壳聚糖亚铁螯合物的合成及吸附动力学

张秀军^{*} 郎惠云 魏永锋 张维平 (西北大学化学系 西安 710069)

摘 要 研究了壳聚糖对 Fe^{2+} 离子的吸附动力学行为和吸附条件优化。得到了较为理想的合成产物。用紫外光谱、红外光谱、元素分析和热分析对配合物的组成进行了表征。结果表明、壳聚糖与 Fe^{2+} 之间发生了配位作用,其吸附行为可用 Langmuir 单分子层吸附机理解释,且求得吸附表观活化能为 20 23 kJ finol 和 Lagergren 一级速率常数为 10 25 finol 10 25 finol 10 20 fi

关键词 壳聚糖,亚铁离子,配合物,吸附动力学

中图分类号: 0646

文献标识码: A

文章编号: 1000-0518(2003)08-0749-05

壳聚糖分子中富含活泼的羟基和氨基,且具有网状的分子形态,能与多种金属离子形成稳定的螯合物,是金属离子的良好配体,配合物具有生物相容性,在工业、农业、医药等方面有十分广阔的应用前景 $^{[1-3]}$ 。据文献报道 $^{[4]}$,人体对壳聚糖-亚铁配合物的吸收远远高于传统的 $FeSO_4$ 药物。因此,壳聚糖与 Fe^{2+} 配合物将有望成为良好的天然生物补铁制剂。本文合成并表征了壳聚糖- Fe^{2+} 配合物,研究了其吸附动力学。

1 实验部分

1.1 仪器和试剂

TAS-986 型原子吸收分光光度计(北京普析通用仪器有限公司); RQUINOX55 红外光谱仪(德国布鲁克公司, KBr 压片); TU-1221 型紫外分光光度计(北京普析通用仪器有限公司); PE-2400 型元素分析仪(美国 PE 公司); STA449C 型综合热分析仪(德国耐弛公司)。

壳聚糖(Chitosan, CTS, 脱乙酰度 96%, 分子量 780~000, 含水 5%, 青岛海汇生物工程公司提供); 硫酸亚铁铵、盐酸羟胺均为分析纯。

1.2 吸附动力学实验和吸附等温线的绘制

称取 $0.100~0~{\rm g~CTS}$ 于 $25~{\rm mL}$ 质量浓度为 $1~{\rm g}$ L 的含盐酸羟胺的 ${\rm Fe}^{2^+}$ 溶液中,在 ${\rm pH}=3.5$ 时分别在不同温度下使其反应,测定不同反应时间溶液中 ${\rm Fe}^{2^+}$ 的残余量,绘制吸附动力学曲线。

称取 $0.100~0~{\rm g}$ CTS 于不同浓度的 ${\rm Fe}^{2^+}$ 溶液中,室温下搅拌 $10~{\rm h}$,此时吸附已趋平衡,溶液经过滤后,测定 ${\rm Fe}^{2^+}$ 的残余量,绘制吸附等温线。

1.3 亚铁离子含量的测定

使硫酸亚铁铵与壳聚糖形成配合物沉淀后, 经过滤, 用原子吸收分光光度计于 $248.3~\mathrm{nm}$ 处测其残余 Fe^{2^+} 离子吸光度, 求得亚铁离子的含量。根据吸附前后溶液中 Fe^{2^+} 浓度的变化, 按下式计算其吸附容量:

$$O = V(c_0 - c) / m$$

式中, V为 Fe^{2^+} 溶液的体积(mL); $c_0 \setminus c$ 分别为吸附前后溶液中 Fe^{2^+} 的质量浓度($\operatorname{g}/\operatorname{L}$); m 为壳聚糖的质量(g), Q 为吸附量($\operatorname{mg}/\operatorname{g}$)。

1.4 CTS-Fe²⁺ 配合物的元素分析、热分析、紫外吸收光谱和红外吸收光谱的测定

将 CTS- Fe^{2+} 制品先用含水乙醇,最后用无水乙醇洗涤,真空干燥至恒重。将 CTS 和 CTS- Fe^{2+} 样品分

2 结果与讨论

2.1 CTS-Fe²⁺ 配合物的光谱研究

实验用 CTS 为纯白色粉末状,所得吸附产物为桔黄色粉末状。CTS 及其 Fe^{2+} 配合物的紫外吸收光谱显示,纯的样品仅在 205.5 nm 处有 1 个强吸收峰且峰形较窄,而 CTS- Fe^{2+} 较 CTS 红移了 16.6 nm,除在 222.1 nm 处有 1 个宽而强吸收峰外,还在 334.5 nm 处产生新的吸收峰,这是配合物中氮、氧的孤对电子发生 $n \rightarrow \sigma^*$ 跃迁,导致电子光谱发生的变化,由此可确证 Fe^{2+} 与 CTS 发生了配位,且 C-N 键由于 NH_2 与 Fe^{2+} 的结合,使其在一定程度上有所削弱,从而可推断 NH_2 是 CTS 分子中主要吸附部位。对 CTS 和 CTS- Fe^{2+} 配合物的 IR 光谱分析发现。位于 3.432 cm II 处的 II 外一 和 II 一 和 II 一 重叠峰的伸缩振动吸收峰移向高频,且吸收峰变尖,说明 II II 1 II 3 II 2 个较尖的吸收峰,且位于 II 3 II 3 II 3 II 2 个较尖的吸收峰,且位于 II 3 II 3 II 3 II 2 个较尖的吸收峰,且位于 II 3 II 3 II 2 个较尖的吸收峰,是位于 II 3 II 3 II 2 个较尖的吸收峰,是位于 II 3 II 3 II 3 II 4 II 2 个较尖的吸收峰,是位于 II 3 II 3 II 2 II 2 个较尖的吸收峰,是位于 II 3 II 3 II 3 II 4 II 2 个较尖的吸收峰,是位于 II 3 II 3 II 4 II 4 II 4 II 5 II 5 II 6 I

别溶于 0.1 mol L 的 HCl 溶液中, 进行紫外吸收光谱扫描。固体样品进行元素分析、热分析和红外吸收

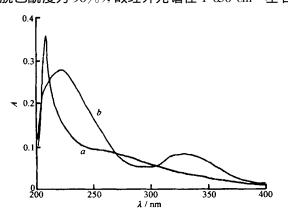


图 1 CTS(a)和 CTS-Fe²⁺(b)的紫外吸收光谱 Fig. 1 The UV spectra of (a)CTS and (b)CTS-Fe²⁺

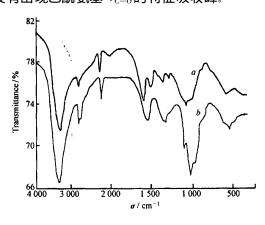



图 2 CTS(a)和 $CTS-Fe^{2+}(b)$ 的红外光谱 Fig. 2 The IR spectra of (a)CTS and (b)CTS-Fe $^{2+}$

2.2 pH 对 CTS 吸附量的影响

酸度对 CTS 吸附量的影响见图 3。结果表明, pH 值在 $3 \sim 5$ 时, CTS 对 Fe^{2^+} 的络合程度最大。因 CTS 主要是通过 $-NH_2$ 与 Fe^{2^+} 络合,在强酸性条件下(pH < 2),氨基大部分被质子化,失去对金属离子的螯合作用; 随着 pH 值的增大,游离氨基的含量增加,其络合能力也逐渐提高。但碱性过高时, Fe^{2^+} 易发生水解,也会导致吸附量降低。此实验还表明,溶液 pH > 5 时,亚 铁溶液放置超过 6 h,会出现黄色的 Fe $(OH)_3$ 混浊。故 pH 值控制在 3.5 左右为最佳。

2.3 CTS 对 Fe^{2+} 的吸附动力学研究

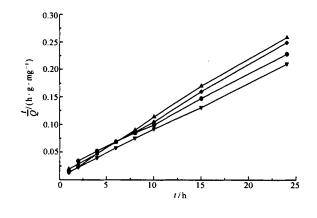
平行取 8 份 CTS 于不同温度下进行动力学实验,得吸附动力学曲线如图 4 所示。图中结果表明,CTS 对 Fe^{2+} 离子的吸附具有较好的动力学性能。此吸附机理基本符合溶液中的物质在多孔性吸附剂上的吸附存在的 3 个必要步骤^[3]。开始时吸附速率较快,且随时间的延长而有规律的减小,8 h 后基本趋于平衡。这是因为在开始时, Fe^{2+} 主要被吸附在 CTS 颗粒的外表面,吸附较快,随着吸附过程的进行, Fe^{2+} 离子的浓度逐渐减小,同时吸附质沿 CTS 微孔向内部扩散,扩散阻力渐增,吸附速率主要受扩散控制,导致吸附速率变慢,吸附后期,主要在吸附剂内表面吸附,且浓度推动力越来越小,吸附已基本达到平衡。若以 t/Q 对 t 作图,可得一直线,如图 5 所示。根据质量作用定律和单分子层吸附机理,其吸附动

140 120 100 100 40 40 20 0 3 6 9 12 15 18 21 24 Time/h

图 3 pH 对 CTS 吸附量的影响 Fig. 3 The effect of pH value on the adsorption capacity of CTS

图 4 不同温度下 CTS 对 Fe²⁺ 的吸附速率 Fig. 4 Rate of adsorption of Fe²⁺ on CTS at different temperature Temp. /°C; ● 20; ▲ 35, ▼45; ◆ 60

力学方程[6] 为:


$$t/Q = t/Q_{eq} + 1/(k \circ Q_{eq})$$

式中, Q_{eq} 为不同温度下的平衡吸附量(mg/g); k 为表观吸附速率常数, 由斜率和截距可分别求得 Q_{eq} 和 k 值, 结果列于表 1。

表 1 不同温度下的吸附动力学参数

Table 1 Adsorption kinetic parameters at different temperature

<i>T/</i> K	$Q_{\rm eq}/({\rm mg}^{\circ}{\rm g}^{-1})$	k	r^2
293. 15	108. 69	0. 929 3	0.996 6
308. 15	95.238	1. 363 6	0. 999 1
318. 15	116. 28	1. 755	0. 999 6
333, 15	98.039	2. 667	0, 999 3

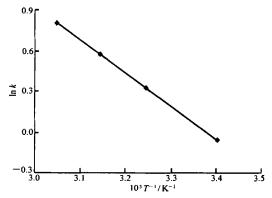
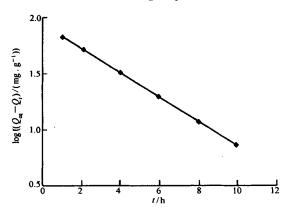


图 5 CTS 对 Fe²⁺的吸附动力学曲线 Fig. 5 The adsorption kinetic curves for CTS towards Fe²⁺ Temp. / ℃; ● 20: ▲35; ▼45; ◆60


图 6 温度对吸附速率的影响 Fig. 6 Plot of $1/T vs \ln k$

以 $\ln k$ 对 1/T 作图,可得一直线(见图 6),其相关系数 $r^2 = 0.998$ 9。表明温度对吸附速率的影响服从 Arrhenius 方程。由斜率求得吸附的表观活化能 $\Delta E = 20.23$ kJ mol。由图 6 可知,温度对反应速率常数的影响很大,整个吸附过程为速率控制步骤。可见所推机理与实验结果相符。

对在室温 $(20^{\circ}C)$ 时吸附动力学曲线进行 Lagergren 一级方程 $^{[q]}$ 拟合(如图 7)表明, 壳聚糖对 Fe $^{2+}$ 离子的吸附符合 Lagergren 一级方程:

$$\log (Q_{eq} - Q_t) = \log Q_{eq} - kt \ 2.303$$

式中, Q_{eq} 、 Q_t 分别为平衡时和时间 t 时的吸附量 (mg/g); t 为反应时间 (h); k 为吸附速率常数。由此可求得初始 Fe^{2^+} 质量浓度为 1 g L、pH=3. 5、温度为 20 $^{\mathbb{C}}$ 时的一级速率常数 k 为 0. 25 h^{-1} 。

0.04 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.03

图 7 吸附的 Lagergren 方程

Fig. 7 The lagergren sorption diagram of chitosan for ferrous ion

图 8 吸附的 Langmuir 吸附等温线

Fig. 8 Langmuir adsorption isotherm of Fe^{2+} on chitosan

2.4 CTS 对 Fe²⁺ 的吸附等温线

通过一定温度下不同初始浓度 Fe^{2+} 溶液中 CIS 对 Fe^{2+} 离子的吸附性能研究,可以发现吸附达到平衡时溶液中残余 Fe^{2+} 离子浓度 $c_{\operatorname{eq}}(\operatorname{Fe}^{2+})$ 和平衡吸附量 Q_{eq} 之比值与平衡浓度 $c_{\operatorname{eq}}(\operatorname{Fe}^{2+})$ 间呈线性关系,如图 8 所示。表明 CIS 对 Fe^{2+} 离子的吸附符合 Langmuir 吸附等温线方程:

$$c_{\text{eq}}(\text{Fe}^{2^{+}}) / Q_{\text{eq}} = c_{\text{eq}} / Q_{\text{max}} + 1 / (K \circ Q_{\text{max}})$$

式中, Q_{max} 为饱和吸附容量; K 为吸附平衡常数; 其 Langmuir 直线关系式为:

$$c/Q=0.0046+0.0122c$$
 $r^2=0.9962$

由此可求得在室温下, pH=3.5 吸附 24 h 的饱和吸附量为 Q_{max} =149.25 mg g, K=0.728 J/mg.

2.5 元素分析

配合物的元素分析结果列于表 2。

表 2 配合物的元素分析

Table 2 The elemental analysis results

C 1		Elen	nental analysis(calcd.)	1%	
Sample	C	Н	N	S	Fe
CTS *	40. 42(40. 37)	7. 14(7.30)	7. 87(7. 75)	_	_
[Fe(CIS) ₂] °SO ₄ °7H ₂ O	27. 46(26. 19)	5. 91(5.99)	4. 95(4. 64)	5. 54(5. 31)	8. 85(8. 73)

^{*[} $(C_8H_{13}NO_5)_{0.04} + (C_6H_{11}NO_4)_{0.96}$] ° H_2O .

由表 2 可知,CTS 与 Fe^{2+} 的硫酸盐反应后,有确定的组成,元素分析实测值与理论计算值很接近,即 Fe^{2+} 与 CTS 的配位比为 12。其配合物难溶于水及常见的有机溶剂乙醇、丙酮、THF 和 DMF 中,也不溶于 1%的 HCOOH 中,但在加热下可溶于稀 HCl 中。

2.6 配合物[Fe(CTS)₂] °SO₄ °7H₂O 的热分解机理

配合物[$Fe(CTS)_2$] ° SO_4 ° $7H_2O$ 在 N_2 气气氛下,升温速率 β 为 10. 0 °C min 时的 TG-DTG DSC 数据如表 3 所示。

可见配合物[Fe(CTS)₂] $^{\circ}$ SO₄ $^{\circ}$ 7H₂O 的热分解可能分为 3 个阶段(见表 3)。在 26~156 $^{\circ}$ C温度范围内, 主要脱去所带的结晶水, 质量损失率为 77.96%。然后是配合物的部分分解, 温度范围为 156~359

 $^{\circ}$ 、在 260. 5 $^{\circ}$ 0时出现 1 放热峰,表明可能有晶形转变发生,质量损失率 40. 33 $^{\circ}$;最后一步分解在 359 $^{\circ}$ 750 $^{\circ}$ 2范围内,质量损失 24. 24 $^{\circ}$ 、主要是 SO_{3}° 的失去,最终分解产物为 $\mathrm{Fe}_{2}\mathrm{O}_{3}$ 。

表 3 配合物的 TG-DTG/DSC 热分析数据

Table 3 Thermoanalysis data of the complex [Fe(CTS)₂] $^{\circ}$ SO₄ $^{\circ}$ 7H₂O

Store	Temp. DSC peak DTG peak Loss of mass 1%		mass 1%	Expelled	Left Product		
Stage	range/°C	$^{\prime}\mathbb{C}$ Temp. $^{\prime}\mathbb{C}$ Temp. $^{\prime}\mathbb{C}$ TG theory group	groups				
I	26 ~ 156	91. 0	90. 0	77.96	78. 12	-H ₂ O	[Fe(CIS) ₂ \ \\$O ₄
II	156 ~ 359	260. 5	245. 0	40. 33	41.08	- CTS	$[Fe(CTS)_2] \circ SO_4 \circ 7FeSO_4$
III	359 ~ 750	674. 0	660.0	24. 24	26. 80	$-\mathrm{so}_3$	$\mathrm{Fe_2O_3}$

参考文献

- 1 Jeon D. *Kobunja Kwahak Kwa Kisul*[J], 1997, **8**(5): 579
- 2 YUAN Yi-Hua(袁毅华), LAI Xirg-Hua(赖兴华), CHEN Chun-Xin(陈纯馨), et al. Chin J Applied Chem(应用 化学)[J], 2000. 17(2): 217
- 3 Kubota N, Kikuchi Y. Polysaccharides M (Ed by Dumitriu S). New York: Marcel Dekker, 1998: 595
- 4 Marinoni V, Conti F. Eur Par APP EP 194497(IPC 008b-037108)[P], 1986
- 5 HE Bing Lin(何炳林), HUANG Wen Qiang(黄文强). Ion Exchange and Adsorption Resin(离子交换与吸附树脂)[M]. Shanghai(上海); Shanghai Science & Education Press(上海科教出版社), 1995, 2; 406
- 6 WANG Xue-Jie(王学杰). Environmental Sci Tech Abroad(国外环境科学技术)[J], 1992 (1): 64

Synthesis and Adsorption Kinetics of the Chelate Compound of Chitosan with Ferrous Ions

ZHANG Xiu-Jun*, LANG Hui-Yun, WEI Yong-Feng, ZHANG Wei-Ping (Department of Chemistry, Northwest University, Xi an 710069)

Abstract The isothermal sorption kinetics of chitosan(CTS) for ferrous ions has been investigated. The structure of the chelate compound was confirmed by IR spectra UV-VIS spectra elemental and thermal analysis. The results were satisfied with the Langmuir-single-molecule-layer adsorption mechanism and the Lagergren-one-order equation. The apparent adsorption activation energy is 20. 23 kJ mol and the sorption rate constant of the Lagergren-one-order sorption is 0. 25 h⁻¹ at 293. 15 K.

Keywords chitosan, ferrous, chelate, adsorption kinetics