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a b s t r a c t

Discovering new superconductors via traditional trial-and-error experimental approaches is apparently a
time-consuming process, and the correlations between the critical temperature (Tc) and material features
are still obscure. The rise of machine learning (ML) technology provides new opportunities to speed up
inefficient exploration processes, and could potentially uncover new hints on the unclear correlations.
In this work, we utilize open-source materials data, ML models, and data mining methods to explore
the correlation between the chemical features and Tc values of superconducting materials. To further
improve the prediction accuracy, a new model is created by integrating three basic algorithms, showing
an enhanced accuracy with the coefficient of determination (R2) score of 95.9 % and root mean square
error (RMSE) of 6.3 K. The average marginal contributions of material features towards Tc values are esti-
mated to determine the importance of various features during prediction processes. The results suggest
that the range thermal conductivity plays a critical role in Tc prediction among all element features.
Furthermore, the integrated ML model is utilized to screen out potential twenty superconducting mate-
rials with Tc values beyond 50.0 K. This study provides insights towards Tc prediction to accelerate the
exploration of potential high-Tc superconductors.
� 2022 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published

by ELSEVIER B.V. and Science Press. All rights reserved.
1. Introduction

Development of high-performance superconductors has
attracted tremendous attentions in condensed matter physics
and for the purpose of the emerging quantum computation [1–
3]. The critical temperature (Tc) is an essential factor to evaluate
the potential applications of the superconducting materials [4].
Generally, superconductors with high Tc values are explored and
screened by enormous experiments and computational methods
[5,6]. The trial-and-error experimentation for searching new
superconductors usually requires ultralow temperature and extre-
mely high pressure [7,8]. In addition, the density functional theory
(DFT) based computation processes are generally time-consuming
as well as costly [9,10]. Therefore, the traditional experimentation
and computation limited the rapid progress of high-Tc supercon-
ductors screening and their potential commercialization. In the
past decades, the data-driven scientific developments and machine
learning (ML) models have enabled alternative opportunities to
address the major challenges faced by new superconductors explo-
ration. For instance, the ML models have been achieved remarkable
prediction results for perovskite materials [11–13], electrochemi-
cal catalysts [14,15], thermoelectric materials [16], and polymers
[17]. Moreover, the Tc values of superconductors also predicted
by advanced ML models, which has obtained more fresh perspec-
tives and accelerated the exploration of potential superconductors.

Recently, ML-assisted approaches have been widely used to effi-
ciently predict the superconducting properties of promising super-
conductors [18–21]. Owolabi et al. [18] used support vector
regressor (SVR) to directly investigate correlation between the lat-
tice parameters with Tc values through computational intelligence
technology. Stanev et al. [19] developed ML schemes to simulate Tc
reserved.
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values of more than 12,000 known superconductors and achieved
88% accuracy using Random Forest (RF) model. Yet, there has been
rarely extensive exploration of the superconductors’ database min-
ing, such as data cleaning preprocessing, feature construction in
details, and delivering the interpretable mathematical formulas
with ML features. On other hand, linear models are usually not
competent for complex regressions, while the tree models perform
better [22]. Diverse tree models have differences in their efficiency
and performance due to leaf depth and segmentation rules [23].
For instance, the RF algorithms are more time-consuming as com-
pared to xgboost ones, while RF tends to be more stable and can
avoid overfitting [24,25]. Therefore, the complexity and generaliza-
tion of the algorithm need to be considered to reach a balance
between the accuracy of prediction and the number of datasets.
Several studies have also considered the integrated ML model as
an effective method to improve the prediction accuracy. Wang
et al. applied the integrated stacking approach, which used the out-
put of multiple baseline models to enhance the performance of
band gap regression [26]. Chen et al. developed the integrated
ML model which contained three submodules to realize accurate
prediction of the concentrations of surface particulate matter with
an aerodynamic diameter < 2.5 lm [27]. The integration of multi-
step ML models is a promising approach to deal with the long-
standing problems associated with basic ML algorithms.

In this work, an integrated ML model was designed to accu-
rately predict Tc values. Through the data acquisition and cleaning,
13,138 data was retained from initial 33,000 pieces of selected
superconductors data, which was set as the dataset for ML model
training and Tc prediction. The integrated ML model was estab-
lished based on the correlation between superconducting proper-
ties and Tc values to screen out the potential superconductors
with high Tc values. More specifically, three basic algorithms,
(i.e., gradient boosting decision tree (GBDT) [28], extra tree (ET)
[29], and light gradient boosting machine (LGB) [30]), were inte-
grated as a new ML model for the high accuracy prediction. The
integrated ML model exhibited a coefficient determination (R2)
score of 95.9% for Tc prediction in comparison to other basic
algorithm-assisted ML models (92.9% for GBDT, 93.0% for ET, and,
93.4% for LGB). Meanwhile, the interpretable mathematical formu-
las were built to guide the correlation between Tc values and
important features. Twenty materials with predicted Tc values over
50.0 K were further screened out via the integrated ML model. This
work provided a new insight to accelerate the exploration of
potential superconductors with high Tc values.
2. Method

The suitable ML model is the key to predict Tc values of super-
conductors efficiently and accurately. In this work, eleven algo-
rithms were used in ML models for Tc predictions, including the
GBDT [28], ET [29], LGB [30], Linear Model (LR) [31], Lasso [32],
K-nearest neighbor (KNN) [33], support vector regression (SVR)
[34], decision tree (DT) [35], RF [36], eXtreme gradient boosting
(XGB) [37], and multi-layer perceptron (MLP) [38]. All ML models
and data preprocessing are developed by the powerful scikit-
learn library [39] and the officially released Python modules [40].
The integrated ML model is applied from stacking the outputs of
selected basic models to generate higher accurate predictions.
The LGB, ET, and GBDT models used for the prediction of Tc values
and evaluation criteria are presented as follows. The LR, Lasso,
KNN, SVM, DT, RF, XGB, and MLP models are introduced in Sup-
porting Information. The hyperparameters of all ML models have
been provided in Table S1.

Normalization preprocessing was employed for all data during
training and prediction processes. The total dataset was randomly
233
shuffled and divided into the training set and test set with the ratio
of 8:2. The RMSE and R2 scores were recorded as the evaluation cri-
teria for the Tc prediction via regression models.
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where, f ðxiÞ is the predicted value of the model; yi is the true value;

y
�
is the mean value; RMSE can be regarded as the prediction error,

and R2 can be approximately regarded as the accuracy of regression
fitting.

2.1. Light gradient boosting

LGB model is the gradient decision promotion that the samples
are divided from top to bottom to establish cart tree as a weak lear-
ner, and each sample will fall on the corresponding leaf node [30].
It uses a variety of strategies such as histogram optimization,
memory optimization, leaf-wise, and sequential access gradient
[26]. These benefits are greater decrease in the loss function than
the level-wise growth method. Therefore, LGB always provides bet-
ters prediction accuracy than other gradient boosting tree models
[41].

2.2. Extra tree

ET model implements a meta estimator that fits a number of
randomized decision trees on various sub-samples of the dataset
and uses averaging to improve the predictive accuracy and control
over-fitting [29]. ET regression model differ from classic decision
trees in the way they are built. When looking for the best split to
separate the samples of a node into two groups, random splits
are drawn for each of the max_features randomly selected features
and the best split among those is chosen [42]. To reduce memory
consumption, the complexity and size of the trees should be con-
trolled by limiting the fully grown and unpruned trees [43].

2.3. Gradient boosting decision tree

GBDT model builds an additive model in a forward stage-wise
fashion. It allows for the optimization of arbitrary differentiable
loss functions. In each stage a regression tree is fit on the negative
gradient of the given loss function [28]. This model is optimized by
boosting tree using additive model and forward stagewise algo-
rithm. In training, the negative gradient of the loss function is used
to fit the approximate value of loss in each iteration. Therefore,
error term generated in the training process is continuously
reduced [44].

2.4. Integrated machine learning

The strategy of integrating several ML models is an efficient
approach to improve the prediction accuracy and applicability
[45]. The integrated model usually combines multiple basic ones
to achieve a better generalization effect. Integrated model was
stacked the outputs of multiple basic models to improve the pre-
diction accuracy, but the prediction results of the integrated model
depend on the performance of each selected basic model used for
stacking [46]. And the calculation time were also affected by the
number of the selected basic models [47]. Thus, the stacking inte-
grated mode requires that the basic model itself has a high accu-
racy and an appropriate calculation time in this work. In the 11
basic models, the LGB, ET and GBDT models were selected in inte-
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grated ML model, because of they given the superior performance
and saved the calculation time.

3. Results and discussion

The whole workflow is shown in Fig. 1. The chemical composi-
tions and Tc values of appropriate superconductors were obtained
from the SuperCon database [48], and followed by data cleaning
processes [49]. Subsequently, the feature engineering was carried
out to transform the elements properties to superconductivity
compounds features via open-source data toolkits and packages.
115 relevant features were selected by using the recursive feature
elimination (RFE) method [50]. After feature engineering, eleven
basic ML models were built with the assistance of 115 features.
Furthermore, these basic ML models were used to predict Tc values,
and the average marginal contributions of features were estimated
by the shapley additive explanations (SHAP) values [51,52]. To
improve the prediction accuracy, the integrated ML model was
established by integrating three basic models with high prediction
performances. Finally, several materials with potential high Tc val-
ues were screened out from the MP database [53] via the inte-
grated ML model.

3.1. Data preparation and feature engineering

33,000 pieces of superconductors data extracted from the
SuperCon were set as the dataset, which contained Tc values and
chemical compositions of reported materials [48]. For data clean-
ing, the compounds with Tc values of 0 K or unclear records were
deleted. The repeated data information was also removed. The
truncated averaging method was used to revise the Tc values of
one compound with several records in different reports. The con-
troversial and abnormal data points were further screened through
cleaning rules of visual display and literature investigation
(Table S2). After data cleaning, 13,138 superconductors were
retained in the dataset. The Tc distribution of various superconduc-
tors was shown in Fig. S1. The superconductivity data used to gen-
erate the results in this work can be downloaded https://
github.com/zhanzghang/Integrated-ML-model-Superconductors-
data.

Furthermore, the feature engineering was performed to trans-
form elements properties to compound features. According to the
published literatures [54,55], online websites [56,57], and open-
source material property sets [58,59], the characteristics of com-
pound elements were selected by following three aspects. Firstly,
Fig. 1. The workflow of the integrated model-based ML methods for a
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the stoichiometric characteristics were expressed by one-hot cod-
ing, which depended on the proportion of the relevant elements in
the compound. Secondly, the physical and chemical properties
were selected based on prior knowledge and expressed. Thirdly,
electronic characteristics were introduced through the electronic
composition information and calculated proportion of electrons
in s, p, d, and f layers of element. To construct reliable compound
features, the relevant properties of various elements were gath-
ered, which can be queried from the WebElements [56] or down-
loaded from the Mendeleev [57] and Magpie [59] modules.
Remarkably, the above properties are specific for a single element
instead of a compound. Therefore, some analytical and statistical
functions were encoded to transform the element properties to
compound features. Furthermore, the calculation methods were
used to expand the numbers of compound features, which could
efficiently avoid the overfitting [60]. Table S3 listed the calculation
methods [25] for feature extraction from the chemical formula in
this work. Overall, 239 initial features were generated after the
first-round feature engineering.

Next, some feature selections and preprocessing are performed
to avoid over-fitting during predictions. Typically, it is not recom-
mended to use all initial features for modeling, because they often
contain redundant components or highly correlated feature-pairs,
which may result in negative effects, such as the non-
convergence and overfitting issues [61]. The RFE method was used
to remove the features that were irrelevant and undistinguishable.
Based on the feature engineering, 115 features were extracted from
239 initial features and used for further superconductors data
modeling.
3.2. Eleven basic models and integrated ML model

The integrated ML model training process is shown in Fig. 2. In
the first layer, LGB, ET, and GBDT models were used as basic mod-
els to make test predictions on the data by 5-fold cross validation
respectively. Their prediction output of each basic models in the
first layer were trained as the inputs of the next layer. In the sec-
ond layer, the model is usually known as meta-learner that is used
to weight the prediction result of each basic model and generate
the final prediction. In this work, relatively simple linear model
Lasso has been selected as a meta-learner because of its stable per-
formance, so the combined weights between different models can
be automatically obtained [62]. The Tc prediction was carried out
by using eleven ML models based on the test dataset. The fivefold
cross-validation method was used to achieve accurate and stable
ccurate Tc prediction and new superconductor materials mining.

https://github.com/zhanzghang/Integrated-ML-model-Superconductors-data
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Fig. 2. Integrated regression ML schematic diagram. The ‘‘valid”, ‘‘train”, and ‘‘pred” represent the test set, train set, and prediction values of regression models.

Table 1
The Tc prediction performances via basic model-based ML methods.

Model R2 RMSE (K)

LR 68.2% 17.8
Lasso 73.4% 16.0
SVR 77.3% 14.9
KNN 91.6% 9.0
LGB 93.4% 8.1
RF 92.5% 8.4
ET 93.0% 8.2
GBDT 92.9% 8.3
XGB 87.8% 10.9
DT 91.0% 9.5
MLP 91.3% 9.5
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prediction results. LGB model showed a R2 score of 93.4% and RMSE
of 8.1 K, showing the higher prediction accuracy in comparison to
other models. In addition, the ET and GBDT models reached R2

scores of 93.0% and 92.9%, respectively, which were the second
and third highest performances. The comparison of Tc prediction
results of eleven models is shown in Table 1.

The average marginal contributions of material features
towards Tc values were estimated. LGB model was selected for
the estimation by using SHAP, due to its high prediction perfor-
mance (R2 > 93%). Fig. 3 showed the SHAP values derived from
the LGB model, where the features were ordered based on the
degree of influence on model output. The degree of influence was
defined by the mean absolute SHAP value of all the point in the
dataset. The correlation between Tc values and material features
could be evaluated by the SHAP value. The explication of each fea-
ture was specified in Table S4. The SHAP with a positive value indi-
cates the positive correlation with Tc values, and vice versa. It is
apparent that the range thermal conductivity (the range value of
thermal conductivity among elements in the composition) was
the most important feature with the highest SHAP value, followed
by the avg_dev Gs volume (average deviation of DFT ground state
magnetic moment among elements in the composition) and mean
N unfilled (mean of number of unfilled valence orbitals among ele-
ments in the composition). Meanwhile, the rang thermal conduc-
tivity feature with high values (i. e., red area) exhibited a positive
correlation with Tc values, while the negative correlation was
recorded for the data points with low thermal conductivity values.
The thermal conductivity of superconductors typically offers
235
important insights of electron–phonon couplings, which behaves
as the basis of the famous Bardeen-Cooper-Schrieffer (BCS) theory.
In this regime, the condensation of the Cooper pairs relies heavily
on the interplay between electrons and phonons [63,64]. The
mechanisms of the superconductors with high-Tc properties still
remain elusive, but the ML model provided potential insights to
explore new superconductors when the superconductivity aspects
have not been utilized in feature engineering. Similarly, the nele-
ment feature (the number of elements in the composition) with
high values (i.e., res area) exhibited a positive correlation with Tc
values. Doping played a significant role in optimizing Tc values
[65], which is marked the various number of elements in com-
pounds. The addition of cations was discussed as doping mark that
can lead to strong electronic density. For example, Tc value for the
Y1Ba2Cu2.7Zn0.3O7 material is about 23 K. And with the increasing
of doping elements number, the Y1Ba2Cu2.85Fe0.024Zn0.126O7 has
the higher Tc value that is about 46.6 K. In addition, the four (i.
e., mean N unfilled (mean of number of unfilled valence orbitals
among elements in the composition), avg_dev N unfilled (average
deviation of unfilled valence orbitals among elements in the com-
position), avg_dev Np valence (average deviation of valence d-
orbitals among elements in the composition), and avg_dev Nd
valence (average deviation of number of valence d-orbitals among
elements in the composition)) of top 20 important features were
related to electrons of the atom’s extranuclear orbital, and other
five features (i.e., avg_dev Gs volume (average deviation of DFT
ground state magnetic moment among elements in the composi-
tion), entropy atomic volume (weight entropy of atomic volume
among elements in the composition), std_dev atom radius (stan-
dard deviation of atomic radius among elements in the composi-
tion), std_dev atomic column (standard deviation of atomic
column among elements in the composition), and std_dev metallic
radius (standard deviation of metallic radius among elements in
the composition)) were related to the atomic size. It indicated that
the Tc values were majorly affected by the electron distribution and
valence state of the constituent elements.

Symbolic regression (SR) [66] analysis using a genetic algorithm
was performed via gplearn. SR was used to search for a formula
that can be generated using normalized features from SHAP value
ranking (Fig. 3). The small RMSE represented the high accuracy
result, which is suitable for guiding the relationship between Tc
values and features by the mathematical formulas (Table S5). The
RMSE and R2 score for SR analysis in different features number



Table 2
Comparison of Tc prediction performances of basic model- and integrated model-
based ML methods.

Model R2 RMSE (K)

GBDT 92.9% 8.3
ET 93.0% 8.2
LGB 93.4% 8.1
Integrated ML model 95.9% 6.3

Fig. 3. SHAP plot summarizing 20 features for every point in the dataset, in order of increasing importance (i.e., the sum of SHAP value magnitudes). The color corresponds to
the value of each input feature and can demonstrate positive or negative correlation with Tc values. Red and blue color mean the values of listed feature on each data point,
respectively.

Fig. 4. (a) Comparison of predicted and experimentally measured Tc values. (b) Varia
Experimentally measured and ML predicted Tc values, respectively. The orange dot repr
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are demonstrated in Fig. S2. When the features number was set as
eight it reached the lowest RMSE value of 15.7 K during SR analy-
sis. SR analysis showed that the mathematical formula, generated
from the range thermal conductivity, avg_dev Gs volume, mean
N unfilled, nelement, mean builing point, mean Gs magmom, avg_-
dev column, and mean thermal conductivity, has a more accurate
correlation with the Tc values than other feature combinations.

It should be noted that the stacking mode requires that the
basic models itself has a high accuracy [21], thus the LGB, ET and
tion of the Tc values of the La2�xSrxCuO4. Purple and blue dots represented the
esents the ML predicted Tc values when the � equals to 0.545.



Table 3
Comparison of experimentally measured Tc with the values predicted by different SuperCon ML models. Bi1.66Pb0.34Sr2Ca2CrxCu3�xO10 samples were out of 13,138 data in this
work.

Formulas Experimentally measured Tc (K) Predicted Tc (K)
(This work)

Predicted Tc (K)
[20]

Predicted Tc (K)
[19]

Bi1.66Pb0.34Sr2Ca2CrxCu3�xO10

x = 0 105.4 103.9 103.5 106.7
x = 0.005 108.5 103.1 103.4 92.9
x = 0.010 101.2 102.6 102.1 90.8
x = 0.015 / 101.9 101.0 88.3
x = 0.020 / 101.3 101.8 87.7
x = 0.025 / 100.8 101.1 87.4
Tl1�xHgxBa2Ca2Cu3O8

x = 0.1 132 133.4 131.3 112.4
x = 0.2 / 134.5 134.2 113.1
x = 0.3 133 134.8 134.7 114.3
x = 0.4 / 135.3 134.0 115.6
La2�xSrxCuO4

x = 0.15 40 39.6 35.1 34.2
x = 0.545 / 40.8 27.1 18.6

Table 4
Predicted superconductor materials with Tc beyond 50 K via integrated model-based
ML method (common Cu/Fe-based materials were excluded).

MP - id Chemical formula Predicted of
Tc values (K)

Crystal system

mp-556896 Ba4AgAuO6 70.8 Orthorhombic
mp-1239304 Ba2YAg3O8 69.8 Tetragonal
mp-8666 CsAgO 67.6 Tetragonal
mp-683972 Cs5Ag4C8IN8 67.0 Cubic
mp-572510 K3AgO2 65.3 Orthorhombic
mp-1096933 CsAgO2 63.0 Orthorhombic
mp-19378 CrAgO2 63.0 Trigonal
mp-553907 Rb3AgO2 61.7 Orthorhombic
mp-997052 RbAgO2 61.2 Orthorhombic
mp-3074 KAgO 61.0 Tetragonal
mp-541966 KAgCO3 61.0 Orthorhombic
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GBDT models were selected in integrated ML model in this work.
The integrated ML model results were listed in Table 2, which
demonstrated a higher R2 score of 95.9% in comparison to those
of GBDT (92.9%), ET (93.0%), LGB (93.4%) models and eleven-
mentioned model (94.6%, Table S6). Prediction results showed that
the integrated model-based MLmethod obtained the optimal value
in the ensemble stage and plot the scatter diagram of train and test
set (Fig. 4a). To further verify the accuracy of integrated ML model,
Tc values of the La2�xSrxCu1O4 were predicted with variation of the
component x (0 < x < 1) (Fig. 4b). When the x ranged from 0.0 to
0.33, the experimentally measured Tc values corresponds well with
the predicted Tc values, which indicated an excellent prediction
accuracy. However, there is no recorded Tc data for La2�xSrxCuO4

materials with x beyond 0.33. When doping content of Sr is
between 0.00 and 1.00, the crystal structure can be shown as the
orthorhombic or tetragonal structure by X-ray diffraction patterns
[67]. Noticeably, the Tc values of La2�xSrxCuO4 with x ranging
between 0.33 and 1.0 were also predicted through the integrated
model-based ML method. When the x equals to 0.545, the ML pre-
dicted Tc values were 40.8 K (Fig. 4b). This provides reasonable
information for further investigations of La2�xSrxCuO4 materials.
Furthermore, Tc values of the other 3 superconductor materials
with different component were predicted via the integrated ML
model, and the prediction results were compared with the Tc val-
ues obtained by experiments and various ML models (Table 3).
The comparison of model performances in terms of dataset size,
the number of features, and R2 score were listed in Table S7. The
predicted Tc values via integrated model corresponds well with
the recorded values in both reported other ML models [19,20].
And based on the SuperCon database, Hg0.66Pb0.43Ba2Ca1.98Cu2.9O8.4

currently showed the highest Tc value of 143 K that the predicted
Tc is 138.6 K by the integrated ML model. The Tl1-xHgxBa2Ca2Cu3O8

compounds were predicted to reach a high Tc value of 135.3 K
while the x = 0.4, which is quite close to the highest recorded value
of 143 K for Hg0.66Pb0.43Ba2Ca1.98Cu2.9O8.4. It is expected that more
high-Tc superconductors with different composition can be mined
from the known superconductors.
mp-8603 RbAgO 60.8 Tetragonal
mp-557862 BaAg2(HgO2)2 58.7 Tetragonal
mp-997088 KAgO2 58.5 Orthorhombic
mp-643123 K5Ag(NO)2 58.4 Monoclinic
mp-1114287 K2TaAgF6 58.2 Cubic
mp-1112462 K2AgIrF6 57.7 Cubic
mp-6855 K2NaAg3(CN)6 56.5 Trigonal
mp-1253888 Ba2AlAg3O8 55.3 Tetragonal
mp-976229 KAgO3 55.2 Cubic

Note: When the compounds have more than one crystal structures, only the most
common one is retained.
3.3. New materials mining

The goal of modeling is to predict unreported and potential
superconductor materials with high Tc values. 9000 compounds
were extracted from the MP database for the new superconductor
materials mining. Then 115 features were added to each data by
following the method used in feature engineering. In order to
explore superconductors with Tc values beyond 50.0 K, the inte-
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grated model-based ML method was used to predict potential
materials in selected compounds. In addition, the common
cuprate- and iron-based compounds were eliminated, aiming to
find unconventional and high-performance superconductors. The
predicted values showed that the Tc values of 20 compounds were
higher than 50.0 K and the Ba4AgAuO6 reached the highest value of
70.8 K. The corresponding MP-id, chemical formula, and crystal
system were listed in Table 4. In terms of the crystal system, the
proportion of cubic, orthogonal, tetragonal, monoclinic, and trigo-
nal materials were 52.6%, 21.3%, 15.7%, 2.6%, and 7.8%, respectively.
In the view point of element composition, Ag was observed in
every predicted compound, and O and F were existed in 44.7%
and 47.3% of compounds.

The MP provided the electrical characteristics which estimated
the additional insight with the probable connection between these
candidates. The energy band and density of states (DOS) diagrams
were illustrated for visual analysis of the predicted superconductor
materials with highest Tc values. Taking Ba4AgAuO6 and KAgCO3 as
examples to shown in Fig. 5, the energy bands neared the Fermi
level (EF) that appeared the flat bands. These bands caused a large
rise in the DOS and can result in a significant increase in Tc values.



Fig. 5. Energy band and DOS diagrams of predicted superconductor materials. (a) Ba4AgAuO6 compound (70.8 K). (b) KAgCO3 compound (61.0 K).
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Fig. 5 indicated the peaks in the DOS elicited by van Hove singular-
ities (VHS) can be significantly increased the Tc values when the
VHS were sufficiently closer to EF [68]. And the experiments have
been proved that the high Tc superconductors VHS were near the
EF [69,70]. The ML model explored these band structure character-
istics when the no explicit information about the electronic band
structure were included in these features. Therefore, Tc values
can be increased when the distance between EF and its adjacent
VHS was shorten by changed or doped material composition.
4. Conclusions

In summary, the integrated ML model was developed to predict
potential high-Tc superconductors. 13,138 pieces of superconduct-
ing data were collected from SuperCon database as the dataset for
the element features engineering in ML model training. A 95.9%
prediction accuracy of R2 score was reached via the integrated
ML model cross-verification. The range thermal conductivity fea-
ture with high values exhibited a positive correlation forward Tc
value. Twenty new superconductors with Tc values over 50.0 K
were predicted by using the integrated ML model. Moreover, the
work successfully extracted effective features mathematical for-
mulas to estimate Tc values. This work provides new insights for
improving the prediction accuracy of Tc values, and further
explores new type ML methods to screen out potential high-Tc
superconductors.
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