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Abstract

Multimodal hate speech detection aims to integrate various modalities—such as text and
images—to identify complex and implicit hateful content, thereby contributing to a healthier
online environment. Despite notable progress in fusion techniques, existing approaches still
struggle with modeling both local and global semantics and achieving effective cross-modal
integration. To address these limitations, we propose MLCA, a novel multimodal hate speech
detection framework. Our method employs a Twitter-based RoBERTa model and the Swin
Transformer V2 to encode textual and visual modalities, respectively. These modality-specific
representations are subsequently fused using a multi-level cross-modal attention mechanism. In
addition, a dynamic gating module is introduced to adaptively integrate attention features across
different semantic levels. We conduct comprehensive evaluations on two benchmark datasets
and compare our model with a wide range of state-of-the-art unimodal and multimodal baselines.
Experimental results show that our framework consistently surpasses state-of-the-art methods on
both datasets.

Keywords: Multimodal hate speech detection; cross-modal attention; gated fusion; deep learning;
multimodal fusion

1. Introduction

With the rapid proliferation of social media platforms, the spread of hate speech has emerged
as an increasingly urgent societal concern[1]. Platforms such as Twitter are frequently exploited to
disseminate hateful content[2]. Hate speech refers to discourse that targets individuals or groups
based on race, ethnicity, gender, or religion[3], posing serious threats to both social cohesion and
public safety[4].

Modern hate speech has evolved beyond plain text, with multimodal content—particularly
the combination of text and images—becoming increasingly prevalent. Images not only enhance
the expressiveness of textual messages but also serve as covert channels for conveying hateful
intent[5]. The rise of visual-linguistic memes has amplified both the semantic complexity and
subtlety of hate speech, thereby making it increasingly difficult to detect[6, 7].

To address these challenges, multimodal hate speech detection has emerged as a promising
solution that integrates textual and visual signals to capture richer and more nuanced semantic
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cues[8, 9]. Compared to unimodal methods, multimodal approaches offer enhanced represen-
tational capacity and greater robustness to subtle and implicit forms of hate. Recent research
has primarily focused on improving feature fusion, which fundamentally relies on the accurate
alignment of multimodal features across multiple semantic levels. Fusion strategies are generally
categorized into early fusion, which integrates features during the encoding phase, and late fusion,
which aggregates the outputs after each modality has been processed independently.

However, existing fusion strategies—whether early or late—remain insufficient for modeling
the complex interactions between text and images that are essential for effective hate speech
detection. Many methods rely on multilayer perceptrons or shallow attention mechanisms,
which often fail to capture both fine-grained local features and global semantic dependencies.
Furthermore, current frameworks struggle to dynamically assess the importance of semantic
features across multiple levels, thereby diminishing the effectiveness of cross-modal coordination.

To overcome these limitations, we propose MLCA, a novel framework that combines multi-
level cross-modal attention with a gated fusion strategy. MLCA extracts hierarchical features
from text and images using RoBERTa and Swin Transformer, respectively, and facilitates deep
semantic interaction within a shared latent space via multi-level cross-modal attention. A residual
normalization mechanism is introduced to stabilize training and improve information flow. Finally,
a gated fusion module adaptively integrates attention outputs from different levels according to
their semantic contributions. The main contributions of our work are summarized as follows:

• We propose a multi-level cross-modal attention mechanism that progressively aligns global
textual semantics with multi-scale visual features, enabling finer text-image interaction and
improving intermediate fusion quality.

• We design a gated fusion module that adaptively integrates multi-level interaction features
using learnable weights, enhancing the model’s ability to capture salient information from
complex hate memes.

• We evaluate our model on two benchmark datasets and demonstrate, through comprehensive
experiments, that it outperforms existing state-of-the-art baselines in multimodal hate speech
detection.

2. Related work

Our work primarily builds upon two major lines of research: unimodal hate speech detection
and multimodal hate speech detection.

2.1. Unimodal Hate Speech Detection

Early research on hate speech detection primarily focused on explicit content, typically
marked by overtly offensive or abusive language. Most studies adopted conventional classifi-
cation pipelines leveraging BERT-family pre-trained models for sentence-level encoding. For
example, HateXplain[10] provided fine-grained annotations and explainable labels for supervised
learning. Masued et al.[11] further emphasized identifying explicit hate spans to improve model
interpretability.

However, implicit hate speech presents greater challenges due to its subtle and indirect
nature, often expressed through metaphor, sarcasm, or irony[12, 13]. Traditional models tend to
underperform on such content, as demonstrated by the Implicit Hate Corpus[14]. To address this
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limitation, contrastive learning has been widely explored. ImpCon[15] constructed semantically
similar pairs to guide models in distinguishing metaphorical expressions. SimCSE[16] leveraged
natural language inference labels to generate sentence-level contrastive signals. Building upon
these efforts, Lu et al.[17] proposed Dual Contrastive Learning, which aligns contrastive objectives
among raw texts, pseudo-labels, and label semantics, significantly improving the recognition of
metaphorical and sarcastic hate expressions.

2.2. Multimodal Hate Speech Detection

In recent years, hate speech on social media has increasingly adopted multimodal forms, evolv-
ing beyond text-only expressions to combinations of text and images—often embedded in memes
or visual metaphors to obscure hateful intent[18]. This cross-modal complexity incorporates both
explicit and implicit signals, thereby increasing the difficulty of accurate detection. As a result,
multimodal hate speech detection has emerged as a critical research direction, aiming to integrate
heterogeneous features for robust detection across diverse scenarios.

Among various modality combinations, image-text fusion has garnered the most attention.
The Hateful Memes Challenge at NeurIPS 2020[19] established standardized benchmarks and
evaluation metrics, significantly driving progress in the field. Its associated dataset, HatefulMemes,
remains a widely used resource. Subsequently, Gomez et al.[20] introduced MMHS150K, a large-
scale Twitter-derived dataset with rich inter-modal annotations that has since become widely used
for evaluation.

Early multimodal approaches combined visual and textual features using traditional classifiers,
such as logistic regression, thereby demonstrating the effectiveness of leveraging multimodal
signals[21]. With the rise of deep learning, approaches have advanced to incorporate semantic
fusion and cross-modal interaction mechanisms. For instance, Maity et al.[22] integrated sentiment
and sarcasm cues for meme-level hate detection, while Lee et al.[23] proposed DisMultiHate, a
disentangled framework that enhances interpretability via entity-level modeling.

Recent work further expands cross-modal reasoning capabilities. Cao et al.[24] utilized
VQA-based image captioning to improve downstream understanding. Ayetiran and Özgöbek[25]
introduced a unified model that integrates image, text, and embedded OCR features using cross-
modal attention. Most notably, Xu et al. [26]proposed a prompt-based hypergraph fusion
framework that enables structured reasoning over implicit cues and supports multi-target audience
inference, achieving state-of-the-art performance on multiple benchmark datasets.

3. Methodology

3.1. Model Overview

The objective of multimodal hate speech detection is to identify diverse forms of hateful
content conveyed through multiple modalities, such as text and images. Formally, a multimodal
hate speech dataset D = (X,Y) consists of paired samples (xi, yi), where xi ∈ X represents the
multimodal input and yi ∈ Y denotes the corresponding ground-truth label. Each input xi typically
comprises a text component ti and an image component mi, forming a tuple X = (T, I). The goal
is to determine whether a given sample contains hateful content by jointly analyzing semantic
cues from both modalities and predicting the corresponding hate label y.

To address the above challenges, we propose a Multimodal Hate Speech Detection Framework
based on Multi-Level Cross-Modal Attention (MLCA). As illustrated in Figure 1, the framework
consists of three key modules: a feature extraction module, a multi-level cross-modal attention
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fusion module, and a prediction module. The feature extraction module utilizes pre-trained
RoBERTa and Swin Transformer V2 models to encode textual and visual inputs, respectively,
generating global semantic embeddings and multi-scale visual features. The fusion module applies
a hierarchical cross-modal attention mechanism to progressively perform feature fusion across
multiple semantic levels of text and image representations. To improve the stability of this process,
residual connections and layer normalization are incorporated as enhancement strategies. A
gated fusion mechanism is then employed to dynamically aggregate the fused features, resulting
in a unified multimodal representation. This final representation is subsequently passed into a
multilayer perceptron classifier to perform hate speech prediction.
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Figure 1: Overall Architecture of the Proposed MLCA Model

3.2. Feature Extraction
3.2.1. Text Feature Extraction

We adopt a Twitter-based RoBERTa model[27] as the text encoder. This model has been
pre-trained on a corpus of 154 million tweets collected between January 2018 and December
2022, making it highly adaptable to the linguistic characteristics of social media. Given that
texts in multimodal hate speech scenarios often exhibit properties such as short length, informal
expressions, abbreviations, and slang (features commonly found in tweets), we employ this model
to enhance semantic understanding of hateful intent. The Twitter-based RoBERTa model is
publicly available via the Hugging Face Transformer API1.

Given an input text t the model outputs the final hidden states Ht; we extract the [CLS] token
representation and project it into a shared representation space to obtain the text feature vector
Hproj

t .

1https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m
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3.2.2. Image Feature Extraction
We utilize Swin Transformer V2[28] as the image encoder. Specifically, we implement

the swinv2 base window16 2562 variant via the TIMM framework, which is pre-trained on the
ImageNet-1K dataset containing over 1.2 million labeled images spanning 1,000 categories.
SwinV2 builds upon the original Swin Transformer[29] by introducing improved normaliza-
tion strategies and enhanced model scaling, while maintaining its core window-based attention
mechanism for efficient and scalable representation learning.

SwinV2 outputs four-stage feature maps corresponding to distinct semantic levels. Let the
input image be m, and the flattened patch token sequence at each stage be denoted as Fi. We
incorporate learnable positional encodings to preserve spatial information, as defined in Eq. 1:

Fi = Flatten(S winV2i(m)) + PiFi = Flatten(S winV2i(m)) + Pi (1)

Each feature map Fi is then linearly projected into the shared representation space to obtain
Fproj

i , which is used in subsequent cross-modal fusion.

3.3. Multi-Level Cross-Modal Attention Mechanism
To facilitate semantic alignment and interaction between textual and visual modalities at

multiple levels, we design a multi-level cross-modal attention mechanism comprising three
components: multi-scale cross-modal attention, residual normalization, and gated fusion. These
components work in synergy to enable deep cross-modal interaction and dynamic integration.

3.3.1. Multi-Scale Cross-Modal Attention
To enhance the semantic representation of the text, we first apply multi-head self-attention

over the projected text sequence Hproj
t , capturing intra-token dependencies. The output of the

[CLS] token is used as the global semantic representation of the text, as shown in Eq. 2:

Q = MultiHeadSelfAttn
(
Hproj

t

)
[:, 0, :] (2)

This vector Q serves as the query in the cross-modal attention mechanism, which interacts with
image features Fproj

i , from each of the four SwinV2 stages. Cross-modal interaction is modeled
via multi-head attention to yield fused representations, as defined in Eq. 3:

Zi = MultiHeadAttn
(
Q, Fproj

i , F
proj
i

)
(3)

3.3.2. Residual Connection and Normalization Strategy
To stabilize deep cross-modal interactions and ensure smooth information flow, we apply

residual connections and layer normalization to each attention output. Specifically, the cross-
attention output Zi is added to the query Q, regularized with DropPath, and normalized with
LayerNorm, as shown in Eq. 4:

Z̃i = LayerNorm(DropPath(Zi) + Q) (4)

Here, DropPath randomly drops connections during training to reduce overfitting, while Layer-
Norm ensures output stability and accelerates convergence.

2https://huggingface.co/timm/swinv2 base window8 256.ms in1k
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3.3.3. Gated Fusion Strategy
To integrate information from different semantic levels, we design a gated fusion module

that assigns learnable weights to the cross-modal outputs from each stage. The four intermediate
outputs Z̃1 to Z̃4 are concatenated into a single vector:

Zconcat = [Z̃1; Z̃2; Z̃3; Z̃4] (5)

This vector is passed through a linear transformation followed by softmax normalization to
compute the attention weights α, as in Eq. 6

α = Softmax(WZconcat + b) (6)

The final fused representation Z f used is computed as a weighted sum of the intermediate outputs:

Z f used =

4∑
i=1

αi · Z̃i (7)

3.4. Prediction Module
After multimodal fusion, the model obtains a unified semantic representation vector Z f used,

which is passed through a multilayer perceptron (MLP) for nonlinear transformation, followed by
a sigmoid activation function to produce the predicted probability ŷ.

During training, we adopt Binary Cross-Entropy Loss with logits as the objective function,
defined in Eq. 8:

L = −[y · log(ŷ) + (1 − y) · log(1 − ŷ)] (8)

Here, y ∈ {0, 1} is the ground-truth label, and ŷ is the predicted probability output by the model.

4. Experiments and Model Implementation

4.1. Datasets
We conduct experiments on two publicly available benchmark datasets: MAMI[30] and

CrisisHateMM[31].
The MAMI dataset consists of 11,000 meme-style samples, each comprising an image and its

corresponding extracted text. Each sample is annotated with one of five fine-grained categories:
non-misogynistic, shaming, stereotype, objectification, or violence. In this study, we focus on the
binary classification task of distinguishing misogynistic from non-misogynistic content.

The CrisisHateMM dataset includes 4,723 multimodal samples, each composed of an image
and an accompanying text segment. The dataset is annotated for binary hate speech classification:
hateful vs. non-hateful. Hateful samples are further divided into targeted and untargeted hate, with
targeted instances additionally labeled by the nature of the target group—individual, community,
or organization. Notably, this dataset originates from the CASE 2024 Shared Task on Multimodal
Hate Event Detection, where the test set labels remain undisclosed. Evaluation is performed
through the official competition platform, which provides aggregated performance scores based
on submitted predictions.

Both datasets define a binary classification subtask that aligns with the objective of this
study: determining whether a given multimodal input expresses hate speech. We adhere to the
original train/validation/test splits provided in the official dataset releases. Table 1 summarizes the
distribution of samples across these splits.
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Dataset Class Train Eval Test

MAMI Hate 4973 44 500
No Hate 4987 56 500

CrisisHateMM Hate 1942 243 243
No Hate 1658 200 200

Table 1: Dataset splits for MAMI and CrisisHateMM

4.2. Data Preprocessing and Augmentation

For textual data, we performed basic preprocessing using regular expressions to remove URLs,
user mentions, and emojis, retaining only lowercase alphabetic characters. During training, we
applied rule-based data augmentation techniques, including token dropout, local token shuffling,
and token masking. The processed texts were then tokenized using the RoBERTa tokenizer and
padded to a fixed sequence length for input into the model.

For image data, we applied standard augmentation techniques using the Albumentations library,
including random cropping, horizontal flipping, affine transformations (e.g., rotation, translation,
scaling), and color jittering (brightness, contrast, saturation). All images were subsequently
normalized and converted to tensor format. During validation and testing, only resizing and
normalization were applied to ensure consistency in evaluation.

4.3. Baseline Models

We compare our proposed MLCA framework with a set of representative baseline models,
including eight unimodal and five multimodal approaches. The unimodal baselines consist of
four textual encoders: BERT[32], RoBERTa[33], ALBERT[34], and DistilBERT[35]. In addition,
we include four vision models: Inception v3[36], ResNet-152[37], DenseNet-161[38], and Swin
Transformer V2[28]. These models serve as performance references for scenarios where only a
single modality is available.

For multimodal baselines, we evaluate VisualBERT[39], CLIP[40], ViLT[41], FLAVA[42],
and BLIP2[43], which span a variety of fusion paradigms, including early fusion, contrastive
learning, and unified vision–language modeling. These models represent the current state of the
art in multimodal understanding and provide a strong benchmark for evaluating the effectiveness
of our proposed method.

To ensure fair comparison, all models were fine-tuned under identical training configurations.
On the CrisisHateMM dataset, we evaluated model performance using accuracy, precision, recall,
and F1-score. For the MAMI dataset, we report accuracy, F1 score, and AUC score, which is
particularly informative in the presence of class imbalance. For both datasets, we adopt macro-
averaged F1 to mitigate the impact of label imbalance and provide a more balanced evaluation
across classes.

4.4. Experimental Settings

During training, we employed a group-specific learning rate strategy to control the update
pace across model components. Learning rates were set to 1e-5 for both the text and image
encoders, and 1e-4 for the classification head. We used the AdamW optimizer, which combines
adaptive gradient updates with weight decay regularization. A cosine learning rate scheduler with
warm-up was applied, where the first 5% of iterations were allocated for warm-up to stabilize early
optimization. A batch size of 8 was used. For the CrisisHateMM dataset, models were trained for
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a maximum of 15 epochs, while for MAMI, training was extended to 20 epochs. In both cases,
the model achieving the best macro-F1 score on the validation set was saved for final evaluation.
To prevent overfitting and training stagnation, we adopted an early stopping mechanism: training
was terminated if the macro-F1 score did not improve for 5 consecutive validation epochs.

Modality Model CrisisHateMM MAMI
Acc Pre Recall F1 Acc F1 AUC

Unimodal-Textual

BERT 0.8239 0.8221 0.8227 0.8224 0.6721 0.6702 0.7422
RoBERTa 0.8330 0.8331 0.8362 0.8326 0.7065 0.7058 0.7665
ALBERT 0.7178 0.7177 0.7198 0.7171 0.6684 0.6672 0.7228
DistilBERT 0.5869 0.5931 0.5929 0.5869 0.6603 0.6586 0.7200

Unimodal-Image

Inception v3 0.6817 0.6787 0.6749 0.6758 0.6337 0.6227 0.6985
ResNet152 0.6704 0.6676 0.6682 0.6679 0.5872 0.5837 0.6159
DenseNet 0.6456 0.6425 0.6429 0.6429 0.5989 0.5880 0.6557
Swin V2 0.7359 0.7367 0.7389 0.7355 0.6390 0.6359 0.7031

Multimodal

VisualBERT 0.7878 0.7939 0.7946 0.7878 0.6798 0.6748 0.6951
ViLT 0.7494 0.7470 0.7464 0.7467 0.6524 0.6513 0.6951
CLIP 0.7788 0.7767 0.7762 0.7765 0.7142 0.7102 0.7845
BLIP-2 0.8126 0.8121 0.8151 0.8121 0.4973 0.4462 0.4576
FLAVA 0.7652 0.7633 0.7648 0.7638 0.6565 0.6557 0.7352
MLCA (Ours) 0.8939 0.8942 0.8913 0.8925 0.7564 0.7559 0.8142

Table 2: Comparative Performance of Different Models on the CrisisHateMM and MAMI Datasets

5. Results and Discussion

5.1. Evaluation Results
Table 2 presents a comparative performance analysis of our proposed model (MLCA) against

a variety of baseline methods on the CrisisHateMM and MAMI datasets. Several key observations
can be drawn from the experimental results.

Among unimodal models, textual features contribute more substantially to hate speech de-
tection than visual features. RoBERTa achieves the highest performance, with 83.30% accuracy
and 83.26% F1-score on the CrisisHateMM dataset—substantially outperforming all image-only
baselines and even surpassing several multimodal approaches. In contrast, smaller models such as
ALBERT and DistilBERT yield noticeably lower scores, indicating that model capacity and the
depth of pretraining remain critical factors for effective textual modeling.

On the vision side, image-only models consistently underperform relative to their text-based
counterparts. The best-performing vision model, Swin Transformer V2, reaches only 73.55%
F1-score on CrisisHateMM. This outcome highlights the limited discriminative power of visual
features when used in isolation, especially in hate memes that lack overt visual cues, thereby
making standalone image-based understanding inherently more challenging.

Multimodal models mitigate the limitations of individual modalities by jointly modeling
textual and visual features. For instance, BLIP-2 achieves an F1-score of 81.21% on the Cri-
sisHateMM dataset, approaching the performance of RoBERTa and underscoring the potential
of multimodal learning. However, several models—such as VisualBERT, CLIP, ViLT, and
FLAVA—still underperform compared to the strongest unimodal text baseline.

Our proposed model, MLCA, achieves the best overall performance on both datasets—obtaining
an F1-score of 89.25% on CrisisHateMM and 75.59% on MAMI—substantially outperforming all
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baseline models. These findings demonstrate the effectiveness of multi-level cross-modal attention
and gated fusion in capturing nuanced multimodal hate cues, while also underscoring the critical
importance of well-designed fusion architectures in enhancing model performance on this task.

5.2. Comparison with State-of-the-Art

We further compare our model with several recent state-of-the-art (SOTA) methods reported
on the CrisisHateMM and MAMI datasets. The comparison results are summarized in Tables 3
and 4.

Model Acc Pre Recall F1
YYama[44] 0.7585 0.7588 0.7613 0.7580
MasonPerplexity[45] 0.8352 0.8347 0.8378 0.8347
ARC-NLP[46] 0.8490 0.8410 0.8900 0.8480
AAST-NLP[47] – 0.8550 0.8539 0.8544
CLTL[48] 0.8736 0.8720 0.8737 0.8727
MLCA 0.8939 0.8942 0.8913 0.8925

Table 3: Performance Comparison with State-of-the-Art Models on the CrisisHateMM Dataset

Model Acc F1 AUC
PromptHate[49] 0.7031 – 0.7995
Pro-CapPromptHate[24] 0.7363 – 0.8377
HyperHatePrompt[26] 0.7530 0.7510 0.8430
MLCA 0.7563 0.7559 0.8142

Table 4: Performance Comparison with State-of-the-Art Models on the MAMI Dataset

Extensive experiments on two benchmark datasets, CrisisHateMM and MAMI, demonstrate
the effectiveness and robustness of the proposed MLCA model. On CrisisHateMM, prior work
explored a wide range of strategies. YYama[44] leveraged prompt-based zero-shot learning
with large vision–language models such as LLaVA-1.5B, achieving an F1-score of 75.8%.
MasonPerplexity[45] evaluated multiple text encoders, with BERTweet-large reaching 83.47%
F1. ARC-NLP[46] combined ELECTRA and Swin Transformer with additional linguistic fea-
tures, achieving 84.80% F1. AAST-NLP[47] adopted a multi-stage fusion and ensemble strategy,
reaching 85.44% F1, while CLTL[48] employed MLP-based fusion and reported the previous
best result of 87.27% F1. In comparison, MLCA achieves an F1-score of 89.25%, setting a new
state-of-the-art and highlighting the advantage of multi-level cross-modal attention and adaptive
fusion in capturing complex and nuanced hate semantics.

On the MAMI dataset, similar trends are observed. Prompt-based models such as PromptHate[49],
Pro-CapPromptHate[24], and HyperHatePrompt[26] progressively enhance performance through
improved text prompting, image captioning, and cross-modal reasoning. The best prior result
was achieved by HyperHatePrompt, with an AUC of 84.30% and an F1-score of 75.10%. In
comparison, MLCA slightly outperforms this with an F1-score of 75.59% and a competitive AUC
of 81.42%, suggesting strong generalization across both datasets and task configurations.
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5.3. Ablation Studies
We conducted ablation studies to evaluate the contributions of four key components: data

augmentation, textual self-attention, multi-level cross-modal attention, and gated fusion. As
shown in Table 5, removing data augmentation (w/o Augment) led to a noticeable drop in F1-
score on both CrisisHateMM (−2.23%) and MAMI (−1.58%), highlighting its role in improving
generalization. Eliminating the textual self-attention module (w/o Text-SA) caused moderate
performance degradation, confirming its importance in modeling global semantic structure. When
the multi-level cross-modal attention mechanism was replaced with a single-layer interaction
(w/o Multi-LVL), the model experienced a larger decline in performance, particularly on MAMI
(−2.89%), indicating the necessity of hierarchical semantic alignment across modalities. Lastly,
removing the gated fusion strategy (w/o Gating) and using mean pooling instead reduced perfor-
mance on both datasets, which underscores the value of adaptive fusion in effectively integrating
multi-level representations.

Models CrisisHateMM MAMI
Acc Pre Recall F1 Acc F1 AUC

MLCA 0.8939 0.8942 0.8913 0.8925 0.7563 0.7559 0.8142
-w/o Augment 0.8713 0.8670 0.8707 0.8702 0.7412 0.7401 0.8138
-w/o Text-SA 0.8849 0.8846 0.8827 0.8835 0.7435 0.7429 0.8140
-w/o Multi-Level Fusion 0.8736 0.8722 0.8728 0.8725 0.7311 0.7270 0.7974
-w/o Gating 0.8803 0.8793 0.8790 0.8792 0.7336 0.7322 0.8026

Table 5: Ablation Study Results on the CrisisHateMM and MAMI Datasets

6. Conclusion

In this work, we propose MLCA, a multimodal hate speech detection framework that integrates
multi-level cross-modal attention with a gated fusion strategy. By aligning global textual semantics
with multi-scale visual features and adaptively aggregating cross-modal interactions across layers,
MLCA effectively captures both fine-grained and high-level semantic cues.

Extensive experiments on the CrisisHateMM and MAMI datasets demonstrate that MLCA
achieves state-of-the-art performance, surpassing a broad range of unimodal and multimodal
baselines. Ablation studies further confirm the essential contributions of multi-level attention,
gated fusion, and global text modeling to nuanced hate speech understanding. While multimodal
learning enhances model robustness, our analysis reveals that textual signals remain the dominant
contributor to performance, whereas visual features offer complementary but less discriminative
cues.

These findings underscore the importance of well-structured fusion architectures in effectively
leveraging heterogeneous modalities for hate speech detection, and provide practical guidance for
the design of future multimodal systems in this domain. While these results are promising, certain
limitations suggest directions for future research.

First, the current visual encoder has limited ability to capture implicit or abstract hate signals
in complex or context-rich images. Future work could incorporate advanced vision-language
pretraining models or visual grounding techniques to enhance visual semantic understanding.
Second, while the proposed gated fusion strategy improves modality integration, it may still
introduce redundant or noisy representations under semantically sparse or ambiguous conditions.

10 DataIntelligence



A Multimodal Hate Speech Detection Framework Based on Multi-level Cross-modal Attention
and Gated Fusion

Exploring adaptive, noise-resilient fusion mechanisms—such as uncertainty modeling or sparse
attention—could mitigate this issue and further strengthen model robustness. Third, the framework
lacks explicit reasoning components to handle subtle inter-modal dependencies or borderline
cases. Introducing lightweight reasoning modules or structured knowledge integration could
improve interpretability and decision accuracy.
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