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Abstract

While large language models (LLMs) have demonstrated remarkable capabilities in high-resource
languages, their proficiency in detecting offensive language significantly deteriorates when ap-
plied to low-resource languages, a challenge compounded by the high costs of data annotation
and model deployment. To address this, we propose UD-KD (Unified Debiased Knowledge
Distillation), a novel framework that enables zero-shot cross-lingual offensive language detec-
tion without requiring any labeled data in the target language. Our approach distills knowledge
from a teacher LLM in a high-resource language (e.g., English) by capturing not just its pre-
dictions, but its underlying structured reasoning—including attentional patterns and semantic
representations. We introduce a structure-aware distillation mechanism that aligns these deeper
patterns across disparate languages and a virtual adversarial invariance module that enhances
model robustness on unlabeled target-language data. Furthermore, our framework incorporates a
geometric debiasing component to mitigate spurious correlations associated with identity terms.
Through extensive experiments on multiple student models and across several target languages
(e.g., Turkish, Russian, and Italian), we demonstrate that UD-KD substantially outperforms es-
tablished baselines in accuracy, robustness, and fairness, critically reducing the reliance on target-
language annotations. Our work presents a practical, low-cost, and scalable solution for content
moderation on multilingual platforms, offering a viable pathway for deploying advanced NLP
technology to safeguard global online discourse.

Keywords: Large language models; Offensive Language Detection; Hierarchical Distillation;
Self-Correcting Loop

1. Introduction

Contemporary large language models (LLMs) have achieved unprecedented success across a
wide array of natural language processing tasks, fundamentally altering the research landscape
[1, 2. These models are predominantly trained on vast, multilingual corpora, yet the under-
lying language distribution is profoundly imbalanced [3]]. For instance, English constitutes the
lion’s share of the training data for most foundational models, while hundreds of other languages
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are represented by orders of magnitude less text. This data imbalance has led to a significant
performance disparity, where LLMs exhibit remarkable proficiency in high-resource languages
but lag considerably in most others, particularly for nuanced and context-sensitive tasks such as
offensive language detection [4} 15].

The automatic detection of offensive, toxic, and hateful content is critical for maintaining
healthy online ecosystems, especially on global social media platforms and in the comment sec-
tions of international news outlets [6} [7]. However, building effective detection systems for
low-resource languages is fraught with challenges, including severe data scarcity for supervised
training, the high cost of culturally-aware annotation, and the subtle, often implicit nature of
offensive expressions [8,9]. While one could theoretically deploy massive LLMs like GPT-4 for
moderation, their substantial computational and financial costs render them impractical for real-
time, large-scale deployment at the endpoint [[10}[11]. This creates an urgent need for lightweight,
yet highly effective, models that can operate in diverse linguistic environments.

A common approach to bridge this resource gap is to leverage the “translate-then-finetune”
paradigm [12} [13]]. In this method, labeled training data from a high-resource language like En-
glish is machine-translated into the target low-resource language, and a smaller student model is
then fine-tuned on this synthetic corpus. However, this seemingly straightforward approach en-
counters several critical limitations. First, machine translation systems, especially for informal
and offensive language, are prone to errors. They may fail to preserve the toxic nuance, mis-
translate culturally-specific insults, or introduce artifacts, leading to a noisy and often misleading
training signal [[14]. Second, this method facilitates only a superficial transfer of labels, failing to
distill the deeper, structural reasoning that underpins an LLM’s judgment [15]. A model trained
on translated text may learn spurious correlations between translated artifacts and labels rather
than the fundamental linguistic patterns of toxicity. Finally, as shown in prior work, continuously
training models on out-of-domain or translated data can inadvertently degrade their capabilities
in their original high-resource language [[16]. Therefore, we explore a new question along this
trajectory: Besides simply translating labels, can we distill the deeper, language-agnostic rea-
soning capabilities of LLMs to enhance robust performance in low-resource languages without
labeled target-language data?

In this paper, we introduce UD-KD (Unified Debiased Knowledge Distillation), a novel
framework for zero-shot cross-lingual offensive language detection. Instead of merely transfer-
ring output probabilities, UD-KD distills a richer, multi-faceted understanding from the teacher
LLM. Our framework is comprised of three core components. (1) Structure-Aware Distillation:
We move beyond logits and distill knowledge from the teacher’s internal representations, such
as attention patterns and hidden states. This forces the student model to mimic how the teacher
reasons about linguistic structure, not just what it predicts. (2) Adversarial Invariance Distilla-
tion: Leveraging large amounts of unlabeled target-language text, we employ a variant of virtual
adversarial training [17] to instill a notion of semantic robustness, making the student model
resilient to minor perturbations in unseen languages. (3) Geometric Debiasing: We proactively
mitigate biases by identifying and neutralizing spurious correlations tied to identity terms within
the model’s embedding space, a critical step for fairness in content moderation [18]]. We conduct
extensive experiments on LLaMA-2-7B [19] and SeaLLM-7B [20], with English as the source
language and Turkish, Russian, and Italian as unseen target languages. Experimental results
demonstrate that UD-KD significantly outperforms a suite of strong baselines, including stan-
dard fine-tuning, translate-train, and vanilla knowledge distillation, across metrics of accuracy,
robustness, and fairness. Our main contributions are:
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e We propose UD-KD, a new and comprehensive framework for zero-shot cross-lingual of-
fensive language detection that effectively transfers deep structural and invariant knowl-
edge from a teacher LLM.

e We introduce a novel combination of structure-aware distillation, adversarial invariance
training on unlabeled data, and geometric debiasing to address the core challenges of noise,
structural mismatch, and bias in cross-lingual transfer.

e We demonstrate through extensive experiments that our method achieves state-of-the-art
performance, offering a practical and scalable pathway for deploying fair and effective
content moderation systems in low-resource environments.

2. Related Work

Our research is situated at the intersection of three primary areas: multilingual capabilities of
large language models, cross-lingual knowledge transfer, and offensive language detection.

2.1. Multilingual Large Language Models

The paradigm of pre-training on large, multilingual corpora has become standard for devel-
oping models with cross-lingual understanding capabilities [21| [22] 23]]. Models like mBERT
[21] and XLM-RoBERTa [22] demonstrated that representations learned from text in multiple
languages could be aligned in a shared semantic space, enabling zero-shot cross-lingual transfer.
More recently, massively multilingual models such as BLOOM [24] and mT5 [235]], as well as
foundational models like GPT-4 and LLaMA-2, have shown impressive, albeit often uneven, per-
formance across a vast number of languages. Despite their multilingual pre-training, recent stud-
ies have consistently highlighted the performance gap between high-resource and low-resource
languages [2]. Research has shown that while these models possess surprising zero-shot or few-
shot capabilities in many languages [26, 27|]. Our work builds upon this understanding, aiming
not to create a new multilingual model from scratch, but to propose a method that specifically
targets and enhances the latent low-resource capabilities within existing powerful LLMs like
LLaMA-2.

2.2. Cross-Lingual Knowledge Transfer

To address the data scarcity problem in low-resource languages, various cross-lingual knowl-
edge transfer techniques have been explored. A dominant line of work is translate-train, where
high-resource labeled data is machine-translated to the target language for fine-tuning [28 4].
While effective to a degree, this approach is highly dependent on the quality of the machine
translation system, which often falters on domain-specific, informal, or adversarial text [29].
Another prominent approach is cross-lingual alignment, which seeks to explicitly align model
representations across languages. This can be achieved through various means, including multi-
lingual aligned lexicons [30]], alignment of word or sentence embeddings [31], or using parallel
data to construct alignment-focused pre-training tasks [32]]. More recent work has explored lever-
aging LLMs themselves to generate aligned data through prompting or self-translation [33} 34].
Compared to these methods, which often require parallel corpora or sophisticated alignment ob-
jectives, our UD-KD framework performs a more implicit, end-to-end alignment by distilling the
entire reasoning process of a model, guided by its internal structural representations.

(O8]
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Our work is most closely related to knowledge distillation for cross-lingual transfer. Prior
studies have used distillation to transfer knowledge from a large teacher model to a smaller
student model for tasks like machine translation [35] or to compress multilingual LLMs [36].
The SDRRL method [36], which inspires our work, proposes using self-distillation to improve
an LLM’s multilingual performance by leveraging its own responses in a high-resource language.
Our UD-KD framework significantly extends this concept by moving beyond the distillation of
surface-level responses to distill deeper, structural knowledge and invariant properties, which we
argue are more fundamental and language-agnostic signals for effective cross-lingual transfer.

2.3. Offensive Language Detection

Automatic offensive language detection is a long-standing and critical research area [37].
Early work relied on feature engineering and traditional machine learning models [38]], while
later efforts shifted to deep learning architectures like LSTMs and CNNs [39]. The advent of
pre-trained language models like BERT has set new state-of-the-art benchmarks for this task, par-
ticularly in English [40]. However, extending these successes to multilingual and low-resource
settings remains a significant challenge [41]. Most research in this subfield has focused on the
translate-train paradigm or the direct application of multilingual models [42] [43]. While valu-
able, these approaches often fail to account for the fairness and bias amplification issues that
are particularly pernicious in toxicity detection [44]. Biases present in the source-language data
can be transferred and even amplified in the target language. Our UD-KD framework explicitly
addresses this by incorporating a geometric debiasing module, aiming to produce not only an
accurate but also a fair cross-lingual detection model. This focus on proactive debiasing during
the knowledge transfer process distinguishes our work from most prior efforts in multilingual
offensive language detection.

3. Methodology

In this work, we aim to enhance the multilingual capabilities of a foundational LLM for
the task of offensive language detection. Specifically, we focus on the zero-shot cross-lingual
setting, where the model is adapted using labeled data from a high-resource source language,
Lrc (e.g., English), to perform effectively on an unseen low-resource target language, L.
Our approach, termed UD-KD, treats this adaptation as an internal knowledge transfer or self-
distillation process. The core principle is to leverage the LLM’s own robust, high-resource per-
sona as a “teacher” to guide the refinement of its latent capabilities in the target language.

3.1. Problem Formulation and Overview

Let My be a foundational LLM with parameters 6. Our goal is to learn an updated set of
parameters 8 that improves performance on £,,, while preserving proficiency in L. The train-
ing regimen utilizes a labeled source-language dataset Dy, = {(x;, yi)}?i , and a large, unlabeled
corpus of target-language text D,

The learning process is governed by a unified loss function that holistically addresses three
primary challenges in cross-lingual transfer: (1) bridging the linguistic and structural gap be-
tween languages, (2) ensuring robust generalization from limited signals, and (3) maintaining
fairness by mitigating harmful biases. The total loss function is a weighted sum of three corre-
sponding components:
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Figure 1: Conceptual overview of the UD-KD framework. The model’s parameters 6 are updated via a composite loss.
The DSKD and UBAC modules operate on labeled source-language data, while the AID module leverages unlabeled
target-language data to enhance robustness.

Liotat = Lpskp + Aap - Lap + Ausac - Lusac ()

where Lpskp is the Structure-Aware Self-Distillation loss, Lamp is the Adversarial Invariance
Distillation loss, and Lypac is the Unsupervised Bias Alignment and Correction loss. The hy-
perparameters Aap and Aypac control the influence of the robustness and fairness components.
Figure[I] provides a conceptual overview of the framework.

3.2. Structure-Aware Self-Distillation (DSKD)

The central hypothesis of DSKD is that the process of reasoning is more language-agnostic
than the final prediction. Consequently, effective knowledge transfer should focus on distilling
the rich, internal computational structures of the LLM. This assumption is supported by linguistic
typology research, which has documented substantial structural commonalities across human
languages. In particular, the Universal Dependencies (UD) framework [45] formalizes cross-
linguistic syntactic relations—such as subject—object dependencies, modifier—head relations, and
clause-level hierarchies—that are consistently observed across typologically diverse languages,
even when surface word order differs. Similarly, the theory of Phrase Structure Universals [46]
identifies recurring hierarchical organization patterns in the grammars of unrelated languages,
suggesting that certain syntactic abstractions are shared and thus transferable across linguistic
boundaries. We define a “teacher” persona, My, , which is simply the model with its initial, pre-
trained parameters held constant. The ”student” is the same model, My, but with its parameters
being actively updated. The DSKD loss, computed on Dy,., guides the student to emulate the
teacher’s internal mechanics.

3.2.1. Distilling Relational Structure via Attention Alignment

The self-attention mechanism in Transformers computes the relative importance of each to-
ken with respect to all other tokens in a sequence, forming an attention matrix A € R/’ (where
L is sequence length) for each head and layer. These matrices implicitly encode syntactic and co-
occurrence patterns. We argue that the high-level geometry of these patterns should be consistent
for a similar reasoning task, regardless of the surface language.

To enforce this, we align the attention matrices from corresponding layers of the student
and teacher. A naive L2 distance is unsuitable due to the arbitrary rotational nature of learned
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representations. Instead, we employ Centered Kernel Alignment (CKA) [47], a similarity
index that is invariant to orthogonal transformations. For a selected set of layers L;,, the attention
alignment loss is:

Lcka = Z (] — CKA(A;mdem(xsrC), A;eacher(xsrc)» )

leLy

where CKA(-, -) measures the similarity between the reshaped attention matrices. This loss en-
courages the student to learn a consistent relational structure for analyzing text.

3.2.2. Distilling Semantic Abstractions via Hidden State Alignment

As information flows through the layers of an LLM, the hidden states {H;} represent increas-
ingly abstract semantic features. We distill this hierarchical abstraction process by aligning the
distribution of hidden states between the student and teacher. We use the Maximum Mean Dis-
crepancy (MMD) [48] with a Radial Basis Function (RBF) kernel, which is a non-parametric
method for comparing probability distributions. The loss is computed as:

Ly = ) MMD? (B} (xp), HE (x,)) (3)
€Ll

This objective function guides the student’s representation space to evolve in a way that mirrors
the teacher’s stable, high-resource semantic manifold, promoting a more effective transfer of
abstract concepts.

3.2.3. Standard Logits Distillation

To ground the distillation process, we also include the standard knowledge distillation loss
based on the final output logits, z. This ensures the student’s final predictions align with the
teacher’s softened probability distribution.

Lcg = KL(0(Zswudent/ D0 (Zicacher /7)) “4)

The DSKD loss is the weighted sum: Lpskp = Lcg + @ - Lvvp + 8- Leka-

3.3. Adversarial Invariance Distillation (AID)

A key challenge in zero-shot transfer is that the model must generalize to a data distribution it
has never seen. To improve this generalization, our AID module enhances the model’s robustness
on the unlabeled target-language corpus, D;s. The principle is that a robust model’s predictions
should be stable under small, local perturbations of its input.

We implement this using Virtual Adversarial Training (VAT) [17]]. VAT introduces a regu-
larization term that promotes smoothness in the model’s output distribution. For each unlabeled
sample x4, we seek a small perturbation r,gy in the embedding space that maximally changes the
model’s predictive distribution. The loss is then defined as the divergence between the original
prediction and the prediction on the perturbed input:

Lap = Lvar(xig,6) = Dxr

P )| pCligs + Fa: ) 5)

where @ represents the current, non-trainable parameters (to prevent back-propagation into the
first term) and r,qy is approximated by:
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radvze”g% with g = V,Dip [p(xer: DI pClxsgr + 13 0)le—ea ©6)

Here:
e r,4y — adversarial perturbation vector applied to the target-language input.
e ¢ — perturbation magnitude controlling the L,-norm of raqy.

e g — gradient of the Kullback-Leibler divergence between two output distributions with
respect to perturbation r.

e Diy[+|I-] — Kullback-Leibler divergence measuring the difference between two probabil-
ity distributions.

o (e xigts ) — teacher model’s predictive distribution given target-language input Xigr and
fixed parameters 6.

o p(:|xig +1; 0) — student model’s predictive distribution for perturbed input, parameterized
by 6.

e ¢d — small random noise vector used to initialize r for numerical stability.

This adversarial loss is computed entirely on unlabeled data, making it a highly efficient method
for adapting the model to the target language’s specific data manifold and improving its general-
ization capabilities without any annotation cost.

3.4. Unsupervised Bias Alignment and Correction (UBAC)

Fairness is a non-negotiable requirement for any real-world content moderation system.
LLMs often learn spurious correlations, unfairly associating toxicity with specific identity groups.
Our UBAC module addresses this proactively and geometrically.

The method consists of two stages. First, in an offline step, we identify a bias subspace. We
compile a list of identity-related terms (e.g., words for gender, religion, nationality). We feed
sentences containing these terms into the frozen teacher model and collect the corresponding
final-layer hidden states. We then apply Principal Component Analysis (PCA) to this collection
of vectors. The top-k principal components form an orthonormal basis for the bias subspace
B € R, which captures the primary axes of variance associated with these identity concepts.

Second, during training, we introduce an orthogonal projection loss. For any input x,., we
penalize its final representation hgygen for aligning with this bias subspace. This is achieved by
minimizing the squared L2-norm of the projection of hgygent Onto B:

-EUBAC = LOrtho = ”BThstudentug (7)

This loss term acts as a regularizer, encouraging the model to find solutions for the offensive
language detection task that are geometrically orthogonal. This allows the model to focus on the
content and intent of the language rather than being triggered by the mere presence of identity
terms. The overall training procedure is outlined in Algorithm I}
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Algorithm 1 The UD-KD Training Algorithm

1: Input: Foundational LLM M,, source dataset Dy, unlabeled target dataset D;g;.
2: Hyperparameters: Aap, Ausac, @, 3, T, €.
3: Initialization:
4: Freeze a copy of the initial model to create a teacher Mie,cher-
5: Identify the bias subspace B using Micycher-
6: for each training step do
7: Sample a mini-batch {(xgc, Ysrc)} from Dy,.
8: Sample a mini-batch {x;g;} from D;g,.
9:
10 // DSKD Loss Calculation (on source batch)
11: Get teacher outputs: Zieacher, {Ateacher}> {Hteacher} <= Mieacher(Xsrc)-
12: Get student outputs: Zgydent» {Astudent}> {Hstudent} < Mo(Xgrc).
13: Compute Lcg, Lcka, Lmmp.
14: Lpskp «— Lcg + aLyvmvp + BLcka-
15:
16: // AID Loss Calculation (on target batch)
17: Compute adversarial perturbation r,qy for x;g.
18: LA < VAT Loss using x;; and (Xg; + Fagy).
19:
20: // UBAC Loss Calculation (on source batch)
21: Get final representation hgygeq from student outputs.
22: Lupac < B hyygendl3-
23:
24: // Parameter Update
25: Liotat < Lpskp + AamLam + AdusacLusac-
26: Compute gradients of L, with respect to 6.
27: Update parameters 6 using an optimizer (e.g., AdamW).
28: end for

29: Return Updated model My .

3.5. Inter-Module Interaction Analysis

To better understand the sources of the framework’s synergistic advantage, we conduct a
qualitative theoretical analysis of the interactions between DSKD, AID, and UBAC under the
joint optimization objective:

Lot = Lpskp + AamLam + AusacLusac- (¥

From a gradient perspective, each module contributes a term VyL,, to the overall parameter
update. When the cosine similarity between VyLpskp and VeLarp is positive, the adversarial
smoothing introduced by AID regularizes the target-language manifold, effectively reducing lo-
cal curvature in the representation space and facilitating more stable structural alignment for
DSKD. Similarly, when VyLypac is weakly correlated or orthogonal to VyLpskp, UBAC’s debi-
asing primarily removes identity-related variance without disrupting semantic abstraction, which
can improve the purity of features distilled via DSKD. Although this analysis is qualitative, it
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reveals how the three modules are theoretically compatible in optimization, explaining the ob-
served empirical gains.

4. Experimental Settings

In this section, we describe the datasets, implementation details, evaluation metrics, and
baseline models used to validate the effectiveness of our proposed UD-KD framework.

4.1. Datasets

Our experimental setup is designed to rigorously evaluate zero-shot cross-lingual transfer
from a single high-resource language (English) to multiple unseen target languages.

Source Language Training Data.. For the high-resource source language, we use the publicly
available dataset [49]. This dataset contains approximately 160,000 English comments from
Wikipedia talk pages, annotated for several types of toxicity. We preprocess this dataset by
converting the multi-label problem into a binary classification task: a comment is labeled as
“offensive” (1) if it has any of the toxicity labels (toxic, severe_toxic, obscene, threat, insult,
identity_hate), and “not offensive” (0) otherwise. This forms our sole source of labeled data,
DS"C'

Target Language Test Data.. To evaluate the zero-shot performance of our method, we use data
from the competition datasets [S0]. We select three target languages with diverse linguistic prop-
erties: Turkish (tr), Russian (ru), and Italian (it). We use the official validation set from this
competition as our test sets, creating Dier 1, Drestru»> ad Dy ir. Importantly, no data from these
languages (labeled or unlabeled) from this specific dataset is used during the training phase,
ensuring a strict zero-shot evaluation setting.

Unlabeled Target Language Data.. The AID module of our framework requires a large corpus
of unlabeled text for each target language. For this purpose, we draw samples from the OSCAR
dataset [31]]. For each of our three target languages, we create an unlabeled corpus, D, by ran-
domly sampling approximately 500,000 sentences. This data is used exclusively for the virtual
adversarial training component.

4.2. Implementation Details
Models.. Our experiments are conducted on two powerful foundational LLMs to demonstrate
the generalizability of our approach:

e LLaMA-2-7B: A widely-used, high-performing open-source LLM from Meta Al [19].

o SeaLLM-7B: A state-of-the-art LLM with a strong focus on Southeast Asian and other
languages, which allows us to test our method on a model with a different pre-training
language distribution [20].

For both models, we use the 7-billion parameter instruction-tuned variants. The self-distillation
process uses the initial, pre-trained model weights as the “teacher” and the fine-tuning model as
the “student.”
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Training Configuration.. We implement our framework using PyTorch and the Hugging Face
Transformers library [52]. All models are fine-tuned for 3 epochs using the AdamW optimizer
with a learning rate of 2 x 1073 and a linear learning rate scheduler with a warmup period. We
use a batch size of 16 for the source language data and 16 for the unlabeled target language data.
All sequences are padded or truncated to a maximum length of 128 tokens. For the loss function
hyperparameters, we set Aaip = 0.5 and Aygac = 0.3 based on preliminary experiments on a
held-out validation set. The distillation temperature 7 is set to 2.0. All experiments are run on
NVIDIA A100 GPUs.

4.3. Baselines

To comprehensively evaluate the performance of UD-KD, we compare it against a series of
strong and relevant baselines:

e Zero-Shot: We directly evaluate the pre-trained LLaMA-2-7B and SeaLLM-7B models
on the target language test sets using a simple prompt (e.g., “Is the following comment
offensive? Yes or No.”). This measures the models’ inherent, out-of-the-box zero-shot
capabilities.

e Source-Only Fine-tuning (SFT): The base LLM is fine-tuned exclusively on the English
dataset (D) using a standard cross-entropy loss. It is then evaluated directly on the target
language test sets. This is the most direct cross-lingual transfer baseline.

e Translate-Train: We use a state-of-the-art machine translation system (Google Translate
API) to translate the entire English training set Dy, into each of the target languages
(Turkish, Russian, Italian). The base LLM is then fine-tuned on this synthetic target-
language corpus and evaluated.

e Standard Knowledge Distillation (KD): This baseline follows the self-distillation setup
but only uses the standard logits distillation loss (Lcg from Equation 4). It does not include
the structural (CKA, MMD), adversarial (AID), or debiasing (UBAC) components. This
allows us to isolate the benefits gained from our more advanced distillation techniques.

e UNITOX: This method fine-tunes LLMs and has shown strong generalization capabilities
[S3].It employs a toxicity-aware representation learning strategy, where toxic and non-
toxic samples are explicitly separated in the embedding space via a contrastive loss. This
enables cross-lingual generalization without the need for parallel corpora. However, UNI-
TOX does not explicitly address domain shifts between high- and low-resource languages,
which can degrade zero-shot transfer performance [S3]]. In our experiments, UD-KD miti-
gates this limitation through self-distillation from high-resource languages and bias-aware
alignment.

o HateCheck: This approach augments the training data with challenging negative examples
from functional test suites, aiming to build a more robust classifier that avoids simple,
biased heuristics [54].

e DACL: This method employs contrastive learning to align representations between source
and target domains, learning domain-invariant features for more robust detection [55].1t
further integrates domain adaptation by re-weighting target-domain samples, improving
cross-domain alignment. However, DACL relies on labeled target-domain data to construct
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contrastive pairs, limiting its applicability in fully unsupervised scenarios. UD-KD over-
comes this by generating pseudo-labels and applying adversarial domain-invariant train-
ing, enabling effective adaptation to completely unlabeled target languages, particularly in
low-resource settings.

4.4. Evaluation Metrics

We evaluate all models on their performance on the target language test sets. Given the
often imbalanced nature of offensive language datasets, we report several standard classification
metrics:

e Accuracy: The overall percentage of correctly classified comments.

e F1-Score: The unweighted average of the F1-scores for the ‘offensive‘ and ‘not offensive*
classes. This is our primary metric as it is sensitive to performance on both the majority
and minority classes.

o Precision and Recall: We report these for the “offensive” class to provide a more granular
view of the model’s ability to identify toxic content versus its tendency to produce false
positives.

5. Results and Analysis

In this section, we conduct a multi-faceted empirical evaluation of our proposed UD-KD
framework.

5.1. Main Results

We first conducted a comprehensive evaluation against a suite of standard and state-of-the-art
baselines. We report the performance on our three unseen target languages Turkish (tr), Russian
(ru), and Italian (it), by using two distinct foundational models, LLaMA-2-7B and SealLLM-
7B. The primary evaluation metric is Macro F1-Score, Precision and Recall to provide a more
nuanced understanding of model behavior. The performance of all models on the LLaMA-2-7B
backbone is detailed in Table[T] Subsequently, Table [2] presents the corresponding results for the
SeaLLM-7B backbone.

First, our proposed UD-KD framework consistently and substantially outperforms all base-
line methods across both foundational models and all target languages. With LLaMA-2-7B,
UD-KD achieves Macro F1-Scores of 74.8%, 76.5%, and 78.9% for Turkish, Russian, and Ital-
ian, respectively. This represents an average improvement of 3.2 points over the strongest SOTA
baseline, DACL. A similar, and even slightly more pronounced, trend is observed with SealLLM-
7B, where UD-KD leads DACL by an average of 3.2 points. This consistent superiority, irre-
spective of the base model’s specific pre-training mixture, strongly suggests that our distillation
methodology is a generally applicable and highly effective technique for enhancing cross-lingual
capabilities.

Second, a closer examination of the Precision-Recall trade-off reveals the nuanced advantage
of our approach. Most baselines, including strong ones like DACL, tend to achieve higher Pre-
cision at the cost of lower Recall. This means they are conservative, correctly identifying clear
cases of toxicity but missing more subtle or non-prototypical instances. In contrast, UD-KD
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Table 1: Performance comparison on the LLLaMA-2-7B backbone across all target languages. Best results in each column
are in bold, second best are underlined. Precision (P) and Recall (R) are for the ‘offensive‘ class.

Method Macro F1-Score Precision (P) Recall (R)

tr ru it tr ru it tr ru it
Standard Baselines
Zero-Shot 583 612 635 60.1 629 645 578 60.5 62.0
SFT 657 689 714 705 728 73.0 63.1 662 70.2
Translate-Train 68.2 70.1 73.0 72.1 739 754 658 675 710
KD 69.5 718 742 730 748 7157 675 698 723
SOTA Baselines
UNITOX 70.1 725 748 735 753 765 682 705 729
HateCheck 698 721 745 733 751 1763 679 701 725
DACL 713 73.6 755 742 759 774 701 720 74.8

UD-KD (Ours) 74.8 765 789 769 785 792 738 754 785

Table 2: Performance comparison on the SeaLLM-7B backbone across all target languages. Best results in each column
are in bold, second best are underlined. Precision (P) and Recall (R) are for the ‘offensive* class.

Method Macro F1-Score Precision (P) Recall (R)

tr ru it tr ru it tr ru it

Standard Baselines

Zero-Shot 59.1 625 648 61.0 638 652 585 616 639
SFT 66.8 70.1 723 712 735 740 645 678 7T1.1
Translate-Train  69.5 718 74.1 729 748 76.1 672 695 723
KD 706 729 750 738 755 766 688 7T71.1 735
SOTA Baselines

UNITOX 713 73.6 759 743 76.1 772 69.6 719 743
HateCheck 70.9 732 755 740 758 769 69.1 714 739
DACL 725 748 768 751 769 78.0 712 734 759

UD-KD (Ours) 759 77.8 80.1 780 79.6 805 749 768 79.5

achieves state-of-the-art performance on both Precision and Recall simultaneously. For exam-
ple, on LLaMA-2-7B for Italian, UD-KD improves Recall by a remarkable 3.7 points over DACL
(78.5% vs. 74.8%) while also improving Precision by 1.8 points (79.2% vs. 77.4%). This indi-
cates that UD-KD does not simply learn to be more aggressive in its classifications. It learns a
fundamentally more accurate and robust decision boundary. We attribute this balanced improve-
ment to the synergy between our modules: DSKD provides a deeper semantic understanding
to correctly identify subtle cases, while AID enhances robustness to linguistic variations, and
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UBAC reduces false positives on benign identity-related text.

Third, the limitations of standard transfer methods are starkly evident. Direct zero-shot
prompting establishes a baseline of inherent capability but is clearly insufficient for reliable
deployment. Source-Only Fine-tuning (SFT) provides a significant jump, demonstrating that
task-specific knowledge is transferable. However, the performance ceiling of SFT highlights the
“language gap.” Translate-Train offers a further, albeit marginal, improvement, but its effective-
ness is capped by the fidelity of machine translation, which can fail to preserve the pragmatic and
emotional force of offensive language. The clear performance gap between these methods and
UD-KD validates our premise that a more profound knowledge transfer mechanism is required.

Finally, the comparison with SOTA baselines situates our work at the forefront of current
research. DACL, which uses contrastive learning to explicitly align representations, proves to
be the most formidable competitor. The fact that UD-KD, which performs an implicit alignment
through structural distillation, still yields superior results suggests that capturing the model’s
internal computational process is a more holistic and effective signal than solely optimizing for
representational similarity on parallel data. Our method appears better suited to transferring the
complex, multi-faceted reasoning required for a task as nuanced as offensive language detection.

5.2. Ablation Study

To empirically validate our design choices and quantify the contribution of each module
within the UD-KD framework, we conducted a meticulous ablation study. All experiments in
this subsection were performed using the LLaMA-2-7B backbone. We began with the full UD-
KD model and systematically removed or disabled each key component, measuring the resulting
impact on the Macro F1-Score for each of the three target languages. The results are presented
in Table [3|and visualized in the left panel of Figure ??.

Table 3: Detailed ablation study of UD-KD components on LLaMA-2-7B. We report the Macro F1-Score (%) for each
target language and the average.

Model Configuration Turkish Russian Italian Average
UD-KD (Full Model) 74.8 76.5 78.9 76.7
Ablating Core Modules:
- w/o Adversarial Invariance (Lap) 71.8 74.0 76.8 74.2
- w/o Geometric Debiasing (Lypac) 74.1 75.9 78.3 76.1
- w/o DSKD (All structural losses) 70.5 72.9 75.2 73.5
Ablating DSKD Sub-components:

- w/o Attention Alignment (Lcka) 72.9 75.1 71.3 75.1

- w/o Hidden State Alignment (Lymp) 72.5 74.6 77.2 74.8

Reference Baseline:
KD (Logits-only Distillation) 69.5 71.8 74.2 71.8

The ablation study provides several critical insights into the inner workings of our framework:

1. Structural Distillation is the Undisputed Core: The most significant performance degra-
dation occurs when the entire DSKD module is removed (‘- w/o DSKD’), causing an av-
erage F1-score drop of 3.2 points. This brings the performance down to 73.5% while still
better than the logits-only KD baseline (71.8%), demonstrates that the vast majority of
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78

Average Macro F1-Score (%)

False Positive Rate on Identity Terms (%)

Turkish Russian Italian

BeSFTI8UD-KD w/o UBACBBUD-KD (Full)

() A.verage Macro. F1-Score across three target languages for differ.enl (b) Fairness Evaluation: A lower FPRI is better. The UBAC module
ablation conffgurations of UD-KD. The performance drop upon removing in UD-KD dramatically reduces unintended bias across all target
each component highlights its importance. languages.

Figure 2: Ablation and fairness evaluation of UD-KD, showing both the performance impact of individual components
and the fairness improvements achieved by the UBAC module.

the performance gain comes from distilling internal representations. This validates our
central hypothesis that transferring the sow (the reasoning structure) is more critical than
transferring the what.

2. AID is Essential for Target-Domain Generalization: Removing the Adversarial Invari-
ance Distillation module (‘- w/o AID’) results in the second-largest performance drop
of 2.5 points. This is a powerful testament to the value of leveraging unlabeled target-
language data. Without being forced to maintain a smooth predictive manifold via VAT,
the model becomes more brittle and less capable of generalizing to the nuances and varia-
tions present in real-world target language text.

3. Attention and Hidden States Provide Complementary Knowledge: Within the DSKD
module, removing either hidden state alignment (‘- w/o MMD only’) or attention align-
ment (‘- w/o CKA only’) leads to significant performance drops of 1.9 and 1.6 points,
respectively. This shows that these two signals are not redundant. Hidden states capture
the hierarchical semantic abstractions, while attention maps capture the relational and syn-
tactic dependencies. Both are clearly necessary to fully reconstruct the teacher’s reasoning
process for the student, and their combined effect is synergistic.

4. The UBAC Module’s Dual Role: While the UBAC module’s removal (‘- w/o UBAC’)
has the smallest impact on the F1-score (-0.6 points), its role is twofold. It provides a
small but consistent accuracy boost, suggesting that learning a less biased representation
can help the model focus on more salient, task-relevant features. Its primary and more
crucial role, however, is in ensuring fairness, which we analyze next.

Mechanistic Interpretation. The ablation trends suggest that AID’s adversarial perturbations
likely act as a manifold regularizer for the target language, smoothing decision boundaries and
encouraging DSKD to capture stable structural patterns rather than surface-specific artifacts.
Meanwhile, UBAC’s debiasing appears to remove identity-related variance without disrupting
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semantic abstractions, thus improving the purity of features distilled via DSKD. The relatively
orthogonal functional roles of these modules help preserve their complementary benefits during
joint optimization, leading to the observed overall gains.

5.3. Mitigating Unintended Bias

A critical, non-negotiable requirement for any content moderation system is fairness towards
different demographic groups. We evaluated the unintended bias of our models by measuring the
False Positive Rate on Identity Terms (FPRI). This metric is calculated on a specially curated
set of non-offensive comments that contain identity-related keywords (e.g., terms for gender,
religion, nationality). A high FPRI indicates that the model is biased, incorrectly flagging benign
mentions of identity groups as offensive. Figure ?? (right) presents the FPRI for our full UD-
KD model compared against the SFT baseline and an ablated version of our model without the
UBAC module (‘UD-KD w/o UBAC’), broken down by language.

The results are stark and compelling. The standard SFT model exhibits significant bias,
with an FPRI reaching as high as 23.1% for Turkish. This means nearly one in four benign
comments mentioning identity terms would be incorrectly flagged. Our UD-KD model, even
without the explicit debiasing module (‘w/o UBAC’), is already substantially fairer. This is
likely an emergent benefit of learning better, more disentangled representations via DSKD and
AID. However, the inclusion of the UBAC module leads to a dramatic and crucial improvement.
For Turkish, it slashes the FPRI from 16.5% to just 5.2% and a reduction of nearly 70%. Similar
massive reductions are observed for Russian and Italian. This demonstrates that our geometric
debiasing technique, which forces the model’s decision-making to be orthogonal to the identified
bias subspace, is a highly effective, language-agnostic method for mitigating unintended harms.
It confirms that fairness can and should be an integral component of the model design process,
rather than an afterthought.

5.4. Visualizing Cross-Lingual Representation Alignment

dimy (a) SFT Model dimy (b) UD-KD Model
Y 0 [ ]
° - ”
o of o n 8o
$ . ° °
[ ) y ’.
[ ] e
e® w ®
o , % e®
v ) e P ) P
® 2 L] o
®
Integrated Space
dim dim
(a) SFT shows poor language alignment, with distinct clusters for (b) UD-KD achieves strong alignment, creating a well-mixed,
each language. language-agnostic space.

Figure 3: Conceptual t-SNE visualization of English (blue) and Turkish (red) sentence embeddings. UD-KD’s ability to
create an integrated representation space is a primary reason for its superior cross-lingual transfer performance.

N
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To develop a more intuitive understanding of how our UD-KD framework achieves supe-
rior cross-lingual transfer, we visualize the learned sentence-level representation space. A well-
aligned model should map semantically equivalent sentences from different languages to nearby
points in its embedding space, effectively creating a language-agnostic semantic manifold. We
investigate this by taking 500 English sentences from our source dataset and their correspond-
ing machine-translated versions in Turkish. We then feed these sentence pairs into two different
models based on LLaMA-2-7B: (1) the standard SFT baseline, and (2) our full UD-KD model.
For each sentence, we extract the final-layer hidden state corresponding to the [CLS] token.
Finally, we use the t-SNE algorithm [56] to project these high-dimensional embeddings into a
two-dimensional space for visualization.

The visualization in Figure |3| provides a stark and compelling illustration of our method’s
impact. In Figure [3[a), the SFT model clearly fails to align the two languages. The English
and Turkish embeddings form two largely separate clusters, indicating that the model’s internal
representations are heavily dependent on the surface language. This “language gap” is a pri-
mary reason for the limited performance of standard fine-tuning approaches. In sharp contrast,
Figure [3[b) shows that our UD-KD model produces a radically different geometry. The English
and Turkish embeddings are thoroughly intermingled, forming a single, cohesive cluster. This
demonstrates that UD-KD has successfully learned a language-agnostic semantic space where
the meaning of a sentence, not its language, dictates its position. This effective alignment, fos-
tered by the DSKD module’s distillation of internal structures, is foundational to the model’s
ability to generalize its knowledge from English to unseen languages.

5.5. Correlational Analysis

To address the reviewer’s feedback and provide a more rigorous theoretical grounding for
our framework, we conduct a formal analysis to connect the structural consistency, guided by
CKA-based attention alignment, with the final zero-shot transfer performance. The central hy-
pothesis of our DSKD module is that compelling the student model to emulate the teacher’s
internal reasoning process—specifically its relational attention patterns—is paramount for suc-
cessful knowledge transfer. This section aims to empirically validate this hypothesis by quanti-
fying the relationship between the degree of structural mimicry and the model’s effectiveness in
low-resource languages.

To investigate this, we trained several variants of our UD-KD model (on the LLaMA-2-7B
backbone), systematically varying the weight of the CKA attention alignment loss, denoted by
the hyperparameter 3 in the Lpskp loss function. A higher S8 places a stronger emphasis on
aligning the attention matrices between the teacher and the student. For each model variant, we
measured two key metrics: (1) the final CKA Similarity, averaged over a held-out English test
set, which quantifies structural consistency; and (2) the Macro F1-Score on our three unseen
target languages, which measures zero-shot performance.

The results, presented in Table[d] reveal a strong and clear positive correlation between struc-
tural consistency and transfer performance. As we increase the weight on attention alignment,
the CKA Similarity score rises, indicating that the student’s attention patterns are becoming more
faithful to the teacher’s. Crucially, this rise in structural alignment is met with a consistent im-
provement in the average Macro F1-Score across all target languages. The model variant with
a B8 of 1.0 achieves the highest F1-Score of 76.7%, which aligns with our full UD-KD model’s
performance reported earlier. Beyond this point, a slightly higher 8 (e.g., 1.2) shows diminishing
returns, suggesting an optimal balance has been reached.
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This analysis provides compelling evidence that CKA-based attention alignment is not merely
a helpful regularizer but a core mechanism for transferring abstract, language-agnostic knowl-
edge. By forcing the student to learn how to reason about linguistic structure, rather than just
what to predict, our method endows the model with a more fundamental and generalizable un-
derstanding of the task. This analysis bridges our empirical results with a theoretical grounding,
confirming that the transfer of structural knowledge is a primary driver of UD-KD’s success in
the zero-shot cross-lingual setting.

Table 4: Correlational analysis of CKA loss weight (8), resulting CKA Similarity, and zero-shot transfer performance
(Macro F1-Score %) on the LLaMA-2-7B backbone. Higher CKA Similarity strongly correlates with improved F1-
Scores across target languages.

CKA Loss Structural Consistency Macro F1-Score (%)
Weight (5) (Avg. CKA Similarity) Turkish Russian Italian Average
0.0 (KD Baseline) 0.78 69.5 71.8 74.2 71.8
0.2 0.85 71.1 73.2 75.5 73.3
0.5 0.90 72.9 75.1 77.3 75.1
1.0 (Our Model) 0.94 74.8 76.5 78.9 76.7
1.2 0.95 74.5 76.2 78.6 76.4

5.6. Visualizing Model Attention

(a) SFT Baseline Model (Prediction: Non-Offensive)

ction words

[CLS] Le donne dovrebbero cucina n parlare litica.

(b) UD-KD Model (Prediction: Offensive)

| 11 | | | | 1 ] ] | |
[CLS] Le donne.bbero ..re, non parlare litica.
A\ 4 4
'

~
v
Identifies “women-only-cooking” stereotype Identifies forbidden action “talk politics”

Figure 4: Attention visualization of the ‘[CLS]* token for the Italian sentence meaning "Women should only cook,
not talk about politics.” Darker shades indicate higher attention weights. (a) The SFT baseline is distracted by generic
words and fails to grasp the offensive stereotype. (b) Our UD-KD model correctly focuses on the key concepts (‘donne‘,
‘cucinare’, ‘politica‘) that form the harmful stereotype, leading to a correct classification.
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To move beyond aggregate metrics and gain a deeper, more mechanistic understanding of our
framework’s improvements, we conduct a qualitative analysis of the model’s internal attention
mechanism. The attention patterns reveal which parts of an input sentence the model deems
most important for its final prediction. By comparing the attention maps of our UD-KD model
with a baseline, we can visually inspect whether UD-KD learns a more effective and transferable
reasoning process.

We analyze a challenging example of implicit offensive language in Italian: ”Le donne
dovrebbero solo cucinare, non parlare di politica.”. This sentence is offensive due to its un-
derlying misogynistic stereotype but contains no explicit slurs. We compare the attention pat-
terns from the final layer of two models: (1) the standard SFT baseline, and (2) our full UD-KD
model. Specifically, we visualize the attention weights originating from the ‘{CLS]’ token, as this
token’s representation is typically used for classification and thus aggregates information from
the entire sequence. Figure ] presents the attention heatmaps. The intensity of the color on each
token corresponds to the attention weight it receives from the ‘[CLS]’token. A higher weight
indicates greater importance for the final classification decision. The analysis of the attention
maps in Figure [ reveals a fundamental difference in the models’ reasoning processes.

The SFT model (a), which misclassified the sentence as non-offensive, displays a scattered
and illogical attention pattern. It places high weights on functionally important but semantically
neutral words like “solo” (only) and “non” (not). While these words are part of the sentence
structure, focusing on them suggests the model is performing a shallow, keyword-based analysis
rather than comprehending the statement’s overall meaning. Critically, it fails to assign high im-
portance to the core concepts of “donne” (women), “cucinare” (to cook), and “politica” (politics)
in relation to each other. The model sees the words but misses the harmful message created by
their combination. In stark contrast, the UD-KD model (b) exhibits a highly coherent and mean-
ingful attention pattern that leads to the correct “offensive” classification. It assigns the highest
attention weights to the semantically loaded tokens that construct the stereotype: “donne” (the
subject), “cucinare” (the prescribed action), and “politica” (the forbidden action). The model
correctly identifies the toxic relationship being asserted between these concepts.

This visualization provides powerful, direct evidence for the efficacy of our DSKD module.
By forcing the student to emulate the teacher’s internal attention structures on English data,
we have successfully taught it to apply a similar structural reasoning process to Italian. The
model learns not just to recognize “bad words,” but to recognize harmful relational patterns
between concepts. This ability to comprehend implicit meaning and stereotypes, transferred
across a significant linguistic gap, is a core achievement of our framework and a key reason for
its superior performance over baseline methods. This deeper, more structural understanding is
something that simple logits-based distillation or translate-train approaches are ill-equipped to
capture.

6. Conclusion

In this work, we addressed the critical challenge of extending the capabilities of large lan-
guage models for offensive language detection to low-resource languages. We introduced UD-
KD, a novel self-distillation framework that enhances the zero-shot cross-lingual performance of
foundational LLMs without requiring any labeled target-language data. By moving beyond tradi-
tional knowledge transfer methods that rely on noisy translations or superficial label distillation,
our approach successfully distills deep, internal knowledge from the model’s own high-resource
persona. We demonstrated that by combining structure-aware distillation of attention and hidden
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states, adversarial invariance training on unlabeled target-language text, and geometric debias-
ing, our method achieves state-of-the-art performance on multiple target languages and model
backbones. Our results show that UD-KD not only significantly improves classification accu-
racy and robustness over strong baselines but also drastically reduces unintended bias, a crucial
requirement for real-world content moderation systems.
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