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Photovoltaic (PV) technology that directly converts the solar
energy into electrical energy, is regarding as one of the most
promising utilization technologies of renewable and clean energy
sources. Nowadays, developing low-cost and highly efficient PV
technology is a hot research topic both for academia and industry.
In this context, perovskite solar cells (PSCs) with metal halide per-
ovskites [ABX3, A = CH3NH3

+ (MA+), or CH(NH2)2+ (FA+), Cs+; B = Pb2+,
Sn2+; X = Cl�, Br�, I�] as light harvesting material, is in the spot-
light due to its easy fabrication process and high power conversion
efficiency (PCE) [1,2]. To date, the certified PCE has been already
pushed up to 25.2% (https://www.nrel.gov/pv/module-efficiency.
html), making PSC an auspicious candidate for a new generation
of photovoltaics. In future days, how to eliminate the non-essential
charge carrier recombination in the device, further push the PCE
approaching the Shockley-Queisser theoretical efficiency limit
(~33%) and enhance the device stability, will be formidable
challenges and the focus in the next stage of research work.

From the development history of PSCs, it is found that the
majority of the highly efficient PSCs, whether n-i-p structured or
inverted p-i-n structured device, commonly possess typical
layer-by-layer architectures. In all of these architectures, the
charge carrier transfer processes at the interfaces, including the
perovskite/electron transport layer (ETL) interface, perovskite/hole
transport layer (HTL) interface, together with the interfacial mate-
rials, and the following charge carrier transport processes in the
bulk of ETL and HTL, play crucial roles in achieving high PCE and
good stability (see Fig. 1). Efficient charge carrier generation (pro-
cess 1 in Fig. 1), extraction and transport (process 2 and 3 in Fig. 1)
are necessary to obtain high PCEs. Suitable ETL and HTL can
improve the charge carrier extraction and reduce recombination
(process 4, 5, and 6 in Fig. 1). Herein, we briefly review the recent
advances and provide a perspective for charge transport layer engi-
neering for highly efficient and stable PSCs. According to the func-
tion of charge transport layer, ETL and HTL engineering are divided
and discussed separately.

Electron-transport Layer. The perovskite/ETL interface has been
proved to be absolutely vital for the electron extraction, transfer
and charge recombination dynamic processes, correspondingly,
influencing the performance of PSCs. Some researchers proceed
from the perspective of optimizing energy level alignment at per-
ovskite/ETL interface to enhance the electron extraction and trans-
port efficiency. To date, the common strategies to build the optimal
energy alignment involve designing novel ETL with more suitable
energy levels, tuning the energy levels via doping, and inserting
an interlayer between ETL and perovskite layer.

As a typical electron transport material (ETM) for PSCs, TiO2

plays an important role in electron extraction and transport pro-
cess in device. A PCE of 24.66% has been achieved by using TiO2

as ETL (detailed device structures and performance data are shown
in the Supplementary materials) [3]. However, the high-tempera-
ture processing, intrinsic low electron mobility of TiO2, large
energy barrier at the perovskite/TiO2 interface and deep traps
induced by UV light inhibit efficient charge transfer, leading to
serious energy losses and hysteresis. Replacing the TiO2 with
SnO2 is reported to be an effective way to enhance the electron
transfer from perovskite to ETL, and reduce electron accumulation
at the interface due to the much deeper conduction band and
higher electron mobility of SnO2. Another advantage of SnO2 is that
it can be prepared at low temperature (150 �C). Different prepara-
tion methods were reported, including diluting a commercialized
colloidal dispersion, sol-derived nanocrystalline method, atomic
layer deposition (ALD) method, and a two-step colloidal synthesis
method proposed by Fang group [4,5]. For sol-derived nanocrys-
talline method, the SnO2 crystalline is sensitive to annealing tem-
perature. Low annealing temperature will result in relatively low
electron mobility, while high annealing temperature may break
down the film, leading to inferior performance. The SnO2 film
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Fig. 1. (Color online) The typical charge carrier transfer process of (a) n-i-p and (b) p-i-n structured PSCs: 1. Photo-generation of electron-hole pairs in the perovskite absorber
layer, 2. Electron extraction and transport process, 3. Hole extraction and transport process. 4, 5, 6 are undesired charge recombination processes taking place in working
devices.
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prepared with ALD method is compact but it is amorphous, there-
fore, the electron mobility is low. Colloidal synthesis method can
overcome above dilemma, maintaining high crystallinity of SnO2

nanoparticles and ensuring the compactness of SnO2 film. To date,
a PCE of 23.56% has been reported for perovskite solar cells with
SnO2 ETL [6]. Nonetheless, SnO2 suffers from low wettability and
lots of surface defects, and thus requires suitable surface modifica-
tions. Alternatively, BaSnO3 was also manifested to be a promising
ETL candidate for improving both the device PCE and stability [7].
Shin et al. [7] reported a low-temperature processed La-doped
BaSnO3 film as ETL to reduce the ultraviolet-induced damage to
perovskite, and the fabricated PSCs can retain over 90% of the ini-
tial efficiency after 1000 h of full sun illumination. Similar research
strategies were also implemented in the inverted (p-i-n) structured
PSCs. Fullerene (C60) and [6,6]-phenyl-C61-butyric acid methyl
ester (PC61BM) are the most prevalent ETMs for efficient inverted
PSCs. Recently, a PCE of 23.0% was reported for C60 cells [8]. How-
ever, PC61BM is not a perfect ETL because of the poor film-forming
property, ordinary electron conductivity, and poor phase stability
in ambient condition. Therefore, some new alternatives were
developed, such as n-type conjugated polymer PDTzTI, which has
been used in PSCs with a PCE of 20.86% [9]. Luo et al. [10] reported
a PDI/fullerene hybrid supermolecule PDI-C60. Applied in PSCs, the
supermolecule PDI-C60 achieves higher PCE of 18.6% and better
device stability than the monomers (PC61BM and PDI), due to the
slightly shallower energy level, higher electron mobility and stron-
ger hydrophobic properties of PDI-C60. Despite these successes,
development of new organic ETMs with high electron mobility,
suitable energy levels, and respectable photochemical stability
remains a challenge.

Another effective way to promote the device performance is
modifying well-developed metal oxide ETMs (TiO2, SnO2 and
ZnO) by using organic self-assembled monolayers (SAMs). Fuller-
ene and its derivatives, such as PC61BM, [6,6]-phenyl-C71-butyric
acid methyl ester (PC71BM), [6,6]-phenyl-C61-butyric acid–
dioctyl-3,3-(5-hydroxy-1,3-phenylene)–bis(2-cyanoacrylate) ester
(PCBB-2CN-2C8), were successfully proposed as interfacial materi-
als between ETL and perovskite because of their high electron
mobility [11,12]. Along with fullerene derivatives, PDI derivatives
and amino acid analogs were also proposed as interlayer materials.
The SAMs not only can passivate the surface defects of metal oxi-
des, but also can induce higher build-in internal electric field and
dipoles pointing away from metal oxides, correspondingly, leading
to better electron extraction and eventually achieving excellent
photovoltaic performance. Very recently, two-dimensional graphi-
tic carbon nitride (g-CN) has also been explored as an efficient
solution-processable interface modifier for the PC61BM ETM to
improve the device performance, suggesting a new interfacial engi-
neering strategy [13].

Hole-transport Layer. As important as ETL, HTL is responsible for
efficient hole extraction at the perovskite/HTL interface and hole
transport in the bulk of HTL, and prevention of undesired charge
recombination processes, contributing to outstanding photovoltaic
performance. To get high PCE, hole transport materials (HTMs)
with high hole mobility and sufficient conductivity, and cascade
energy level alignment of the HTL with perovskite are both
required. Moreover, transparent window in visible region is highly
desirable for HTMs used in inverted and tandem structured PSCs.
To ensure long-term stability, the HTL should be thermally and
photochemically stable, as well as high hydrophobic to prevent
from the degradation of perovskite by moisture and oxygen. Addi-
tionally, to realize low-cost device manufacturing, an ideal HTM
candidate has to be easily developed by simple synthetic routes
and easy purification procedures.

For n-i-p structured PSCs, Spiro-OMeTAD and PTAA are the two
most employed HTMs. Although Spiro-OMeTAD and PTAA achieve
great jobs in the charge separation and transport processes, for
higher efficiency, better long-term stability and lower manufactur-
ing cost, the development of new HTL and relevant interfacial engi-
neering are still required to be further carried on. The first way is
developing more efficient novel HTMs through integrating a vari-
ety of molecular engineering strategies, including optimization of
core building block and alkyl chains, adjusting the electron-donat-
ing ability of peripheral groups and p-bridges. Due to the huge suc-
cess of Spiro-OMeTAD during the past two decades, many pioneer
research groups are devoted into developing Spiro-type HTMs
through slight structural modifications. Many studies indicate that
the methoxy triphenylamine (MOTPA) donor unit was unstable. To
overcome this problem, Jeon et al. [14] reported a fluorene-termi-
nated HTM DM with a slightly deeper lying HOMO energy level
and a higher glass transition temperature, achieving a PCE as high
as 23.2% and excellent thermal stability. Xu et al. [15] reported a
series of spiro[fluorene-9,90-xanthene] (SFX) core building block
based HTMs. The SFX core unit can be easily synthesized by a
one-pot approach with high yield, which is greatly helpful for
pushing the price of HTMs down. The well designed SFX trimer
X55 with excellent 3D configuration rendered an impressive PCE
of 20.8% and greatly improved stability because of uniformity
and homogeneity of the X55 film. Self-doping strategy and adjust-
ing the planarity of molecular configuration are also manifested to
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be effective paths to build impressive HTMs. Cheng et al. [16]
reported a self-doped small molecular HTM by ionizing the end-
capping pyridine group. The self-doping method can dramatically
enhance the hole mobility and conductivity of HTM, and avoid
the usage of LiTSFI and 4-tert-butylpyridine (TBP) in HTL, thereby
simultaneously improving the PCE and stability. Based on a
tetrathienylethene (TTE) core structure, Shen et al. [17] proposed
a concept of hybridization between planar and orthogonal molecu-
lar conformation for balancing the charge mobility and thin-film
quality of organic HTMs, which resulted in high performance
dopant-free PSCs. Wang et al. [18] designed a methoxy-free donor
alternative to MOTPA by fusing a fluorene to a carbazole, and
developed HTM DM129 adopting the newly designed peripheral
donor group. The introduction of dimethyl fluorene is found to
improve planarity of molecule, film morphology uniformity, hole
extraction efficiency and device PCE. Moreover, introduction of
passivation functions into design of HTMs would also be a promis-
ing strategy to improve hole extraction and transport. Xiao et al.
[19] recently developed a new class of polysquaraine-based HTMs
with suitable energy levels, comprehensive passivation effects and
high hole mobility close to 0.01 cm2 V�1 s�1. Benefiting from these
merits, the fabricated dopant-free a-CsPbI2Br-based PSCs delivered
an impressive PCE of 15.5% and good stability. These reports sug-
gest that tuning the molecular building-blocks, peripheral groups,
end-capping groups and molecular configurations to improve per-
formance and stability of PSCs is possible. Further studies address-
ing structure-function correlations are needed for developing novel
HTMs to reach a real application level.

For p-i-n structured PSCs, poly(3,4-ethylenedioxythiophene):
polystyrene sulfonate (PEDOT:PSS) has been the most widely used
HTL at the beginning, and the cells gave PCEs as high as 20.1%
[20,21]. However, the acidic and hygroscopic characteristics of
PEDOT:PSS severely limit the long-term stability of devices. PTAA,
a polymeric HTM widely used in normal structured PSCs, is also
widely used as HTL in inverted PSCs, yielding a high efficiency of
23.0%, which is the record efficiency for inverted PSCs [8,9].
Besides, to overcome above shortcomings of PEDOT:PSS, lots types
of inorganic p-type semiconductors, such as copper iodide (CuI),
copper thiocyanate (CuSCN), copper oxides (Cu2O and CuO) and
nickel oxide (NiO) have also been developed as alternatives, due
to the merits of easy fabrication, low production cost and suitable
energy levels, and among which, NiO is the most prevalent one
[22–26]. Jeng et al. [23] first applied a solution-processed NiOx thin
film in inverted PSCs. Later, Jung et al. [24] developed Cu-doped
NiO for highly efficient PSCs. The combustion-processed Cu:NiO
film showed enhanced electrical conductivity, resulting in
improved PCE as high as 17.7%. Chen et al. [22] reported heavily
p-doped NiMgLiO and achieved a PCE > 15% with an aperture
area > 1 cm2. Most recently, Huang et al. [27,28] proposed a series
of ternary metal oxide (TMO) nanoparticles, such as In:CuCrO2,
ZnCo2O4 and NiCo2O4, as efficient HTLs in PSCs, demonstrating
improved stability and high PCEs.

The other way is introducing inserting layer between HTL and
perovskite, or constructing binary HTL to form a cascade energy
level alignment, facilitating the hole transfer. Here, we have to note
that the exact energy levels for a charge transport material could
have a change when forming a close contact with the perovskite
layer. Poly(3-hexylthiophene) (P3HT) is a promising potential
HTM in PSCs; while the strong electronic coupling between the flat
P3HT molecules and the perovskite, and the poor physically con-
tact between P3HT and perovskite result in inferior performance.
To improve the surface contact and to effectively reduce charge
recombination at the perovskite/P3HT interface, Jung et al. [29]
introduced a thin layer of wide-bandgap halide perovskite
between the perovskite light harvesting layer and P3HT through
an in-situ reaction of n-hexyl trimethyl ammonium bromide. The
optimized device showed a certified PCE of 22.7% and excellent
stability. Ding group [30] developed an efficient binary HTL by
blending traditional HTM PTAA with a polymer HTM PBD2T for
CsPbI2.25Br0.75 based PSCs. The cascade energy level alignment of
CsPbI2.25Br0.75, PBD2T and PTAA greatly improved the hole
extraction efficiency and reduced the unnecessary energy loss.
Meanwhile, the S atom in PBD2T molecule is liable to form S-Cs
and S-Pb bonds with bared metal atoms, passivating the surface
defects of CsPbI2.25Br0.75 and suppressing the interfacial charge
recombination. CsPbI2.25Br0.75 based PSCs with binary HTL deliv-
ered a PCE of 17.37%, which is the highest efficiency for Br-doped
inorganic PSCs. Therefore, developing the cascade energy level
alignment HTL system is another effective and promising strategy
to fulfill the efficient hole extraction and transport.

In addition to the engineering of bulky properties of HTL, the
interfaces between HTLs and the perovskite layers could also be
directly tailored by designing the HTM molecules. Zhang et al.
[31] constructed a dopant-free polymeric HTM DTB with 2,5-dia-
lkoxy-1,4-phenylene units and bithiophene units. The intramolec-
ular interaction between the oxygen atoms in the side chains of
benzene rings and the sulfur atoms in the thiophene rings
imparted a high coplanarity to the backbones of the polymers,
leading to a high hole mobility for the HTL. On the other hand,
the optimized length of the side-chains on benzene rings rendered
the polymer adopt an edge-on arrangement atop the perovskite
layer, thus benefiting a denser exposure of the thiophene rings to
perovskite materials and the resulting hole extraction process.
The two blank thiophene rings without any side-chains further
led to a closer exposure of themselves and strengthened the ability
of hole extraction from and defect passivation to the perovskite
layer. As a result, a very high short-circuit current density of
25.75 mA cm�2 and an impressive efficiency of 19.68% were
accomplished based on such a simple molecular structure. An opti-
mization on the side-chains was conducted and part of them were
replaced by polar ones later in order to increase the hole mobility
of the polymer, and the corresponding PSC device yielded an
improved PCE of 20.19% [32], further indicating the importance
of engineering the bulky and interfacial properties of HTLs through
the delicate molecular design.

In this perspective, we provided an outlook on the evolution
and prospects of charge transport layer engineering for efficient
and stable PSCs. We think, just with the crystal quality control
and composition regulation of perovskite layer, it is insufficient
to push the PCE approaching the theoretical efficiency, and achieve
high stability. Great efforts should also be devoted to charge trans-
port layer engineering to improve the device reproducibility and
stability, and reduce device cost. Although a various of charge car-
rier transport materials and modification approaches have been
proposed, the studies of charge transport layer engineering still
need to be propelled. With the reported charge-transport materi-
als, PSCs have achieved great successes. In the future, modification
of the existing HTLs and ETLs with additives or interfacial materials
to obtain balanced transport and improved charge carrier extrac-
tion will be beneficial for boosting PCE. To better address the sta-
bility and reproducibility problem, highly efficient dopant-free
small molecular HTMs, and low-temperature processable inor-
ganic HTLs with high mobility and conductivity, which can elimi-
nate the negative effects of dopants and additives, are greatly
desired. Especially, with dopant-free organic HTMs, at least the
degradation of perovskite by moisture will be inhibited. Moreover,
developing charge-transport materials that can restrict ion migra-
tion in perovskite will benefit both PCE and stability. We believe
that with synergetic efforts in developing high-performance
light-harvesting layers and charge-transport layers, PSCs could
eventually be a complementary power source in industry and our
daily life.
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