small asymptotic variance is achieved in the 𝛾 → 0
limit. Note that only pairs (𝑖, 𝑗) with odd 𝑖 and even 𝑗 make nonzero contributions to the asymptotic variance.
Applying −ℒ to the ansatz,

−ℒ𝜑 =
𝑘∑︁

𝑖,𝑗=0

−𝑖𝑎𝑖,𝑗𝑞
𝑖−1𝑝𝑗+1 + 𝑗𝑎𝑖,𝑗𝑞

𝑖+1𝑝𝑗−1 + 𝛾𝑗𝑎𝑖,𝑗𝑞
𝑖𝑝𝑗 − 𝛾𝑗(𝑗 − 1)𝑎𝑖,𝑗𝑞

𝑖𝑝𝑗−2

=
𝑘+1∑︁
𝑖,𝑗=0

(−(𝑖 + 1)𝑎𝑖+1,𝑗−1 + (𝑗 + 1)𝑎𝑖−1,𝑗+1 + 𝛾𝑗𝑎𝑖,𝑗 − 𝛾(𝑗 + 2)(𝑗 + 1)𝑎𝑖,𝑗+2)𝑞𝑖𝑝𝑗

where
𝑎𝑖,𝑗 = 0 ∀𝑖, 𝑗 < 0 and ∀𝑖, 𝑗 > 𝑘. (6.13)

Comparing with coefficients in (6.11) via (1.6),

−(𝑖 + 1)𝑎𝑖+1,𝑗−1 + (𝑗 + 1)𝑎𝑖−1,𝑗+1 + 𝛾𝑗𝑎𝑖,𝑗 − 𝛾(𝑗 + 2)(𝑗 + 1)𝑎𝑖,𝑗+2 = 0 (6.14)

for all (𝑖, 𝑗) ̸= (𝑘, 0). It holds by strong induction (in 𝑗′) that

𝑎𝑖′+𝑗′,𝑘+1−𝑗′ = 0 ∀𝑖′, 𝑗′ ≥ 0 (6.15)

because of the following. The base case 𝑗′ = 0 follows by (6.13), the induction step follows by taking (𝑖, 𝑗) =
(𝑖′ + 𝑗′ − 1, 𝑘 + 2 − 𝑗′) for 𝑖′ ≥ 0 in (6.14) and again using (6.13) where necessary; an illustration is given in
Figure 7.

Comparing coefficients in the Poisson equation (1.6) for (𝑖, 𝑗) = (𝑘, 0) and using (6.13), (6.15) yields

𝑎𝑘−1,1 = 1. (6.16)

Combining (6.16) with setting (𝑖, 𝑗) = (𝑗′ − 1, 𝑘 + 1 − 𝑗′) for 𝑗′ = 1, . . . , 𝑘 in (6.14), the entries 𝑎𝑗′,𝑘−𝑗′ satisfy
the linear system

𝑀𝑘(𝑎𝑘,0, 𝑎𝑘−1,1, . . . , 𝑎0,𝑘)⊤ = (1, 0, . . . , 0)⊤, (6.17)

where 𝑀𝑘 ∈ R𝑘+1×𝑘+1 is the tridiagonal matrix given in (6.10). In order to find the order in 𝛾 as 𝛾 → 0 of
the elements of (𝑎𝑘,0, . . . , 𝑎0,𝑘)⊤ appearing in (6.17), it suffices to find the order of the entries in the leftmost
column of 𝑀−1

𝑘 . For this, let 𝐶𝑖 ∈ R be the 𝑖th minor appearing in the top row of the cofactor matrix of 𝑀𝑘.
On the corresponding submatrix, repeatedly taking the Laplace expansion on the leftmost column until only
the determinant of a (𝑘 + 1− 𝑖)-by-(𝑘 + 1− 𝑖) square matrix from the bottom right corner of 𝑀𝑘 remains to be
calculated, then using Lemma 6.1 for this (𝑘 + 1− 𝑖)-by-(𝑘 + 1− 𝑖) matrix gives that 𝐶𝑖 is of order 𝛾 as 𝛾 → 0
for odd 𝑖. Furthermore, the determinant of 𝑀𝑘 is bounded away from zero as 𝛾 → 0 by Lemma 6.1. Therefore
the elements of (𝑎𝑘,0, . . . , 𝑎0,𝑘) in the left hand side of (6.17) with an odd index, that is 𝑎𝑘−𝑗,𝑗 for even 𝑗, have
order 𝛾 and at most order 1 otherwise as 𝛾 → 0. These elements with odd indices are exactly those from the
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Figure 7. Left: an illustration of the relation (6.14) with (𝑖, 𝑗) = (3, 3), where each dot repre-
sents a coefficient 𝑎𝑖,𝑗 . Right: points on and inside the triangle show in the case 𝑘 = 5 all of the
coefficients that can be nonzero. All other points outside of the triangle are asserted to be zero
by (6.13) and (6.15). The induction step for proving (6.15) amounts to translating the chain
on the left figure horizontally, in order to show that the point at the bottom of each translated
chain is zero by the fact that the other points in the same chain are zero.

vector (𝑎𝑘,0, . . . , 𝑎0,𝑘)⊤ that make a contribution to the asymptotic variance. The “next” set of contributions
come from the vector (𝑎𝑘−2,0, 𝑎𝑘−3,1 . . . , 𝑎0,𝑘−2). Using again (6.13) and (6.14), the vector satisfies

𝑀𝑘−2(𝑎𝑘−2,0, 𝑎𝑘−3,1, . . . , 𝑎0,𝑘−2)⊤ = 𝑣𝑘−2,

for some vector 𝑣𝑘−2 (from the last term on the left hand side of (6.14)) of order 𝛾 as 𝛾 → 0 and since the
determinant of 𝑀𝑘−2 is of order 1 (by Lem. 6.1), the contributions here to the asymptotic variance are again of
order 𝛾. Continuing for (𝑎𝑘−2𝑗,0, 𝑎𝑘−2𝑗−1,1 . . . , 𝑎0,𝑘−2𝑗)⊤, 𝑗 ∈ N, it follows that all contributions are of order 𝛾
as 𝛾 → 0. The resulting coefficients indeed make up a solution 𝜑 to the Poisson equation because the matrices 𝑀𝑘

are invertible and because the coefficients 𝑎𝑖,𝑗 for even 𝑖+𝑗 are equal to zero from repeating the above procedure
for the coefficients associated to 𝑀𝑘−1, 𝑀𝑘−3 and so on.

For the general case of (4.19), since ℒ is a linear differential operator and the contributions to the value
of
∫︀

𝜑(𝑓−𝜋(𝑓)) d𝜋̃ come from exactly the same (odd 𝑖, even 𝑗) 𝑎𝑖,𝑗 coefficients from the corresponding solution 𝜑
to each summand in (4.19), the proof concludes. �

Proof of Proposition 4.11. Take the polynomial ansatz

𝜑(𝑞, 𝑝) =
4∑︁

𝑖,𝑗=0

𝑎𝑖,𝑗𝑞
𝑖𝑝𝑗 (6.18)

for 𝑎𝑖,𝑗 ∈ R, where 𝑎𝑖,𝑗 not appearing in the sum are taken to be zero in the following. Again, only the
standard Gaussian is considered, it turns out the arguments follow similarly otherwise. Comparing coefficients
in (1.6) and using the same strong induction argument as in the proof of Proposition 4.10 leads to (6.14) for
all (𝑖, 𝑗) ̸= (4, 0), (0, 0) and equation (6.15). Taking (𝑖, 𝑗) = (𝑗′−1, 5− 𝑗′) for 1 ≤ 𝑗′ ≤ 4 in (6.14) and comparing
the 𝑞4 coefficients in the Poisson equation, it holds that

𝑀4(𝑎4,0, 𝑎3,1, 𝑎2,2, 𝑎1,3, 𝑎0,4)⊤ = (1, 0, . . . , 0)⊤ (6.19)
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and taking (𝑖, 𝑗) = (𝑗′ − 1, 3− 𝑗′) for 𝑗′ ≥ 1 in (6.14) yields

𝑀2(𝑎2,0, 𝑎1,1, 𝑎0,2)⊤ = 𝛾(2𝑎2,2, 6𝑎1,3, 12𝑎0,4)⊤. (6.20)

Equations (6.19), (6.20) can be solved explicitly and the asymptotic variance is a weighted sum of the result-
ing coefficients. Those in (6.18) that make contributions are 𝑎4,0, 𝑎2,2, 𝑎2,0, which gives the asymptotic vari-
ance 12(21𝛾4+55𝛾2+27)

𝛾(3𝛾2+4) that goes to infinity as 𝛾 → 0 or 𝛾 → ∞; note that the coefficients associated to 𝑀3

and 𝑀1 are zero by a similar procedure as above. Finally, to check that the solution coefficients given by (6.19)
and (6.20) indeed solve the Poisson equation, it remains to show the constant coefficient of ℒ𝜑 with these
solution coefficients matches that of the right-hand side of the Poisson equation. The constant term on the
right-hand side of the Poisson equation is given by

∫︁
𝑞4 𝑒

𝑞2

2

√
2𝜋

d𝑞 = 3,

which is readily verified to be equal to 2Γ𝑎0,2 from (6.19) and (6.20). �

7. Discussion

7.1. The nonconvex case

In the case where 𝑈 is nonconvex, the Monte Carlo procedure in Section B.1.3 may continue to be used
as presented, however the first variation process (that is, the solution to (3.3)) could easily stray from the
case of exponential decay as in Theorem 3.3. Transitions from one metastable state to another cause the
tangent process to increase in magnitude. In a one dimension double well potential 𝑈(𝑞) = 𝑞4

4 − 𝑞2 + 𝑞
2 , linear

observable 𝑓(𝑞) = 𝑞 case, these transitions occur frequently enough during the gradient procedure in Γ that 𝐷𝑞
blows up in simulation. Even in cases for which the metastabilities are strong, so that transitions occur less
frequently, simulations show that Γ dives to zero in periods where no transitions are occuring (as if the case
of Cor. 4.9), but increase dramatically in value once a transition does occur, causing the trajectory in Γ to
decay over time but occasionally jumping in value, so that there is no convergence for Γ. On the other hand, a
Galerkin approach tends to give good convergence for Γ in such cases.

7.2. Position-dependent friction

It is possible to adapt the formula (3.1) to the case of position-dependent gradient direction in Γ. The gradient
direction is the same as (1.9) with the change that the integral is replaced by the corresponding marginal integral
in 𝑝. Ideas using such a formula need to take into account that the first variation process retains a non-vanishing
stochastic integral with respect to Brownian motion, so that the truncation in calculating the corresponding
infinite time integral in Section B.1.3 is not as well justified, or rather, does not happen in the execution of
Algorithm 2 due to (B.11) not being satisfied.

7.3. Metropolisation

Throughout Section 5, the implementation has not involved accept-reject steps. Metropolisation of discretisa-
tions of the underdamped Langevin dynamics was given in [42], see also Section 2.2.3.2 in [52] and [54,65]. The
systematic discretisation error is removed with the inclusion of this step but the momentum is reversed upon
rejection (to avoid high rejection rates [65]), which raises the question of whether friction matrices arising from
Algorithm 1 improve the Metropolised situation where dynamics no longer imitate those in the continuous-time.
For example the intuition in the Gaussian target measure, linear observable case discussed in Section 4.2 no
longer applies.
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7.4. Possible connections for future work

Taking Γ →∞ together with a time rescaling, the dynamics (1.1) become the overdamped Langevin equation
[60]. An analogous result holds [43] when Γ = Γ(𝑞) is position dependent, where a preconditioner for the
corresponding overdamped dynamics appears in terms of Γ−1; see Section 7.2 for a consideration of our method
in the position dependent friction case. On the other hand, the Hessian of 𝑈 makes a good preconditioner in the
overdamped dynamics because of the Brascamp-Lieb inequality, see Remark 1 in [2]. To our knowledge, it is an
open question whether optimisers for our problem are related in the limit to optimisers for analogous problems
for the overdamped dynamics.

The infinite time integral (1.10) has been used for the calculation of transport coefficients in molecular
dynamics [50,59] and the derivative of the expectation appearing in (1.10) with respect to initial conditions is a
problem considered when calculating the “greeks” in mathematical finance [30]. On the topic of the latter and
in contrast to [30], there is previous work dealing with cases of degenerate noise in the system, some of these
references are given in Remark B.2.

Variance reduction by modifying the observable instead of changing the dynamics has been considered for
example in [5, 6, 68]. As of writing, the methods there are not directly compatible with the framework in the
present work due to the improved observable being unknown before the simulation of the Markov chain.

Finally, we mention that underdamped Langevin dynamics has been considered with (variance reduced)
stochastic gradients. In [70], the authors present a comparison between such an application with Hamiltonian
Monte Carlo. In [14], convergence guarantees are provided for control variate stochastic gradients in under-
damped Langevin dynamics, along with numerical comparisons in low dimensional, tall dataset regimes. Fur-
thermore, the underdamped dynamics with single, randomly selected component gradient update in place of
the full gradient is considered in [21].

7.5. Conclusion

We have presented the central limit theorem for the underdamped Langevin dynamics and provided a formula
for the directional derivative of the corresponding asymptotic variance with respect to a friction matrix Γ. A
number of methods for approximating the gradient direction in Γ have been discussed together with numerical
results giving improved observed variances. Some cases where an improved friction matrix can be explicitly
found have been given to guide the expectation of an optimal Γ. In particular, in cases where the observable
is linear and the potential is close to quadratic, which is the case when finding the posterior mean in Bayesian
inference with Gaussian priors, the optimal friction is expected to be close to zero (due to Cor. 4.9). This is
consistent with the numerical results from Algorithm 2. Moreover, it is shown that the improvement in variance
is retained when using minibatch stochastic gradients in a case of Bayesian inference.

We mention that the gradient procedure using (1.7) and (1.11) can be used to guide Γ in arbitrarily high
dimension; given a high dimensional problem of interest, the gradient procedure can be used on similar, inter-
mediate dimensional problems in order to obtain a friction matrix. In particular, for the Bayesian inference
problem as formulated in Section 5.3, the algorithm recommends the choice of a small friction scalar, which can
be expected to apply for datasets in an arbitrary number of dimensions.

Future directions not mentioned above include the study of well-posedness of the optimisation in Γ, exten-
sion to higher-order Langevin samplers methods as in [13, 56] and gradient formulae in the discrete time case
analogous to Theorem 3.2.

Appendix A. Preliminaries

Theorem A.1. Let Assumption 2.1 hold. For any ℱ0-measurable 𝑧0 : Ω → R2𝑛, there exists an almost surely
continuous in 𝑡 solution (𝑞𝑡, 𝑝𝑡) = 𝑧𝑡 : Ω → R2𝑛 to (1.1) that is ℱ𝑡-adapted and unique up to equivalence.
Furthermore, for any 𝑧 ∈ R2𝑛, 𝑡 ≥ 0, let 𝜌𝑧

𝑡 be the probability measure given by

𝜌𝑧
𝑡 (𝐴) = P(𝑧𝑧

𝑡 ∈ 𝐴) (A.1)



OPTIMAL FRICTION MATRIX FOR UNDERDAMPED LANGEVIN SAMPLING 3363

for any Borel measurable 𝐴, where 𝑧𝑧
𝑡 denotes the solution to (1.1) starting at 𝑧0 = 𝑧, then 𝜌𝑧

𝑡

(1) is a transition probability in the sense that
(a) (𝑡, 𝑧) ↦→ 𝜌𝑧

𝑡 (𝐴) is Borel measurable on (0,∞)× R2𝑛,
(b) the Chapman–Kolmogorov relation [31] holds and;

(2) admits a density denoted 𝜌(𝑧, ·, 𝑡) : R2𝑛 → R with respect to the Lebesgue measure on R2𝑛 at every (𝑡, 𝑧) ∈
(0,∞)× R2𝑛 such that 𝜌 is a measurable function satisfying for every 𝑧 ∈ R2𝑛,

𝜌(𝑧, ·, ·) ∈ 𝐶∞
(︀
R2𝑛 × (0,∞)

)︀
. (A.2)

Proof. Theorem 3.5 in [45] together with (2.8) yields existence and uniqueness of the solution to (1.1). Theo-
rem 3.1 and 3.6 in Section 5 of [31] give that 𝜌𝑧

𝑡 (𝐴) given by (A.1) is a probability kernel, that is, 𝜌𝑧
𝑡 (𝐴) is Borel

measurable in 𝑧 for fixed 𝐴, 𝑡, is a probability measure in 𝐴 for fixed 𝑧, 𝑡 and satisfies the Chapman–Kolmogorov
relation. For Borel measurability of (𝑡, 𝑧) ↦→ 𝜌𝑧

𝑡 (𝐴) for fixed 𝐴, consider 𝑧𝑧
𝑡 given by

𝑧𝑧
𝑡 (𝜔) =

{︃
𝑧𝑧
𝑡 (𝜔) if 𝜔 : 𝑧𝑧

∙(𝜔) ∈ 𝐶([0,∞)),
0 otherwise.

(A.3)

The process 𝑧𝑧
𝑡 is continuous in 𝑡 and ℱ-measurable in 𝜔, therefore P(𝑧𝑧

𝑡 ∈ 𝐴) = P(𝑧𝑧
𝑡 ∈ 𝐴) is continuous in 𝑡

hence Borel measurable in (𝑡, 𝑧). Finally, 𝜌𝑧
𝑡 admits a density at every (𝑡, 𝑧) ∈ (0,∞)×R2𝑛 satisfying (A.2) due

to Itô’s rule and Hörmander’s theorem [40]; measurability with respect to the starting point 𝑧 and therefore
jointly in all of the arguments ([1], Lem. 4.51) follows by the strong Feller property given by Theorem 4.2 in
[22], because 𝜌(·, 𝜁, 𝑡) is the pointwise limit of the continuous functions (

∫︀
𝜂𝑘(𝜁 − 𝜁 ′)𝜌(·, 𝜁 ′, 𝑡)𝑑𝜁 ′)𝑘>0, where 𝜂𝑘

denotes the standard scaled mollifiers. �

For all 𝑡 ≥ 0, all 𝑧 ∈ R2𝑛 and all 𝑓 : R2𝑛 → R integrable under the law ℒ((𝑧𝑡)𝑡≥0|𝑧0 = 𝑧) of 𝑧𝑡 starting at 𝑧,
let

𝑃𝑡(𝑓) : 𝑧 ↦→ E(𝑓(𝑧𝑧
𝑡 )) = E(𝑓(𝑧𝑡)|𝑧0 = 𝑧). (A.4)

The family (𝑃𝑡)𝑡≥0 forms a strongly continuous (Prop. A.2) Markov semigroup on 𝐿2(𝜋̃) with unit operator
norm. Denote by 𝐿 the infinitesimal generator associated to this semigroup, given by

𝐿𝑢 = lim
𝑡→0

𝑃𝑡(𝑢)− 𝑢

𝑡
(A.5)

for all functions 𝑢 ∈ 𝒟(𝐿) ⊂ 𝐿2(𝜋̃), where the domain 𝒟(𝐿) consists of the functions for which the above limit
in 𝐿2(𝜋̃) exists.

Proposition A.2. The family (𝑃𝑡)𝑡≥0 is strongly continuous in 𝐿2(𝜋̃).

Proof. Fix 𝜖 > 0. For any 𝑓 ∈ 𝐿2(𝜋̃), there exists 𝑔 ∈ 𝐶∞𝑐 such that ‖𝑓 − 𝑔‖𝐿2(𝜋̃) ≤ 𝜖
3 . By triangle inequality, it

holds that
‖𝑃𝑡𝑓 − 𝑓‖𝐿2(𝜋̃) ≤ ‖𝑃𝑡𝑓 − 𝑃𝑡𝑔‖𝐿2(𝜋̃) + ‖𝑓 − 𝑔‖𝐿2(𝜋̃) + ‖𝑃𝑡𝑔 − 𝑔‖𝐿2(𝜋̃). (A.6)

The last term on the right hand side converges to 0 as 𝑡 → 0 by Itô’s rule. Since the measures
∫︀

E[1·(𝑧𝑧
𝑡 )]𝜋̃(d𝑧)

solve the associated Fokker–Planck equation in the distributional sense, it is equal to the unique solution 𝜋̃,
therefore the first term on the right-hand side of (A.6) can be bounded by 𝜖

3 after Jensen’s inequality. �

Here, we give the definition of a maximally accretive operator in 𝐿2(𝜋̃) from Definition 5.2 of [39]. For a
linear operator 𝐴 : 𝒟(𝐴) → 𝐿2(𝜋̃) defined on 𝒟(𝐴) ⊂ 𝐿2(𝜋̃), the operator 𝐴 is called maximally accretive if
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(i) it holds that ∫︁
𝑓𝐴𝑓 d𝜋̃ ≥ 0, ∀𝑓 ∈ 𝒟(𝐴), (A.7)

(ii) and there does not exist an extension 𝐴 : 𝒟(𝐴) → 𝐿2(𝜋̃) of 𝐴 with 𝒟(𝐴) strictly larger than 𝒟(𝐴),
satisfying (A.7) with 𝐴 and 𝒟(𝐴) replaced by 𝐴 and 𝒟(𝐴).

In this work, we take for granted the results ([39], Thm. 5.4 [28], Thm. 2.12, Prop. 3.1) on operators with
maximally accretive closures.

Proposition A.3. The differential operator −ℒ defined on 𝐶∞𝑐 has a maximally accretive closure in 𝐿2(𝜋̃).

Proof. Let 𝐾 denote the differential operator

𝐾 = 𝑒
− 1

2

(︁
𝑈(𝑞)+ 𝑝2

2

)︁

ℒ
(︂

𝑒
1
2

(︁
𝑈(𝑞)+ 𝑝2

2

)︁)︂
= 𝑝⊤𝑀−1∇𝑞 −∇𝑈(𝑞)⊤∇𝑝 +

1
2

TrΓ− 1
4
𝑝⊤Γ𝑝 +∇⊤𝑝 Γ∇𝑝

acting on 𝐶∞𝑐 . By a straightforward adaptation of the proof of Proposition 5.5 in [39], the closure of −𝐾 in
𝐿2(R2𝑛) and therefore the closure of −ℒ in 𝐿2(𝜋̃) are maximally accretive. �

Proof of Theorem 2.5. For 𝑇 > 0, let 𝑔𝑇 :=
∫︀ 𝑇

0
𝑃𝑡(𝑓) d𝑡. Note that 𝑔𝑇 ∈ 𝐿2(𝜋̃) for 𝑇 ∈ R+ ∪ {∞} and by

Theorem 2.2
𝑔𝑇 →

∫︁ ∞

0

𝑃𝑡(𝑓) d𝑡 (A.8)

in 𝐿2(𝜋̃) as 𝑇 →∞, specifically (2.5) with 𝜙 = 𝑓 and using (2.7) for 2𝑙 in place of 𝑙. Applying 𝐿, it holds that

𝐿𝑔𝑇 = lim
𝑠→0

𝑃𝑠(𝑔𝑇 )− 𝑔𝑇

𝑠
= lim

𝑠→0

1
𝑠

(︃∫︁ 𝑇+𝑠

𝑠

−
∫︁ 𝑇

0

)︃
𝑃𝑢(𝑓) d𝑢 = 𝑃𝑇 (𝑓)− 𝑓,

where the exchange in the order of integration is justified by Fubini, equation (2.5) and the last equality follows
by the strong continuity of (𝑃𝑡)𝑡≥0 (given by Prop. A.2). Inequalities (2.5) and (2.7) (with 2𝑙 in place of 𝑙) also
give

𝑃𝑇 (𝑓) → 0 in 𝐿2(𝜋̃) (A.9)

as 𝑇 →∞, so that since 𝐿 is a closed operator, equations (1.6) and (2.9) hold. In addition,
∫︀

𝜑 d𝜋̃ = 0 follows
from the invariance of 𝜋̃, Theorem 2.2 and Fubini’s theorem. �

Proof of Lemma 3.1. By Proposition A.3, there are 𝜑𝑘 ∈ 𝐶∞𝑐 such that (𝜑𝑘,−ℒ𝜑𝑘)𝑘∈N is an approximating
sequence to (𝜑,−𝐿𝜑) in 𝐿2(𝜋̃)2. By integrating by parts and using the antisymmetric property of the relevant
part of ℒ, we have

𝜆𝑚

∫︁
|∇𝑝𝜑𝑘 −∇𝑝𝜑𝑘′ |2 d𝜋̃ ≤

∫︁
∇𝑝(𝜑𝑘 − 𝜑𝑘′)

⊤Γ∇𝑝(𝜑𝑘 − 𝜑𝑘′) d𝜋̃

= −
∫︁

(𝜑𝑘 − 𝜑𝑘′)(ℒ𝜑𝑘 − ℒ𝜑𝑘′) d𝜋̃, (A.10)

where 𝜆𝑚 is the smallest eigenvalue of Γ, so that ∇𝑝𝜑𝑘 is Cauchy in 𝐿2(𝜋̃), with limit denoted as 𝑔 ∈ 𝐿2(𝜋̃).
For any ℎ ∈ 𝐶∞𝑐 , ⃒⃒⃒⃒∫︁

𝑔ℎ +
∫︁

𝜑∇𝑝ℎ

⃒⃒⃒⃒
≤
⃒⃒⃒⃒∫︁

𝑔ℎ−
∫︁
∇𝑝𝜑𝑘ℎ

⃒⃒⃒⃒
+
⃒⃒⃒⃒∫︁

𝜑∇𝑝ℎ−
∫︁

𝜑𝑘∇𝑝ℎ

⃒⃒⃒⃒
,

hence
∇𝑝𝜑𝑘 → 𝑔 = ∇𝑝𝜑 ∈ 𝐿2(𝜋̃). (A.11)

�
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Appendix B. Details of the implementation

B.1. Methodology

Here we describe an on-the-fly procedure to repeatedly calculate the change (1.9) in Γ by simulating the first
variation process parallel to underdamped Langevin processes. The discretisation schemes used to simulate (1.1)
and (3.3) are given in Section B.1.1. Two gradient procedures, namely gradient descent and the Heavy ball
method, for evolving Γ given a gradient are detailed in Section B.1.2. Then iterates from Section B.1.1 are used
to approximate each change in Γ in Section B.1.3. The key idea linking the above is that if equation (1.11)
holds, then

∆Γ =
∫︁
∇𝑝𝜑⊗∇𝑝𝜑 d𝜋̃

= −
∫︁ (︂∫︁ ∞

0

E
[︀
∇𝑓(𝑞𝑠)⊤𝐷𝑝𝑞𝑠

]︀⊤
d𝑠

)︂(︂∫︁ ∞

0

E
[︁
∇𝑓(𝑞𝑡)

⊤
𝐷𝑝𝑞𝑡

]︁
d𝑡

)︂
d𝜋̃, (B.1)

where (𝑞𝑡, 𝑝𝑡) and (𝑞𝑡, 𝑝𝑡) denote the solutions to (1.1) with initial values (𝑞, 𝑝), (𝑞,−𝑝) respectively, (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡)
and (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) denote the solutions to (B.3) with 𝑞𝑡 replacing 𝑞𝑡 for the latter and the integral in (B.1) is
with respect to (𝑞, 𝑝).

B.1.1. Splitting

A BAOAB splitting scheme [48,49] will be used to integrate the Langevin dynamics (1.1), given explicitly by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝑝𝑖+ 1
3 = 𝑝𝑖 −∇𝑈

(︀
𝑞𝑖
)︀

Δ𝑡
2

𝑞𝑖+ 1
2 = 𝑞𝑖 + 𝑝𝑖+ 1

3 Δ𝑡
2

𝑝𝑖+ 2
3 = exp

(︀
−∆𝑡Γ𝑖

)︀
𝑝𝑖+ 1

3 +
√︀

1− exp(−2∆𝑡Γ𝑖)𝜉𝑖

𝑞𝑖+1 = 𝑞𝑖+ 1
2 + 𝑝𝑖+ 2

3 Δ𝑡
2

𝑝𝑖+1 = 𝑝𝑖+ 2
3 −∇𝑈

(︀
𝑞𝑖+1

)︀
Δ𝑡
2

(B.2)

for 𝑖 ∈ N, ∆𝑡 > 0, where 𝜉𝑖 are independent 𝑛-dimensional standard normal random variables and Γ𝑖 ∈ S𝑛
++ are

a sequence of friction matrices to be updated throughout the duration of the algorithm, but we mention again
recent developments, e.g. [16, 19, 29, 54, 64, 66], on discretisations of the underdamped Langevin dynamics; the
majority of the numerical error involved in updating Γ is expected to come from the small number of particles
in approximating the integrals in the expression (1.9) for ∆Γ, so that no further deliberation is made about the
choice of discretisation for the purposes here. The first variation process (B.3) together with its initial condition
is

𝐷𝑝𝑞𝑡 =
∫︁ 𝑡

0

𝐷𝑝𝑝𝑠 d𝑠, (B.3a)

𝐷𝑝𝑝𝑡 = 𝐼𝑛 −
∫︁ 𝑡

0

(︀
𝐷2𝑈(𝑞𝑠)𝐷𝑝𝑞𝑠 + Γ𝐷𝑝𝑝𝑠

)︀
d𝑠. (B.3b)

In order to simulate (B.3), an analogous splitting scheme is used:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐷𝑝𝑖+ 1
3 = 𝐷𝑝𝑖 −𝐷2𝑈

(︀
𝑞𝑖
)︀
𝐷𝑞𝑖 Δ𝑡

2

𝐷𝑞𝑖+ 1
2 = 𝐷𝑞𝑖 + 𝐷𝑝𝑖+ 1

3 Δ𝑡
2

𝐷𝑝𝑖+ 2
3 = exp

(︀
−∆𝑡Γ𝑖

)︀
𝐷𝑝𝑖+ 1

3

𝐷𝑞𝑖+1 = 𝐷𝑞𝑖+ 1
2 + 𝐷𝑝𝑖+ 2

3 Δ𝑡
2

𝐷𝑝𝑖+1 = 𝐷𝑝𝑖+ 2
3 −𝐷2𝑈

(︀
𝑞𝑖+1

)︀
𝐷𝑞𝑖 Δ𝑡

2 .

(B.4)
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In the case where the second derivatives of 𝑈 are not directly available, the 𝑘th column of (for example)
𝐷2𝑈(𝑞𝑖)𝐷𝑞𝑖 Δ𝑡

2 can be approximated by

−∇𝑈

(︂
𝑞𝑖 +

∆𝑡

2
(︀
𝐷𝑞𝑖

)︀
𝑘

)︂
+∇𝑈

(︀
𝑞𝑖
)︀

(B.5)

where (𝐷𝑞𝑖)𝑘 denotes the 𝑘th column of 𝐷𝑞𝑖, so that (B.3) can still be approximated in the absence of Hessian
evaluations. The approximation (B.5) will be used only when explicitly stated in the sequel.

B.1.2. Gradient procedure in Γ

Suppose we have available a series of proposal updates (𝑏0, . . . , 𝑏𝐿−1) ∈ R𝑛×𝑛×𝐿 for Γ, each element of which
being noisy estimates of the same gradient direction in Γ. Given stepsizes 𝛼𝑖 = 𝛼 ∈ R and an annealing factor
𝑟 ∈ R, the following constrained stochastic gradient descent (for 𝑖 where proposal updates are produced)

Γ𝑖+1 = Π𝜇
pd

⎛⎝Γ𝑖 +
𝛼𝑖

2𝐿

𝐿−1∑︁
𝑗=0

(︀
𝑏𝑗 + 𝑏⊤𝑗

)︀⎞⎠ (B.6)

can be considered, where 𝐿 ∈ N and Π𝜇
pd is the projection to a positive definite matrix, for some minimum value

𝜇 > 0, given by

Π𝜇
pd(𝑀) =

𝑛∑︁
𝑖=1

max(𝜆𝑖, 𝜇)𝑣𝑖𝑣
⊤
𝑖 (B.7)

for symmetric 𝑀 ∈ R𝑛×𝑛 and its the eigenvalue decomposition

𝑀 =
𝑛∑︁

𝑖=1

𝜆𝑖𝑣𝑖𝑣
⊤
𝑡 .

Alternatively, a Heavy-ball method [32, 61] (with projection) can be used. The method is considered in the
stochastic gradient context in [15], given here as{︃

Γ𝑖+1 = Π𝜇
pd

(︀
Γ𝑖 + 𝛼𝑖Θ𝑖+1

)︀
,

Θ𝑖+1 =
(︀
1− 𝛼𝑖𝑟

)︀
Θ𝑖 + 𝛼𝑖

2𝐿

∑︀𝐿−1
𝑗=0

(︀
𝑏𝑗 + 𝑏⊤𝑗

)︀
.

(B.8)

The heavy-ball method offers a smoother trajectory of Γ over the course of the algorithm. Under appropriate
assumptions on 𝑏𝑗 , in particular if

1
2𝐿

𝐿−1∑︁
𝑗=0

(︀
𝑏𝑗 + 𝑏⊤𝑗

)︀
∼ 𝒩

(︀
∇𝜎2

(︀
Γ𝑖
)︀
, 𝜎2

𝑏 𝐼𝑛2

)︀
,

for some gradient ∇𝜎2(Γ𝑖
𝑘) and variance 𝜎2

𝑏 > 0, then the system (B.8) has the interpretation of an Euler
discretisation of a constrained Langevin dynamics, in which case 𝑟√

𝛼𝑖𝜎2
𝑏

is the inverse temperature. By increasing

𝑟, the analogous invariant distribution “sharpens” around the maximum in its density and in this way reduces
the effect of noise at equilibrium; on the other hand, decreasing 𝑟 reduces the decay in the momentum.

B.1.3. A thinning approach for ∆Γ

The most straightforward way of approximating the integral in (B.1) is to use independent realisations
of (B.2), but we draw alternatively a thinned sample [58] from a single trajectory here in order to run only a
single parallel set of realisations of (B.2) and (B.4) at a time. More specifically, we consider a single realisation
of (B.2) and regularly-spaced points from its trajectory (possibly after a burn-in) as sample points from 𝜋̃.
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Starting at each of these sample points and ending at each subsequent one, the process is replicated albeit
starting with a momentum reversal and simulated in parallel. In addition, for each of the two processes, a
corresponding first variation process (B.4) is calculated in parallel. A precise description follows.

Let 𝐾 = 1 for simplicity. The Γ direction (B.1) is approximated by

− 1
(𝐿 + 𝐿*)

𝐿+𝐿*−1∑︁
𝑙=0

(︃
𝑇∑︁

𝑖=1

∆𝑡

𝐾

𝐾∑︁
𝑘=1

∇𝑓
(︁
𝑞𝑖+𝑇𝑙+𝐵
(𝑘)

)︁⊤
𝐷𝑞𝑖+𝑇𝑙+𝐵

(𝑘)

)︃
⊗

(︃
𝑇∑︁

𝑖=1

∆𝑡

𝐾

𝐾∑︁
𝑘=1

∇𝑓
(︁
𝑞𝑖+𝑇𝑙+𝐵
(𝑘)

)︁⊤
𝐷𝑞𝑖+𝑇𝑙+𝐵

(𝑘)

)︃
, (B.9)

where 𝐿 ∈ N, ((𝑞𝑖
(𝑘), 𝑝

𝑖
(𝑘)))𝑖∈N, ((𝑞𝑖

(𝑘), 𝑝
𝑖
(𝑘)))𝑖∈N denote solutions to (B.2)

– for 𝑖 ̸= 𝐵 + 𝑇 𝑙 − 1, 𝑙 ∈ N0 if 𝑘 ̸= 1 and;
– for all 𝑖 if 𝑘 = 1

with initial condition (0, 0), noise 𝜉𝑖 = 𝜉𝑖
(𝑘), 𝜉

𝑖
(𝑘) for all 𝑖 ∈ N satisfying 𝜉𝑖

(𝑘) = 𝜉𝑖
(𝑘′) = 𝜉𝑖

(𝑘) = 𝜉𝑖
(𝑘′) for all

𝑖 < 𝐵, 1 ≤ 𝑘 ≤ 𝐾, 1 ≤ 𝑘′ ≤ 𝐾, independent otherwise as 𝑖 and 𝑘 vary, along with corresponding (𝐷𝑞𝑖
(𝑘), 𝐷𝑝𝑖

(𝑘)),
(𝐷𝑞𝑖

(𝑘), 𝐷𝑝𝑖
(𝑘)) satisfying (B.4) for 𝑖 ̸= 𝐵 + 𝑇 𝑙 − 1, 𝑙 ∈ N0 (regardless of 𝑘), and where the 𝑘 ̸= 1 processes

are “reset” at 𝑖 = 𝐵 + 𝑇 𝑙 corresponding to the values of the 𝑘 = 1 chain if the first variation processes have
converged to zero, that is,

𝑞𝑇𝑙+𝐵
(𝑘) = 𝑞𝐾𝑙+𝐵

(1) , 𝑝𝑇𝑙+𝐵
(𝑘) = 𝑝𝑇𝑙+𝐵

(1) , 𝐷𝑞𝑇𝑙+𝐵
(𝑘) = 0, 𝐷𝑝𝑇𝑙+𝐵

(𝑘) = 𝐼𝑛 (B.10a)

𝑞𝑇𝑙+𝐵
(𝑘) = 𝑞𝑇𝑙+𝐵

(1) , 𝑝𝑇𝑙+𝐵
(𝑘) = −𝑝𝑇𝑙+𝐵

(1) , 𝐷𝑞𝑇𝑙+𝐵
(𝑘) = 0, 𝐷𝑝𝑇𝑙+𝐵

(𝑘) = 𝐼𝑛 (B.10b)

for all 1 ≤ 𝑘 ≤ 𝐾 if for some 𝐷conv > 0,

max
𝑖,𝑗,𝑘

⃒⃒⃒⃒(︁
𝐷𝑞𝑇𝑙+𝐵

(𝑘)

)︁
𝑖𝑗

⃒⃒⃒⃒
< 𝐷conv, max

𝑖,𝑗,𝑘

⃒⃒⃒⃒(︁
𝐷𝑞𝑇𝑙+𝐵

(𝑘)

)︁
𝑖𝑗

⃒⃒⃒⃒
< 𝐷conv, (B.11a)

max
𝑖,𝑗,𝑘

⃒⃒⃒⃒(︁
𝐷𝑝𝑇𝑙+𝐵

(𝑘)

)︁
𝑖𝑗

⃒⃒⃒⃒
< 𝐷conv, max

𝑖,𝑗,𝑘

⃒⃒⃒⃒(︁
𝐷𝑝𝑇𝑙+𝐵

(𝑘)

)︁
𝑖𝑗

⃒⃒⃒⃒
< 𝐷conv (B.11b)

and 𝐿* ∈ N is such that the number of elements in {𝑙 ∈ N : 1 ≤ 𝑙 ≤ 𝐿+𝐿*} satisfying (B.11) is 𝐿. The approach
is summarised in Algorithm 2. Of course, the above for generic 𝐾 ∈ N constitutes improving approximations
to ∆Γ. Note that as Γ changes through the prescribed procedure, the asymptotic variance associated to the
given observable 𝑓 is expected to improve, but on the contrary, the estimator (B.9) for the continuous-time
expression (B.1) may well worsen, since the integrand (of the outermost integral) in (B.1) is not 𝑓 . Increasing
𝐿 is expected to solve any resulting issues; on the other hand extremely small 𝐿 have been successful in the
experiments here.

Remark B.1. If it is of interest to approximate expectations of 𝑃 ∈ N observables with respect to 𝜋, the
quantity

∑︀𝑃
𝑖 𝜎2

𝑖 for example can be used as an objective function, where 𝜎2
𝑖 is the asymptotic variance from

the 𝑖th observable. In the implementation in Algorithm 2, instead of only the vectors 𝜁, 𝜁, this amounts to
calculating at each iteration the vectors 𝜁(𝑖), 𝜁(𝑖) corresponding to the 𝑖th observable and taking the sum of the
resulting update matrices in Γ to update Γ. This calls for no extra evaluations of ∇𝑈 over the single observable
case.

Remark B.2 (Tangent processes along random directions). We mention the situation where simulating the
full first variation processes (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡) in R𝑛×2𝑛 is prohibitively expensive. A directional tangent process can
be used instead of (𝐷𝑝𝑞𝑡, 𝐷𝑝𝑝𝑡). Consider for a unit vector 𝑣 ∈ R𝑛, that is |𝑣| = 1, randomly chosen at the
beginning of each estimation of ∆Γ, the pair of vectors (𝐷𝑝𝑞𝑡𝑣, 𝐷𝑝𝑝𝑡𝑣) ∈ R𝑛×2. Multiplying on the right of
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Algorithm 2: Gradient procedure in Γ.
Result: Γ𝑖, 1 ≤ 𝑖 ≤ 𝑁 + 1
Start from arbitrary (𝑞0, 𝑝0) ∈ R2𝑛 and set 𝐷𝑞0 = 𝐷𝑞0 = 0, 𝐷𝑝0 = 𝐷𝑝0 = 𝐼𝑛, 𝜁 = 𝜁 = 0, 𝑘 = 0,
Γ𝑗 = 𝐼𝑛 ∀1 ≤ 𝑗 ≤ 𝐵;
for 𝑖 = 1 : 𝐵 − 1 do

compute 𝑞𝑖+1 according to (B.2);
end
if 𝑖 = 𝐵 then

set (𝑞𝑖, 𝑝𝑖)← (𝑞𝑖,−𝑝𝑖);
end
for 𝑖 = 𝐵 : 𝑁 do

compute 𝑞𝑖+1 and 𝑞𝑖+1 according to (B.2);

compute 𝐷𝑞𝑖+1 and 𝐷𝑞𝑖+1 from (B.4) corresponding to 𝑞𝑖+1 and 𝑞𝑖+1 respectively;

compute the row vectors 𝜁 ← 𝜁 +∇𝑓(𝑞𝑖+1)⊤𝐷𝑞𝑖+1Δ𝑡

𝜁 ← 𝜁 +∇𝑓(𝑞𝑖+1)⊤𝐷𝑞𝑖+1Δ𝑡

;

if 𝑙 := 𝑖−𝐵 ∈ 𝑇N and (B.11) hold (ignoring appearances of (𝑘)) then

save the matrix 𝑏( 𝑘
𝐺
−⌊ 𝑘

𝐺
⌋)𝐺 = −𝜁 ⊗ 𝜁;

reset as follows: 𝜁, 𝜁 ← 0, (𝑞𝑖+1, 𝑝𝑖+1)← (𝑞𝑖+1,−𝑝𝑖+1)

𝐷𝑞𝑖+1, 𝐷𝑞𝑖+1 ← 0, 𝐷𝑝𝑖+1, 𝐷𝑝𝑖+1 ← 𝐼𝑛

;

and update the counter 𝑘 ← 𝑘 + 1;

end
if 𝑘 ∈ 𝐺N then

compute Γ𝑖+1 according to (B.8);
else

set Γ𝑖+1 = Γ𝑖.
end

end

((B.3) and) (B.4) by 𝑣, one obtains⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

𝐷𝑝𝑣𝑖+ 1
3 = 𝐷𝑝𝑣𝑖 −𝐷2𝑈

(︀
𝑞𝑖
)︀
𝐷𝑞𝑣𝑖 Δ𝑡

2

𝐷𝑞𝑣𝑖+ 1
2 = 𝐷𝑞𝑣𝑖 + 𝐷𝑝𝑣𝑖+ 1

3 Δ𝑡
2

𝐷𝑝𝑣𝑖+ 2
3 = exp

(︀
−∆𝑡Γ𝑖

)︀
𝐷𝑝𝑣𝑖+ 1

3

𝐷𝑞𝑣𝑖+1 = 𝐷𝑞𝑣𝑖+ 1
2 + 𝐷𝑝𝑣𝑖+ 2

3 Δ𝑡
2

𝐷𝑝𝑣𝑖+1 = 𝐷𝑝𝑣𝑖+ 2
3 −𝐷2𝑈

(︀
𝑞𝑖+1

)︀
𝐷𝑞𝑣𝑖 Δ𝑡

2 ,

(B.12)

where the first term involving the Hessian of 𝑈 in (B.12) can be approximated by

−∇𝑈

(︂
𝑞𝑖 +

∆𝑡

2
𝐷𝑞𝑣𝑖

)︂
+∇𝑈

(︀
𝑞𝑖
)︀

and similarly for the last such term. In continuous time, the resulting direction in Γ is
∫︀
∇𝜑⊤𝑣∇𝜑⊤𝑣 d𝜋̃𝑣 ⊗ 𝑣

and from (3.1) the rate of change in asymptotic variance in this direction is −2(
∫︀
∇𝜑⊤𝑣∇𝜑⊤𝑣 d𝜋̃)2. However,

the resulting gradient procedure in Γ turns out to be very slow to converge in high dimensions in comparison
to simulating a full first variation process; it is illustrative to think of the situation where the randomly chosen
vector 𝑣 is taken from the set of standard Euclidean basis vectors, where only one diagonal value in Γ is changed
at a time. See also [34,69] for such directional derivatives under a different context.
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[33] A. Guillin and P. Monmarché, Optimal linear drift for the speed of convergence of an hypoelliptic diffusion. Electron. Commun.
Probab. 21 (2016) 14.

[34] A. Guillin and F.-Y. Wang, Degenerate Fokker–Planck equations: Bismut formula, gradient estimate and Harnack inequality.
J. Differ. Equ. 253 (2012) 20–40.

[35] M. Hairer, A.M. Stuart, J. Voss and P. Wiberg, Analysis of SPDEs arising in path sampling. I. The Gaussian case. Commun.
Math. Sci. 3 (2005) 587–603.

[36] M. Hairer, A.M. Stuart and J. Voss, Analysis of SPDEs arising in path sampling. II. The nonlinear case. Ann. Appl. Probab.
17 (2007) 1657–1706.

[37] M. Hairer, A.M. Stuart and J. Voss, Sampling conditioned hypoelliptic diffusions. Ann. Appl. Probab. 21 (2011) 669–698.

[38] Y. He, K. Balasubramanian and M.A. Erdogdu, On the ergodicity, bias and asymptotic normality of randomized midpoint
sampling method. Adv. Neural Inf. Process. Syst. 33 (2020) 7366–7376.

[39] B. Helffer and F. Nier, Hypoelliptic Estimates and Spectral Theory for Fokker–Planck Operators and Witten Laplacians. Vol.
1862 of Lecture Notes in Mathematics. Springer-Verlag, Berlin (2005).
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