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Abstract

Adpversarial training (AT) is widely used to boost model robustness against adversarial attacks,
i.e., adding minor perturbations on the clean input to fool the target model. However, AT can
also lead to degraded clean accuracy since it changes the distribution of the training set. Using
the Taylor expansion, we find that commonly used adversarial loss functions inherently include
clean loss, making it challenging for previous methods to effectively balance the standard per-
formance and robustness. Based on this, we establish a flexible AT framework that can explicitly
balance the model robustness and clean accuracy by assigning learnable weights to the clean
and adversarial loss components. Comprehensive experimental results indicate that our method
boosts model robustness while maintaining comparable standard performance.
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1. Introduction

Adpversarial training (AT) attempts to boost the robustness of classifiers against adversarial
examples by augmenting the training set with perturbed samples. While this approach effectively
reduces adversarial errors or boosts the generalization accuracy on adversarial test examples, it
has been observed to impair the standard accuracy on clean test data [1, 2, 3, 4]. Recent discus-
sions [3, 4, 5] suggest a trade-off in AT, implying the challenge of simultaneously minimizing
standard and adversarial risks.

This paper focuses on AT for natural language processing (NLP) tasks, especially for text
classification. The overarching concept of AT involves a two-level optimization process to en-
hance the model robustness. On the inner level, gradient ascent is employed to optimize small
perturbations of the input data, aiming to maximize the model’s loss function. On the outer level,
gradient descent is utilized to adjust the model parameters to minimize the classification loss of
these adversarial examples.

We note that in textual AT, the default iteration number k is often quite small, e.g., 3 for
FreeLLB [6], TAVAT [7], and InfoBERT [8], resulting in small perturbation sizes for these meth-
ods. Their empirical results indicate that a relatively small perturbation size helps boost both
model robustness and performance. Nevertheless, we doubt whether a small perturbation size is
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Figure 1: The robust accuracy (RA) and the clean accuracy (Clean) of the original PGD method [11] and ours on the
SST-2 dataset [13]. The backbone model is BERT-base [12]. As the step size increases, a trade-off exists between RA
and Clean. It is hard to achieve optimal robustness and clean accuracy simultaneously.

really helpful in improving robustness. Because the inner maximization greatly affects the ef-
fectiveness of AT [9]. A small perturbation size usually generates lower-quality adversarial data,
which makes AT useless. For example, the fast gradient sign method (FGSM) [10] can quickly
generate adversarial data using one step, but contributing little to robustness. Thus, it is reason-
able to vary the iteration number and the adversarial step size to study how inner maximization
affects AT. To this end, we choose two widely adopted AT methods, i.e., the projected gradient
descent (PGD) method [11] and the FreeLB method [6] as our baselines to conduct preliminary
experiments on the BERT-base [12] model.

We report clean and robust accuracies' equipped with PGD and FreeLB in Figures 1 and 2.
We find that the existing AT method can hardly improve robustness without hurting clean accu-
racy, which contradicts the results in previous works [6, 7]. As the perturbation size increases in
AT, the robustness increases while the accuracy decreases. Additionally, AT will easily collapse
and fail to converge when the perturbation size becomes too large.

This preliminary result indicates that we must rethink the trade-off between robustness and
accuracy for NLP models. It also motivates us to investigate whether there exists an optimal
perturbation size for the sake of balance, and how to make AT converge in a large perturbation
size to achieve strong robustness.

To this end, we theoretically analyze the impact of the perturbation size on the learning ob-
jective of AT. In particular, we perform Taylor expansion on the adversarial loss and decompose
it into a clean data loss and an adversarial one, in which the adversarial one is the weighted sum
of squares of all perturbations. The clean loss corresponds to the model’s accuracy, while the
adversarial one corresponds to the model’s robustness. By assigning trainable weights to all the
perturbations, we can explicitly balance the two losses to achieve comparable model robustness
and standard performance.

'In this paper, we use clean accuracy to refer to the standard accuracy on clean text data and use robust accuracy to
refer to the generalization accuracy on adversarial test examples.

\}
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We further provide extensive experimental results. Compared with existing state-of-the-art
AT methods, our method demonstrates a remarkable improvement in robustness without sacri-
ficing the clean accuracy. Our main contributions are:

o We demonstrate that existing AT methods for NLP models either fail to improve robustness
or compromise clean accuracy.

e We conduct theoretical analysis on a series of gradient-based AT methods. We decompose
their learning objectives into distinct adversarial and clean loss components, allowing us
to explicitly balance model robustness and accuracy on clean data.

e We establish a flexible AT framework where one can balance adversarial loss and clean
loss by assigning learnable weights to adversarial perturbations. Empirical evaluations
show that our method can improve model robustness without sacrificing clean accuracy.

2. Related Work

2.1. Adversarial Training

AT is widely used to improve robustness against malicious adversarial attacks. Let © be the
model parameters, X be the input feature set and Y be the corresponding label set, with each
input data x € X and label y € Y. In practice, AT is developed to solve the following max-min
optimization problem:

m@%n max L(O,x+9,y), (1

where ¢ denotes the minor perturbation term added to the input.

While the outer minimization is often solved by stochastic gradient descent, how to tackle
the inner maximization objective function is still under continuous study. Goodfellow et al. [10]
proposed FGSM to generate perturbations in one gradient ascent step as follows:

0 = sign(V,.L(©, x,y)), ()

where sign(-) is the sign function.

However, this approximation can hardly find high-quality adversarial data that can maximize
the loss function. To seek more precise solutions, Madry et al. [11] proposed the Projected
Gradient Descent (PGD) method to generate perturbations using multi-step gradient ascent steps.
The perturbation ¢, and input x, corresponding to time step ¢ are calculated as follows:

6 =a-Vy L(O,x_1,y),

Xp = X1 + 04,

3)

where « is the adversarial step size to control the size of perturbations.

Moreover, PGD initializes the search for adversarial data at random starting points within the
allowed norm ball, improving the diversity of adversarial data. Empirically, PGD and its variants
are still considered the most effective AT methods.

For NLP tasks, AT was first used to improve the generalization of models. Miyato et al. [14]
proposed virtual AT to enhance text classification in a semi-supervised manner. To further im-
prove language understanding for pre-trained language models, Zhu et al. [6] proposed FreeLB
to provide a large virtual batch size in AT.

(O8]
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In another line of work, AT was adopted to boost the robustness of NLP models. By adver-
sarially perturbing their embedding layer, NLP models were trained to predict consistently on
both clean and adversarial data, thereby achieving better adversarial robustness. For example,
Li and Qiu [7] proposed TAVAT to generate token-level perturbations accounting for the impor-
tance of tokens. Li et al. [15] increased the iteration numbers of AT and found it useful for
boosting robustness. Wu et al. [16] introduced adversarial self-attention (ASA), a theoretical
framework that restructures transformer attention maps using adversarial perturbations. ASA
learns input-dependent prior biases automatically through gradient reversal layers, mitigating
overfitting and enhancing robustness. Sinha et al. [17] developed a theoretical framework for
generating human-like adversarial examples to bridge the gap between synthetic and real-world
attacks. Their work proves that traditional metrics (e.g., semantic similarity) fail to capture
real attack patterns. Theoretically, they formalize attack generation as imitating human attack
distributions via a generator-discriminator setup, ensuring synthesized samples reflect realistic
perturbations. This approach reduces robustness gaps in tasks like natural language inference
and hate speech detection. Gao et al. [18] proposed to minimize the distribution shift risk be-
tween clean and adversarial data. Formento et al. [19] learned robust word embeddings to defend
against adversarial attacks. An et al. [20] formulated a theoretical framework for counterfactual
data augmentation using non-likelihood AT. By perturbing causal features via gradient saliency
analysis, the above framework generates label-flipped samples that disrupt spurious correlations
(e.g., polysemy in Chinese).

With the advancement of large language models (LLMs), research in adversarial attacks
against LLMs has revealed that they also exhibit adversarial vulnerability. Geisler et al. [21] pro-
posed REINFORCE to extract sensitive information or training data from the model’s memory.
Maloyan et al. [22] investigated the vulnerability of LLM-as-a-Judge architectures to prompt-
injection. Maloyan and Namiot [23] manipulated the outputs of LLM-as-a-Judge systems. To
enhance the robustness of LLMs, researchers have improved the pre-training process by con-
trolling data provenance through methods like data cleansing, while also incorporating safety
considerations during the alignment phase [24].

2.2. The Trade-off between Robustness and Accuracy

In computer vision, while AT helps improve robustness, a vast amount of empirical evidence
exists that the clean accuracy can be hurt [11, 25]. Zhang et al. [26] theoretically identified the
trade-off between robustness and accuracy by decomposing the prediction error for adversarial
examples (robust error) as the sum of the natural error and boundary error. Nevertheless, Yang et
al. [27] proved that robustness and accuracy should both be achievable for benchmark datasets
through locally Lipschitz functions.

For NLP models, early research generally holds that AT improves both robustness and ac-
curacy [14, 28, 6]. However, few studies have focused on the trade-off between robustness and
accuracy in AT of NLP models.

It is worth noting that several adversarial data augmentation (ADA) methods [28, 29, 30, 31]
expand the original training set with crafted adversarial examples. ADA methods introduce
larger perturbations than gradient-based AT methods, leading to relatively low clean accuracy. It
demonstrates that there is also a trade-off between robustness and accuracy in AT of NLP models.

In this work, we first demonstrate that with a large perturbation size, robustness trades off
clean accuracy in gradient-based AT of NLP models. Further, by decomposing the learning
objective of AT into a clean classification loss and an adversarial one, we can explicitly balance
clean accuracy and robustness.

4 Data Intelligence
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Figure 2: The robust accuracy (RA) and clean accuracy (Clean) of PGD and FreeLB under different adversarial step sizes
on the SST-2 dataset. The backbone model is BERT-base. Although PGD can achieve higher robustness than FreeLB,
the clean accuracy of the model is greatly damaged. When the perturbation is too large, the training cannot converge.

3. On the Convergence of Adversarial Training

It is widely pointed out that AT is more difficult than standard training for both computer
vision and NLP models [11, 32]. The main reason is that a distribution difference exists between
adversarial data and clean data, which makes one model unable to converge well on two widely
different data distributions. According to [18], one can model the difference via Wasserstein
distance. The authors proved that the distribution shift is bounded by the adversarial perturbation
8. Therefore, ¢ is crucial in the convergence of AT. We then vary ¢ to show its effect?.

Figure 2 shows that as ¢ increases, the clean accuracy drops significantly, which implies
that AT cannot converge well with large perturbations. Furthermore, robust accuracy gradually
increases, demonstrating a trade-off between clean accuracy and robust accuracy.

It is also intriguing to see that FreeLB can converge under larger perturbations than PGD.
We theoretically analyse the differences among different AT methods to understand this phe-
nomenon. Recall the following learning objective in AT:

m®in E(xy)~D ﬁ?”ax L(O®,x+6,y)|, 4

where O is the model parameters, D is the data distribution, and € is the allowed perturbation size.
In the min-max process, multi-step gradient ascent methods often solve the inner maximization.
Take PGD as an example. By initializing x( to x and denoting the iteration number as k and the
adversarial step size as @, we have:

X = proje(xi—1 + a - norm(g(xi-1))), ®)

2In practice, we vary the step size @ in AT to control the perturbation size.

Data Intelligence 5
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where ¢ is the time step within the range [1, k], g(x;—1) is the gradient of x,_;, and norm(-) can be
L, normalization. The initial value x( can also be randomly sampled within the e-neighborhood
of x. In that case, we have xy = x + dy, where 9y is randomly sampled.

For simplicity, we omit the projection function and the normalization function. The main
reason is that in [15], the authors have demonstrated that removing the norm-bounded limitation
helps achieve better model robustness. Thus, we have:

8;. (6)

t
X = X1+ 0, =x9+

i=1

In this way, the inner maximization can be reformulated as follows:

k
max L(0, xg + 01, Y). 7
max £(©, % Zl ) )

The magnitude of perturbation at each time step ¢ is determined by the step size a—which
typically has a very small value. Therefore, we treat §; as an infinitesimal quantity relative to
x, and perform the first-order Taylor expansion on the loss function. By omitting the high-order
terms and deriving 6; = a - V,,_, L(0, xo + Zf;ll oy, y) from Eq. (3), we have:

k k=1
LO.x0+ Y 8.) = LO. %o+ Y 6 +061.y)
t=1 t=1

k-1 k-1
~ L0, %0+ ) 653 + 8k Vi, LO, X0+ ). 6,3)

t=1 t=1

k-1 1
= £(©, xy + Zé,,y) + 55,3

t=1

k=2

1 3

=LO,x0+ Y 6 +6k1,y) + —6°
L(0, xp Z t [ ok

t=1

k=2
1 1
~ £(0, xo + Z 50, y) + 55,3_1 + 55,3

t=1

k
1
~ L@.x0.y)+— )5
t=1

Eq. (8) indicates that one can decompose the loss of adversarial data during PGD training
into the corresponding loss of clean data and the sum of squares of all perturbations ;.

Therefore, it is reasonable that as the perturbation size increases, the adversarial loss becomes
larger and begins to dominate the training, leading to higher robustness. For clean accuracy, as
the perturbation size enlarges, the model gets harder to converge on the original training set,
resulting in lower clean accuracy.

Based on Eq. (8), we further study how ¢ affects the convergence of AT. We firstly extend
Eq. (8) to FreeLLB. It can also be easily extended to other PGD-like methods such as FreeLB++.

6 Data Intelligence
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According to the FreeLB method, the number of iterations is k and the step size is @. The loss
of each iteration will be divided by k and accumulated. The model parameters will be updated
at the end (for comparison, PGD only uses the loss of the last iteration to update the model
parameters). Similarly, the inner maximization of FreeLB can be formulated as follows:

1

k
_ I
max Zl LO, xg+7.y), )

where r' = }i_, 6;. By performing the first-order Taylor expansion on Eq. (9), similar to Eq. (8),
we have:

1< ) 1< 14,
7 2, L@+ 1) = 2 ) (LO,x0,3) + — > 6))
=1 =1 i=1
I k—i+l (o
—i+
= LO.30.0) + — )

i=1

57
k l

Eq. (10) indicates that the learning objective of FreeL.B can also be decomposed into the
clean data loss and the weighted sum of squares of all perturbations J;, where the weight of ¢; is
k=i+1
-

At this point, we can explain more clearly in Figure 2. Since the PGD method inherently

has a greater weight for adversarial loss, it can achieve higher robustness than FreeLB, but the
training of PGD is more difficult to converge.

4. Adaptive Adversarial Training

4.1. A Unifying Framework for Adversarial Training

Comparing the two learning objectives, one can find an implicit set of weights weighing the
perturbation 6; produced at each iteration i. Further, the weights of the clean classification loss
and the adversarial one are also implicitly given. For the PGD method with an iteration number
of k, the weights of clean loss and the adversarial loss are 1 and k, respectively. The FreeLB
method’s weights are 1 and (k + 1)/2, respectively.

Therefore, we summarize the learning objective J of the two methods into the following
formula:

1 k
T (O, %05, W, ) = L©,x0,y) + B~ > wid},
@3 11

where 3 balances the clean loss and the adversarial loss, and w; balances all the perturbations.

However, since the derivative of the sum of squared perturbations involves computing the
second-order derivative, we further manipulate the above formula to avoid the second-order
derivative. Specifically, we introduce the following equation:

k
T (O, %0y, W,B) = LO, x0+B- ) widi, ). (12)
i=1

Data Intelligence 7
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Algorithm 1 Adaptive Adversarial Training

Require: Model parameters ©, loss function £, training set D = {x;, y;}!_,, number of epochs
T, batch size m, number of iterations k, number of batches M, perturbation weights w,
weighting factor 8

Ensure: robust model parameters ®

1: forepoch=1to T do
2. for batch=1to M do

3 Sample a mini-batch b = {(x;, i)} |

4 Generate adversarial perturbations ¢ via Eq. (3)

5 Compute the overall loss j (@, x,y,w,p) via Eq. (12)

6: Update w via ij 0, x,y,w,B)

7

8

9:

Update © via Vo 5 (0, x,y, W, )
end for
end for

By performing Taylor expansion on Eq. (12) and leveraging 6; = a-Vy, , L(®, xo+ Z;:l 01,Y),
we can easily verify that each term corresponds one-to-one with Eq. (11), i.e.,

k
(O, 50,5, W,B) = LO, x0 +B- ) widi,¥)
i=1

k-1

= L(O©, %0+ B ), widi + Pwidi. )

i=1

k=1 k=1
~ LO,x0+ B+ ) wibi, )+ Pwedi Vo, LO,x0+ - D widi, )
i=1 i=1

k=1

1
=L(O,x+8- Z wili,y) +ﬁ;wk5i 13)
im1
k-2

1 1
~ LO.x0 + B+ Y Wibiy) +Bwici8y_y +Pwid
i=1

1,
= L@.x0.y) + B~ ; W;o2
= j(®, X0,Y, W?ﬁ)

Therefore,  is equal to J. In our experiments, we initialize w to a vector of ones and update
it automatically using its gradient.

4.2. The Rationale behind Our Framework

Next, we explain the rationale behind introducing 8 and w. As deduced above, in the PGD
method, the weight of the clean loss is naturally set to 1, while the weight of the adversarial loss
is set to k. In the FreeLLB method, the weight of the clean loss is also 1, but the weight of the

8 Data Intelligence
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adversarial loss is (k + 1)/2. To ensure the extensibility of our AT framework, we introduce the
parameter (3 to balance the clean loss and adversarial loss. Specifically, PGD and FreeLLB are two
special cases of the proposed framework.

Eq. (10) shows that while maintaining the original ratio between clean loss and adversarial
loss, the perturbations at each time step ¢ are assigned different weights. Therefore, we introduce
a set of parameters w, ensuring that the sum of w; equals 1, and utilize gradients to solve for the
worst-case scenario. The weights w are continuously updated throughout the training process,
in order to find the best values across the entire training set rather than achieve a local solution
based on a single batch of data. This weighting strategy allows us to identify the worst-case
scenarios that maximize the model’s loss. Subsequently, we update the model parameters using
these adversarially weighted examples to enhance robustness. Although gradient descent does
not guarantee convergence to the global solution, our extensive empirical evidence demonstrates
that the resulting weight assignment achieved by this method is superior to using fixed weights.
For example, in the PGD method, even though different time-step perturbations are not explicitly
weighted, one can assume that their weights are uniformly set to 1.

Following the min-max optimization widely used in AT, the final training objective can be
defined as:

min max J(©, x0,y, W, B). (14)

In this way, we build our novel framework of adaptive AT in a constrained manner, where
both the PGD and the FreeLLB methods can be considered special cases of our framework.

Notably, our framework can encompass a wider range of PGD-based AT algorithms, not
limited to FreeL.B. We show our proposed adaptive AT method in Algorithm 1.

5. Experimental Setup

5.1. Tasks and Datasets

Following previous important works [18, 15, 7], we compare our adaptive AT method with
baselines on two tasks, i.e., text classification and natural language inference. In the main ex-
periments, we choose the SST-2 [13]° and the QNLI [33]* datasets to perform text classification
and natural language inference tasks, respectively. For completeness, we also test the applicabil-
ity of our method on the IMDB dataset [34] and the AGNEWS dataset [35], both used for text
classification. Detailed characteristics and examples of the four datasets are presented below.

e For the SST-2 dataset, an example of x and y is “On the worst revenge-of-the-nerds clichés
the filmmakers could dredge up” and “Negative”.

e For the IMDB dataset, an example of x and y is “Fred “The Hammer” Williamson delivers
another cheaply made movie. He might have set a new standard for himself. Look for the
painfully obvious special effects mortar cannon that is visible in the street during a chase
scene. You don’t see it just once, you see it several times. Look for the out of focus shot
in one scene and the camera operator try to fix it as the scene rolls on. Watch this with a
group of people and make your own Mystery Science Theater!” and “Negative”.

Shttps://dl.fbaipublicfiles.com/glue/data/SST-2.zip
“https://huggingface.co/datasets/nyu-mll/glue
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o For the AGNEWS dataset, an example of x and y is “Wall St. Bears Claw Back Into the
Black (Reuters) Reuters - Short-sellers, Wall Street’s dwindling band of ultra-cynics, are
seeing green again.” and “Business”.

o For the QNLI dataset, an example of x and y is “When did the third Digimon series begin?
Unlike the two seasons before it and most of the seasons that followed, Digimon Tamers
takes a darker and more realistic approach to its story featuring Digimon who do not
reincarnate after their deaths and more complex character development in the original
Japanese” and “Not entailment”.

We list the characteristics of the four datasets below.

Dataset #train #dev/test # words

SST-2 67,349 872 17
QNLI 105,000 5,460 37
IMDB 25,000 25,000 201
AG news 120,000 7,600 40

Table 1: Summary of the four datasets.

5.2. Baseline Methods

5.2.1. Defence Methods

We apply our framework to various AT-based defence methods, including PGD [11], FreeLB
[6], and TA-VAT [7]. To comprehensively benchmark existing defence methods, we report the
results of InfoBERT [8], Flooding-X [36], and SMART [37] which enhance AT by an information
bottleneck, “flooding”, and smoothness-inducing regularization, respectively. The performance
of TRADES [26], which is the most relevant method from the computer vision domain to ours,
is also presented.

SemRoDe [19] and ADPMIXUP [38] are not chosen for the main experiment. Because
these two methods incorporate valid adversarial examples into the training process (a process
also known as adversarial augmentation training), and they leak information about the attack-
ing methods, making the results less convincing. Considering such methods have attracted the
attention of some researchers, in section 7.2, we further investigate our method’s effectiveness
compared with state-of-the-art adversarial augmentation training methods in a fair setup.

5.2.2. Attacking Methods

Following previous works [15, 19], we use TextFooler [30], TextBugger [29], and BAE [39]
as our attacking methods to dynamically generate adversarial examples during test time.

We also consider assessing AT methods against high-quality adversarial examples pre-crafted

by human annotators. Therefore, we report the robust accuracy of all the models on the adver-
sarial GLUE dataset [40].

5.3. Implementation Details

We implement PGD [11], FreeLLB [6], TA-VAT [7], and InfoBERT [8] based on TextDefender
[15]. We implement Flooding-X [36], SMART [37], and TRADES [26] following the original
paper. The weighting factor @ in TRADES is set to 0.5 to achieve the optimal performance. The

10 Data Intelligence
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SST-2 Clean % TextFooler TextBugger BAE AdvGLUE

RA % RA % RA % RA %

BERT-base [12]  92.32 8.14 26.83 33.72 31.32

InfoBERT [8] 91.74 10.89 32.68 37.96 32.17

Flooding-X [36] 92.32 12.60 32.45 35.44 27.00

SMART [37] 91.78 10.45 30.15 33.26 23.54

TRADES [26] 87.19 9.46 29.53 3541 30.99

PGD [11] 89.11 12.96 3222 35.21 39.13

+Ours 88.99 16.06 (+3.10)  35.68 (+3.46) 40.02 (+4.81) 43.44 (+4.31)

FreeLB [6] 92.20 9.98 34.06 37.73 30.13

+Ours 91.63 15.69 (+5.71)  38.73 (+4.67) 41.22 (+3.49) 38.53 (+8.40)

TA-VAT [7] 91.40 11.93 35.89 37.61 32.00

+Ours 91.51 (+0.11)  18.46 (+6.53)  39.60 (+3.71) 40.94 (+3.33) 39.42 (+7.42)

Table 2: The clean accuracy (“Clean %”) and the robust accuracy (“RA %) on the SST-2 dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

three adversarial attacks are conducted using TextAttack® [41]. All experiments are conducted
using GeForce RTX 3090 GPUs. All the settings of adversarial hyper-parameters settings are
consistent to provide a fair comparison.

Unless otherwise mentioned, the adversarial step size is set to 0.04; the batch size is 128; the
epoch number is 10. To align with the weighting factor of the original method, 8 is set to k for
PGD and TA-VAT and (k + 1)/2 for FreeLB.

For the natural language inference task, we adhere to prior research [30] by allowing the
attacking methods to modify the premise while keeping the hypothesis unchanged.

6. Main Results

Our proposed method can be easily extended to PGD-like AT methods. In this part, we
advance PGD, FreeLB and TA-VAT with adaptive perturbations to assess the effectiveness of our
method. We conduct the main experiments on the BERT-base model to provide comprehensive
comparisons with other AT methods.

Note that the value of 3 is related to the methods being extended. For example, when extend-
ing the PGD method using our framework, the value of 3 is set to k (i.e., the number of iterations)
according to Eq. (8). We leave the exploration of the effects of different 8 values for future work.

Table 2 reports the defence results against different types of adversarial attacks on the SST-2
dataset, including two word-level attacks (TextFooler and BAE), one multi-level attack (TextBug-
ger), and an adversarial test dataset (Adversarial GLUE). The main findings are:

e For clean accuracy, all the baseline AT methods maintain a similar level, since the ad-
versarial strength is moderate. The PGD method has the lowest clean accuracy, which is
consistent with the conclusions of previous work.

Shttps://github.com/QData/TextAttack
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ONLI Clean % TextFooler TextBugger BAE AdvGLUE

RA % RA % RA % RA %

BERT-base [12]  90.60 8.80 9.50 27.90 42.75

InfoBERT [8] 89.10 5.30 6.80 30.90 44.00

Flooding-X [36] 91.50 12.00 16.60 40.30 47.00

SMART [37] 91.77 8.50 13.22 33.46 39.02

TRADES [26] 86.22 9.45 12.14 35.44 43.50

PGD [11] 87.00 11.30 16.80 43.60 41.50

+Ours 87.90 (+0.90) 16.80 (+5.50) 17.20 (+0.40) 41.20 48.89 (+7.39)

FreeLB [6] 89.60 14.40 14.10 40.50 44.75

+Ours 89.70 (+0.10)  16.60 (+2.20) 17.70 (+3.60)  43.10 (+2.60)  51.75 (+7.00)

TA-VAT [7] 91.51 12.60 14.30 40.94 43.00

+Ours 91.00 18.46 (+5.86)  20.30 (+6.00)  44.20 (+3.26)  51.00 (+8.00)

Table 3: The clean accuracy (“Clean %”) and the robust accuracy (“RA %”) on the QNLI dataset against TextFooler,
TextBugger, and BAE attacks. We report the robust accuracy of the models on the adversarial GLUE dataset (i.e.,
AdvGLUE) to evaluate AT methods against pre-crafted adversarial examples. The backbone model is BERT-base.

e For robust accuracy against dynamic adversarial attacks and human-crafted adversarial
examples, our method can boost the performance of three AT methods. Compared with
InfoBERT and Flooding-X, our method also maintains higher robustness.

e Our method can boost the robust accuracy of PGD, FreeLB and TA-VAT methods while
achieving comparable clean accuracy, which is consistent with our motivations.

We also conduct experiments on the QNLI dataset. The main results are consistent with
that on the SST-2 dataset. Our method consistently enhances robust accuracy across various
adversarial attacks and test sets. Thanks to the adaptive strength of perturbations, the clean
accuracy remains at a comparable level compared to other AT methods.

We note that the PGD method still has the lowest clean accuracy. According to Eq. (8),
the PGD method implicitly places a greater weight on the adversarial loss than FreeL B, which
sacrifices the clean accuracy. Since it is directly adopted from the visual domain, no adjustments
have been made to the trade-off between robustness and clean accuracy. As a consequence, this
method exhibits lower clean accuracy on NLP tasks.

The results on the IMDB and the AGNEWS datasets are reported in Tables 4 and 5. In terms
of clean accuracy, our method maintains a performance level comparable to the baseline. In terms
of robustness accuracy, our method improves the robustness of the baseline in most scenarios.

It is noteworthy that the improvement in robustness is relatively small on these two datasets.
This may be related to the sentence length in the datasets. Existing adversarial attack algorithms
typically set the maximum number of word replacements based on a percentage of the sentence’s
token count, such as 20%. As the length increases, the number of words to be replaced also
increases, which may result in less significant improvements in robustness.
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TextFooler TextBugger BAE

IMDB Clean %

RA % RA % RA %
BERT [12] 91.21 24.48 47.26 20.31
InfoBERT [8] 91.90 23.00 37.30 22.40
Flooding-X [36] 92.30 34.50 32.30 35.42
SMART [37] 91.90 24.50 45.40 22.32
TRADES [26] 88.34 25.50 47.60 18.34
PGD [11] 90.43 26.31 52.37 21.44
+QOurs 90.56 (+0.13)  27.12(+0.81) 53.50 (+1.13) 21.55(+0.11)
FreelLB [6] 92.14 27.50 50.60 31.34
+Ours 91.80 26.82 52.74 (+2.14)  33.10 (+1.76)
TA-VAT [7] 91.50 27.40 51.70 23.12
+Ours 92.08 (+0.58) 25.70 51.66 24.30 (+1.18)

Table 4: The clean accuracy (“Clean %) and the robust accuracy (“RA %) on the IMDB dataset against TextFooler,
TextBugger, and BAE attacks. The backbone model is BERT-base. The IMDB dataset does not have a corresponding
AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.

7. Discussions

In this section, we discuss the relationship between our method and existing AT methods.
We compare our adaptive AT method with adversarial augmentation training methods to further
demonstrate its effectiveness. We highlight the importance of conducting AT on small language
models like BERT, rather than solely focusing on LLMs. We also provide an error analysis of
the approximate loss and demonstrate the PGD loss and approximate loss in AT in practice.

7.1. Relation to Existing Work

We list a series of loss functions of AT methods in Table 6 and discuss the difference between
our proposed adaptive AT and conventional AT methods, including fast gradient method (FGM)
[14], PGD [11], TRADES [26], and FreeL.B [6].

Specifically, the standard method is designed to minimize the clean data loss, i.e., the cross-
entropy on the clean data. The FGM [14] method generates adversarial examples in one gradient
ascent step, minimising both clean and adversarial data loss. The PGD method [11] generates
adversarial examples using multi-step gradient ascent and only minimizes the adversarial data
loss in the last step. Similarly, the FreeLB method [6] generates adversarial examples using
multi-step gradient ascent. Different from PGD, FreeLB minimize the average of the adversarial
loss at each step.

It is important to point out that all these methods implicitly include the clean data loss in the
adversarial loss. In particular, as revealed by Eq. (8) and Eq. (10), the conventional adversarial
loss can be decomposed into a clean data loss and an adversarial loss. Therefore, although we
can introduce hyperparameters to balance clean loss and adversarial loss in these methods, we
cannot precisely balance the two losses.

TRADES [26] is theoretically designed to achieve a good trade-off between accuracy and
robustness in the computer vision domain, which is the most relevant AT method with our adap-
tive AT. TRADES decomposes the adversarial error into a natural error and a boundary error.

Data Intelligence 13
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AGNEWS Clean % TextFooler TextBugger BAE

RA % RA % RA %
BERT [12] 91.90 20.50 42.71 16.21
InfoBERT [8] 92.00 19.20 3141 12.70
Flooding-X [36] 91.39 33.40 55.60 29.40
SMART [37] 9220 22.45 37.80 15.60
TRADES [26] 89.42 33.90 48.65 27.61
PGD [11] 90.82 37.20 58.20 32.83
+Ours 91.10 (+0.28)  38.70 (+1.50) 57.92 35.20 (+2.37)
FreeLB [6] 91.20 32.33 48.50 22.65
+Ours 91.07 32.10 50.10 (+1.60)  24.12 (+1.47)
TA-VAT [7] 92.17 39.70 55.81 23.66
+Ours 91.66 37.26 57.36 (+1.55) 23.77 (+0.11)

Table 5: The clean accuracy (“Clean %) and the robust accuracy (“RA %) on the AGNEWS dataset against TextFooler,
TextBugger, and BAE attacks. The backbone model is BERT-base. The AGNEWS dataset does not have a corresponding
AdvGLUE version. Therefore, the robustness accuracy for this dataset is not reported.

However, the boundary error cannot be effectively computed. In practice, the authors introduce
a surrogate loss (i.e., the KL divergence between the model output of clean data and adversarial
data) to approximate the boundary error. In this way, TRADES cannot precisely balance the
standard performance and robustness.

Our proposed adaptive AT addresses this issue by decomposing the conventional adversarial
loss using Taylor expansion. In our learning objective, clean loss and adversarial loss only affect
standard performance and model robustness, respectively.

7.2. Comparisons with Adversarial Augmentation Training

Adversarial augmentation training methods have attracted the attention of some researchers
[38, 19] by expanding training sets with valid adversarial examples, albeit at the cost of poten-
tially leaking information about the attacking methods. To further demonstrate the effectiveness
of our framework, we here apply the same extra data in our approach for a fair comparison with
adversarial augmentation training.

Specifically, we employ the TextFooler algorithm [30] to generate adversarial perturbations
for the SST-2 training set, thereby constructing an augmented dataset. Leveraging this enhanced
training corpus, we conduct a systematic comparison between our adaptive AT framework and
two state-of-the-art adversarial augmentation training methods, ADPMIXUP [38] and SemRoDe
[19], quantitatively evaluating their effectiveness in improving model robustness.

As can be seen in Table 7, compared to the two state-of-the-art adversarial augmentation
training methods, our AT framework can achieve comparable clean and robust accuracy. In par-
ticular, we find that before and after the introduction of additional data, although our method
does not construct a specific learning objective for the extra data like ADPMIXUP and Sem-
RoDe, it still achieves a huge improvement in robust accuracy (36.5% on the SST2 dataset and
28.5% on the QNLI dataset). We give a possible explanation that the existing adversarial attack
algorithms share knowledge bases, such as replacement word sets. Expanding the training set
after generating additional data will leak this information. Even if different attack algorithms are
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Methods Loss Function Flexibility
Standard L(O,x,y) -
FGM [14] L(O, x,y) + L(O®,x +6,y) X
PGD [11] L(©,x + 6, ) X
TRADES [26] £(®, x,y) + AKL(p(®, x)||p(®, x + 5)) K
FreeLB [6] Lyt LO,x+6,Y) X
Ours L(O,x,y) +BL 3L wis? v

Table 6: Comparisons of different loss functions in AT. The adversarial perturbations in TRADES are generated by
maximizing its regularization term (KL-divergence). The Flexibility indicates whether the method can explicitly control
the weighting between clean loss and adversarial loss. Xindicates that the method cannot balance clean and adversarial
losses. v indicates that the method introduces a hyperparameter to balance the two types of loss, but lacks flexibility be-
cause the adversarial loss still contains the clean loss. v/ indicates that it can explicitly balance clean loss and adversarial
loss.

RoBERTa BERT
Clean % RA % Clean % RA %
ADPMIXUP [38] 96.3 58.9 92.3 67.9

Dataset Method

SST2 SemRoDe [19] 94.2 46.6 94.2 40.2
PGD+Ours 96.3 59.1 92.7 52.5
ADPMIXUP [38] 94.4 66.7 87.2 442

QNLI SemRoDe [19] 91.2 352 90.6 39.7
PGD+Ours 95.2 58.3 92.4 45.3

Table 7: The clean and robust accuracy on the SST-2 and QNLI datasets with two adversarial augmentation methods,
ADPMIXUP and SemRoDe. Our method uses the same extra data to provide fair comparisons. The attacking method
is TextFooler. Our method performs comparable to the two state-of-the-art adversarial augmentation training methods
when sharing the same extra data.

replaced during testing, the leakage of this shared information can result in a huge improvement
in robustness.

7.3. Beyond Model Parameters

Recently, LLMs have achieved remarkable results across many NLP tasks [42, 43]. There is
also a body of work investigating adversarial vulnerabilities specifically for LLMs [21, 22, 23,
24]. Therefore, it is necessary to explain why this work focuses on AT for pre-trained language
models. We select a more practical task, namely spam detection, and report the standard perfor-
mance of models with varying parameter sizes in Table 8, including naive Bayes (NB), support
vector machine (SVM), BERT, and LLMs. We adopt the SMS Spam Collection dataset [44],
which contains 747 spam messages and 4,825 non-spam messages. The long-tail distribution of
the data makes it more realistic and challenging.

As can be seen, even the state-of-the-art DeepSeek-r1 model [43] performs poorly on this
dataset, which may be related to the data distribution. However, small models generalize well on
this dataset.

W
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Method Acc. Pre. Recall Fl

SVM (linear) 97.56 97.01 84.82 90.50
Multinomia NB 98.21 9826 88.48 93.11
BERT-base 99.48 9444 91.15 92.61

DeepSeek-rl-zeroshot  87.74 5271 9577 68.00
DeepSeek-r1-fewshot 9545 79.75 91.30 85.14

Table 8: The performance of models with varying parameter sizes on the spam detection task. We use deepseek-rl [43]
to demonstrate the performance of LLMs on this dataset in zero-shot and few-shot manners.

Given the constraints of computational resources and training efficiency, this study proposes
to investigate AT for BERT-based architectures to mitigate vulnerabilities against adversarial
perturbations, rather than focusing on LLMs.

The details on the usage of DeepSeek are presented below. We employ the DeepSeek-rl
model [43] for spam detection and evaluate its performance under zero-shot and few-shot set-
tings. In the zero-shot setting, the model receives no examples or labels and is prompted to
classify the message based solely on its inherent reasoning ability. The prompt provided is:
“You are a professional spam classifier. Please analyze the following message and determine
whether it is spam. Just reply ’spam’ or ham’, no explanation is needed.” This setup tests the
model’s ability to classify messages without prior examples or labels.

In the few-shot setting, we supply the model with two examples and their corresponding la-
bels. The first example is a spam message: “URGENT! This is the 2nd attempt to contact U!U
have WON a£1000CALL 09071512432 b4 300603t&csBCM4235WCIN3XX.callcost150 ppm-
mobilesvary. maxa£7.50”, labeled as spam. The second example is a non-spam message: “Why
don’t you go tell your friend you’re not sure you want to live with him because he smokes too
much then spend hours begging him to come smoke”, labeled as ham. This setting aims to exam-
ine how the model leverages the provided examples to classify messages.

Through these two setups, we assess the model’s generalization ability and performance
when there are no explicit labels or examples available.

7.4. Impact of Adversarial Step Size

We aim to investigate the impact of the perturbation size in AT. In AT, the maximum perturba-
tion size is typically specified. However, what effectively determines the perturbation magnitude
are the number of iterations and the adversarial step size. Therefore, given a perturbation size,
we vary the number of iterations and step size to investigate their impact on robustness. In other
words, we want to find out whether increasing the perturbation strength of AT always helps ro-
bustness. To achieve this, we conduct PGD on the BERT-base model. Based on our previous
experiments, the product of iteration numbers k and adversarial step size « is empirically set to
10 and 0.4.

The main result is reported in Figure 3. It can be seen that when the number of iterations is
moderate (5 and 6), the model achieves the best robustness. We suggest that it is unnecessary to
set a huge number of iterations during AT. As suggested in [45], robust overfitting hinders the
AT of NLP models. Too many iterations may lead to robust overfitting of the model and reduce
its robustness accuracy on the test set.

16 Data Intelligence



Adaptive Adversarial Training for Balancing Model Robustness and Standard Performance

901

(0]
o

~
o

=—e==Clean%
RA%

Accuracy

()]
o

50+

40

T T T T T

k=2, 3, 4, 5, 6, 7
alpha=0.2,0.13, 0.1, 0.08, 0.067, 0.057

Figure 3: The robust accuracy and clean accuracy under different k£ and «, while the maximal perturbation size is set to
ka following [15].

TextFooler AdvGLUE

SST2 Clean %

RA % RA %
RoBERTa-base 95.07 6.19 39.50
+PGD 94.27 11.47 44.59
+Ours 94.95 11.82 45.22
DeBERTa-v3-base 95.99 12.60 55.41
+PGD 95.18 13.99 57.14
+Ours 95.76 14.50 67.34

Table 9: The clean and robust accuracy on ROBERTa [47] and DeBERTa-v3-base [46].

7.5. Performance on Other Models

We choose DeBERTa-v3-base [46] and RoBERTa [47], two improved versions of BERT,
as our backbone models to investigate whether our method can boost the robustness of more
complex and larger language models. The clean and robust accuracy of DeBERTa-v3-base and
RoBERTa-base models are reported in Table 9. These two models can bear a larger perturbation
size than the BERT-base model to explore the impact of a larger perturbation range on AT. The
empirical results indicate that our adaptive AT framework can generalize well on larger, more
complex models.

7.6. Time Consumption

To further substantiate the comparative advantages of our method, a systematic benchmark-
ing analysis was conducted to evaluate GPU training durations between our proposed approach
and established AT methods, with the quantitative comparisons meticulously documented in Ta-
ble 10. Our method incurs approximately a 10% increase in computational overhead. This
empirical investigation demonstrates our method’s computational efficiency while maintaining
equivalent adversarial robustness metrics.
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Method SST-2  QNLI
PGD [11] 902 4123
+Ours 912 4237
FreeLB [6] 781 3122
+Ours 920 3745
TA-VAT [7] 853 3455
+Ours 1013 4123

Table 10: The GPU time consumption (seconds) of training one epoch on the SST-2 and QNLI datasets. The backbone
model is BERT-base. The iteration number is set to 5 for all the methods.

0.71 The PGD Loss
The Approximate Loss

0 200 400 600 800
Iterations

Figure 4: The error between the approximate loss and the original PGD loss on the SST2 dataset over the BERT model.
This indicates that our approximation of the experiments is quite practicable.

7.7. Error Analysis

It is necessary to analyze the error of our method since we have ignored the higher-order
terms in the Taylor expansion. Taking the PGD method as an example, we show the error between
the approximate loss and the original PGD loss. The original PGD loss is computed by Eq. (7).
The approximate is computed by Eq. (8).

In Figure 4, we observe that the approximate loss can well match the loss curve of the PGD
method, which indicates that the impact of ignoring higher-order terms is negligible. This also
demonstrates that our approximation is accurate in the experiments and it can be used to develop
AT with an adaptive perturbation.

8. Conclusions

This work seeks to balance model robustness and accuracy. To this end, we demonstrate
that existing AT methods contribute little to model robustness with a small perturbation size.
Through theoretical analysis of existing AT paradigms, we decompose the learning objective
of AT into a pure adversarial loss and clean loss, which correspond to model robustness and
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clean accuracy, respectively. This way, we can explicitly assign learnable weights to the two
losses to balance model robustness and clean accuracy. Experimental results on four datasets
over BERT, RoBERTa and DeBERTa models show that our method can boost model robustness
without sacrificing clean accuracy. We also provide extensive discussions about the parameter
sensitivity, time consumption, and the relation to existing work. In the future, we plan to integrate
our adaptive AT framework with a dynamic weight allocation strategy based on sample difficulty,
which is expected to mitigate the issue of robust overfitting [48]. To strengthen the theoretical
foundation and improve the solution quality, we also plan to theoretically analyze the effect of
learning weights dynamically.
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