电导法测定 LiCl 在水溶液中的活度系数

王卫东

(湖北师范学院化学与环境工程系, 湖北 黄石 435002)

摘 要: 应用电导法测定了 LiCl 水溶液的活度系数, 首先在 288~308 K 温度范围内测定 LiCl 在极性水溶剂中的电导率, 利用公式计算 LiCl 的摩尔电导率, 应用 Debye— Hücker 和 Osager-falk enhangen 公式计算 LiCl 在水中的活度系数, 并讨论了温度和浓度对 LiCl 水溶液活度系数的影响。

关键词: 电导法; 电解质溶液; 活度系数; LiCl; H2O

中图分类号: 0645. 17

文献标识码: A

文章编号: 1008-858X(2005)04-0035-03

电解质在溶剂中的活度系数是溶液热力学 研究的基本和重要的参数,它集中反映了在指 定溶剂中离子之间及离子与溶剂分子之间的相 互作用,对离子溶剂化、离子缔合及溶液结构改 变的理论研究及其应用具有重要的意义[1]。 电 解质水溶液组分活度系数的研究在海洋化学、 盐湖化学、污染控制等领域中有着重要的意义, 电解质活度系数理论既是国内外溶液热力学理 论研究的热点,又是重要的电化学研究领域。同 时也是含盐溶液蒸馏、湿法冶金、生物化工等工 程上的需要。研究电解质溶液的离子平均活度 系数对于制盐工业、海水淡化等过程工艺的设 计和开发非常重要[2],在海湖井矿盐的制备中, 如何测定盐溶液的活度是一个必须解决的问 题, 而盐溶液活度的测定实质上就是测定盐水 溶液组分的活度系数。在测定电解质溶液活度 系数时一般采用电动势法 3 和凝固点降低法, 电导法[4]相对于其它方法来说具有仪器简单、 操作方便等优点, 所以用电导法测定电解质水 溶液组分的活度系数是一种简便、实用的方法。

在盐湖卤水中,含有丰富的锂,锂的用途广泛,可利用的盐湖卤水中通常含有 LiCl。本文

应用电导法¹⁴ 在 288~308 K 温度范围内测定了 LiCl 在水溶液中的电导率,利用 Debye-Hücker和 Osager-Falkenlagen 公式计算了 LiCl 在水溶液中的平均活度系数,讨论了温度和浓度对 LiCl 水溶液活度系数的影响,为 LiCl 在水溶液中的稀溶液研究提供了基础热力学数据。

1 实验部分

1.1 实验试剂与仪器

去离子水(经石英亚沸蒸馏器提纯);无水LiCl(分析纯,天津市大茂化学试剂厂);DDS—11A型数显电导率仪(上海雷磁新泾仪器有限公司);SWQ智能数字恒温控制器和SYP型玻璃恒温水浴(南京桑力电子设备厂)

1.2 实验过程

(1)测定 LiCl 水溶液和溶剂水的电导率 用 DDS-11A 型数显电导率仪测量 LiCl 水 溶液和溶剂水的电导率,其中溶液电导率的测

收稿日期: 2005-03-22

基金项目: 湖北师范学院自然科学项目(2003B10)和湖北师范学院人才引进资助科研项目(2004R02)

量使用铂黑电导电极,而溶剂水则采用光亮铂电导电极测量。实验过程中电导电极放在密闭的电极管中,以防溶剂挥发、溶度改变。测量的

数据如表 1 和表 2 所示。其中 C (mol/L)为溶液 中 LiCl 的浓度。

(2)水溶剂的介电常数 ^{6]} 及粘度 ^[7] 数据列

表 1 LiCl 水溶液的电导率 $\kappa \times 10^{-3} / (\mu \text{S} \cdot \text{cm}^{-1})$ 测定值

Table 1 Experimental data of the conductivity of the LiCl aqueous solution

$\text{C} \times 10^3 / (\text{mol} ^{\circ} \text{L}^{-1})$	288 K	293 K	298 K	303 K	308 K
1. 026	0. 088	0. 099	0.111	0. 121	0. 132
1. 938	0. 155	0. 176	0. 194	0. 214	0. 234
3. 161	0. 241	0. 272	0. 303	0. 336	0.369
5. 379	0. 396	0. 447	0. 497	0. 549	0. 601
6. 322	0. 450	0. 506	0. 567	0. 619	0. 675

表 2 溶剂水电导率 $\kappa/(\mu S^{\circ} cm^{-1})$ 测定值

Table 2 Experimental data of the conductivity μ S ° cm⁻¹ of the pure H₂O

———————— 体系	288 K	293 K	298 K	303 K	308 K
 溶剂	4. 30	7. 53	10. 36	14. 07	15. 58

于表3中。

1.3 数据处理

- (1)利用表 1、表 2 测定数据,根据 $\lambda = (\kappa_{\bar{\aleph}} \kappa_{\bar{\aleph}}) \times 10^{-3}/c$ 公式 (1) 计算 LiCl 的摩尔电导率 λ 值 (见表 4)。
- (2) 应用 Kohlrausch 经验规则 9 : $\lambda = \lambda_{0}$ (1 $-\beta\sqrt{c}$), 以 $\lambda \sim \sqrt{c}$ 作图, 使用 Origin 软件进行线性拟合, 外推得到不同温度时 LiCl 在水溶剂中的无限稀释摩尔电导率 λ_{0} 值 (见表 3)。
- (3)由下列计算公式⁴ 处理数据得到 α 值 (见表 3), 公式为:

$$lpha = rac{A \circ | \ Z_{+} \circ Z_{-}|}{B_{1} \lambda_{0} + B_{2}}$$
,式中的 $A = rac{1.8246 \times 10^{6}}{(\epsilon_{T})^{3/2}}$,
$$B_{1} = rac{2.801 \times 10^{6} \circ | \ Z_{+} \circ Z_{-}| \circ q}{(\epsilon_{T})^{3/2} \circ (1 + \sqrt{g})},$$

$$B_2 = \frac{41.25^{\circ}(|Z_+|+|Z_-|)}{\eta(\varepsilon T)^{1/2}},$$

式中的

$$q = \frac{|Z_{+} \circ Z_{-}|}{|Z_{+}| + |Z_{-}|} \circ \frac{L_{+}^{0} + L_{-}^{0}}{|Z_{-}| \circ L_{+}^{0} + |Z_{+}| \circ L_{-}^{0}}, \varepsilon$$
 为溶剂的介电常数, η 为溶剂的粘度, T 为热力学温度, λ_{0} 为电解质无限稀释摩尔电导率, $L_{+}^{0} \cdot L_{-}^{0}$ 是正、负离子的无限稀释摩尔电导率, $Z_{+} \cdot Z_{-}$ 是正、负离子的电荷数。

(4) 根据 $\lg \gamma_{\pm} = \alpha (\lambda - \lambda_0) - \lg (1 + 0.0012 \nu mM)$ 公式^[4],计算电解质 LiCl 水溶液的活度系数 γ_{\pm} 。

上式只适用于非缔合式电解质溶液且浓度在 0.1 mol/L 以下, M 为溶剂的摩尔质量, 其值 18.01 g/mol.

表 3 纯水的介电常数 $^{[6]}$ 与粘度 $^{[7]}$ 数据和 A_xB_1 、 B_2 、 λ_0 和 α 值

Table 3 Experimental data of dielectric constant and viscosity of the pure H₂O and A, B₁, B₂ λ₀ α

T/K	ε	$\eta \times 10^2$	\mathbf{A}	B_1	B_2	λ_0 / (S ° cm ² ° mol ⁻¹	$\alpha \times 10^3$
288	81. 95	1. 1404	0. 5032	0. 2263	47. 09	90. 28	7. 453
293	80. 10	1. 0050	0. 5075	0. 2282	53. 58	96. 58	6.711
298	78. 30	0. 8937	0. 5119	0. 2302	60. 43	105. 18	6.048
303	76. 55	0. 8007	0. 5165	0. 2322	67. 65	107. 41	5. 578
308	74. 83	0. 7225	0. 5215	0. 2345	75. 21	115. 69	5. 096

夷 4	LiCl 的摩尔电导率 \/ (S° cm	$2 \cdot \text{mol}^{-1}$	佶
1X 4	山山 引手小电寺学 小 (3 ㎝)	moi /	坦

Table 4	The molar	conductivity	of the	e LiCl	electrolyte
---------	-----------	--------------	--------	--------	-------------

$C \times 10^3 / (\text{mol} ^{\circ} \text{L}^{-1})$	288 K	293 K	298 K	303 K	308 K
1. 026	81. 58	89. 15	98 09	104. 22	113. 47
1. 938	77. 76	86. 93	94. 76	103. 16	112.7
3. 161	74. 88	83. 67	92 58	101. 84	111. 81
5. 379	72 82	81. 70	90. 47	99. 45	108. 83
6 322	70. 50	78. 85	88. 05	95. 69	104. 30

表 5 LiCl 水溶液的活度系数 $\gamma \pm d$

Table 5 Activity coefficient of the LiCl electrolyte

$C \times 10^3 / (\text{mol} ^{\circ} \text{L}^{-1})$	288 K	293 K	298 K	303 K	308 K
1. 026	0. 8613	0. 8915	0. 9060	0. 9598	0. 9742
1. 938	0. 8066	0. 8614	0. 8649	0. 9468	0. 9931
3. 161	0. 7677	0. 8190	0. 8390	0. 9308	0. 9554
5. 379	0. 7410	0. 7944	0. 8146	0. 9026	0. 9225
6 322	0. 7120	0. 7602	0. 7876	0.8600	0.8747

2 结果讨论

(1) 从表 3、表 5 可以看出, 当 LiCl 水溶液浓度一定时, 随温度的升高, 溶剂的介电常数降低, 溶剂的粘度也降低, 使得离子之间的静电吸引作用减弱, 溶剂化自由离子浓度相对增加, 从而使电解质溶液的活度系数增加;

(2)从表 5 也可以看出, 当温度一定时, 随 LiCl 溶液浓度的增加, 溶液中正、负离子之间的 静电吸引作用增强, 使得溶剂化自由离子浓度 相对降低, 导致活度系数逐渐减小。

3 结 论

利用线性拟合方法求得在288 K、293 K、289 K、303 K和308 K温度时 LiCl 在水溶剂中的无限稀释摩尔电导率,对应值分别为 90.28、96.58、105.18、107.41、115.69(S°cm²°mol⁻¹);在浓度一定时,随着 LiCl 水溶液温度的升高, LiCl

水溶液的电导率、摩尔电导率、无限稀释摩尔电导率和活度系数均增加;在温度一定的条件下,随着 LiCl 水溶液浓度的增加, LiCl 水溶液的电导率升高,而其摩尔电导率和活度系数均减小。

参考文献:

- [1] 李林尉, 褚德萤, 刘瑞麟. 应用离子选择性电极进行溶液 热力学研究[J]. 华中师范大学学报(自然科学版), 1998, 32(2): 186—191.
- [2] 李志广, 黄红军, 闫军. 三元体系 NaCl、KCl、H₂O 35 [℃]活度 系数的研究[J]. 化学物理学报, 2002, 15(6): 476—480.
- [3] 王卫东,向翠丽,胡珍珠,等.非水溶剂中电解质溶液活度系数的测定: NaCl在 1, 2-丙二醇中活度系数的测定[J]. 盐湖研究, 2004, 12(1): 43-45.
- [4] 王卫东、张云. 电导法测定 HCl 在 H₂O 和 DMF 混合溶剂中的活度系数[J]. 化学通报, 2005, 68(1): 12.
- [5] 黄子卿. 电解质溶液理论导论(修订版)[M]. 北京: 科学出版社, 1983. 82-83; 105-106.
- [6] 姚允斌, 解涛, 高英敏, 编. 物理化学手册[M]. 上海, 上海 科学技术出版社, 1985. 211, 1152—1153.
- [7] 东北师范大学等校编. 物理化学实验(第二版)[M]. 北京: 高等教育出版社, 1989, 341.

(下转46页)

Fortran program and for useful direction to this work.

References:

- [1] Cory C. Pye and Wolfram W. Rudolph. An ab Initio and Raman Investigation of Sulfate Ion Hydration [J]. J. Phys. Chem. 2001, A 105, 905—912.
- [2] Ramaswamy Murugan, Anil Ghule and Hua Chang. Thermo— Raman spectroscopic studies on polymorphism in Na₂SO₄[J]. J. Phys.: Condens. Matter 2002, 12: 677—700.
- [3] H. Kanno. Hydrations of Metal Ions in Aqueous Electrolyte Solutions: A Raman Study J. J. Phys. Chem. 1988, 92, 4232 4236.
- [4] H. W. Ruben, D. H. Templeton, et al. Crystal structure and entropy of sodium sulfate decalyrate[J]. J. Am. Chem. Soc., 1961, 83, 820—824.
- [5] Palinkas G, Radnai T, Hajdu F. Ion-solvent and solvent—sol-

- vent interactions; x-ray study of Aqueous alkali Chloride solutions JJ. Z. Naturforsch., 1980, A 35(1); 107—114.
- [6] Toshio Yamaguchi and Oliver Lindqvist. The Structures of Sulfate, Sulfite and Disulfite Ions in Aqueous Solution Determined by X-Ray Diffraction[J]. Acta Chemica Scandinavica 1982, A 36: 377—389.
- [7] Kersti Hermansson and Mark Wojcik. Water exchange around Li⁺ and Na⁺ in LiCl(aq) and NaCl(aq) from MD Simulations [J]. J. Phys. Chem. 1998, B 102; 6089—6097.
- [8] Anne Willem Omta, Michel F. Kropman. Sander Woutersen-Huib J. Bakker. Hydrogen-Bond Structure in Liquid Water [J]. Science, 2003, 301; 347—349.
- [9] S. G Capewell, G. T. Hefter, P. M. May. Association constants for the NaSO₄⁻ ion pair in concentrated cesium chloride solutions, J. Talanta 1999, 49; 25-30.
- [10] Xiacai Fu, wenxia shen, and tianyang Yao. physical chemistry
 [M] . Beijing; higher Education press 1990. 556

浓硫酸钠水溶液中的离子对

刘元会,房春晖

(中国科学院青海盐湖研究所,陕西 西安 710043)

摘 要: 不同浓度的 Na_2SO_4 水溶液的拉曼光谱显示了 SO_4^{2-} 的四个拉曼活性带: $980~cm^{-1}$ 处的 SO_4^{2-} 的对称 伸缩振动模式 v_1 带, $1~106~cm^{-1}$ 处的反对称伸缩振动模式 v_3 带, $448~cm^{-1}$ 处的变形振动模式 v_2 带和 $617~cm^{-1}$ 处的变形振动模式 v_4 带。 $482~cm^{-1}$ 处的肩膀峰是由于 $NaSO_4^-$ 离子对的形成对 $448~cm^{-1}$ 的 v_2 带的 影响而形成的 SO_4^{2-} 的 一个新的振动峰。浓 Na_2SO_4 水溶液中,水共享离子对[$Na^+ \circ H_2O^\circ SO_4^{2-}$] 一是主要的离子对物种。随着 Na_2SO_4 水溶液浓度的增加, Na^+ 和 SO_4^{2-} 的相互作用增强, $NaSO_4^-$ 离子对所占的摩尔分数增加。 关键词: Na_2SO_4 水溶液; 拉曼光谱; 离子对; 水合; 摩尔分数

(上接第37页)

Determination of the Activity Coefficients of Aqueous Lithium Chloride Solutions by the Electric Conductivity Method

WANG Wei-dong

(Department of Chemistry and Environmental Engineering of Hubei Normal University, Huangshi 435002, China)

Abstract: The electric conductivity method was applied for the determination of the activity coefficients of aqueous lithium chloride solutions at 288 ~308 K. The molar conductivities of LiCl were calculated for various concentrations. The calculation of activity coefficients of LiCl was completed by utilizing the Debye-Hackel and Osager-Falkenhangen formulae. In addition, discussions were made for the effects of concentration and temperature on the activity coefficient of the electrolyte solution of aqueous LiCl.

Key words: Electric conductivity; Electrolyte solution; Activity coefficient; LiCl; H₂O