2025年7月

SHUILI XUEBAO

第56卷 第7期

文章编号: 0559-9350(2025)07-0909-11

水利工程生态服务价值系统化测算体系研究

付意成1,2,张 剑1,2,赵进勇1,2,张春玲1,2,史俊宝3

(1. 中国水利水电科学研究院 流域水循环与水安全全国重点实验室, 北京 100038;

2. 水利部京津冀水安全保障重点实验室, 北京 100038; 3. 廊坊市广阳区水务中心, 河北 廊坊 065000)

摘要:为科学评估不超过流域水生态承载力下的水利工程生态服务价值并推动其社会化应用,本文基于复合系统特性,结合体系结构完整性与功能多样性原则,构建了面向系统完整性的价值测算体系。该体系采用时空耦联方法对服务价值进行分类量化,结合土地利用变化分析揭示其空间格局与工程影响的关联性,并引入讨价还价动态均衡博弈模型量化生态补偿均衡解与价值实现路径。该系统化测算体系能够实现水利工程生态服务价值的全面、动态量化和空间分布特征的可视化,阐明工程影响下的时空分异规律,为生态补偿机制的设计提供定量依据。研究成果可为水利工程生态效益综合评估、流域水资源与生态环境协同管理提供科学支持。

关键词: 水利工程生态服务价值; 系统化测算; 土地利用变化; 生态补偿

中图分类号: F062.2

文献标识码: A

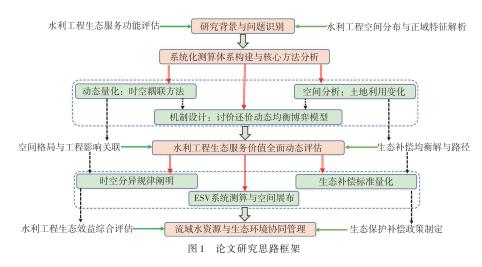
doi: 10.13243/j.cnki.slxb.20240475

1 研究背景

科学测算水利工程生态服务价值,是量化其综合生态效益、评价区域可持续发展与流域生态保护协调性的关键环节。基于生态系统结构完整性和功能多样性原则,构建能够体现水利工程体系人工-自然复合特征的价值测算体系,有助于从机理层面深入理解水利工程的生态环境效应,并探寻提升其综合生态服务功能的有效途径^[1]。然而,当前针对生态系统服务价值(Ecosystem Service Value, ESV)的测算方法往往忽视了生态系统的潜在综合效应价值^[2-3]。同时,水利工程功效的发挥亦受生态诉求、区域地形、社会发展等多重因素制约。因此,迫切需要通过分析土地利用格局的演变过程,揭示 ESV时空分异特征与水利工程影响间的内在联系,并探索以生态补偿为代表的有效的价值实现路径,其中,基于自然的解决方案(Nature-based Solutions, NbS)等相关理念为上述研究提供了重要参考和借鉴^[4-6]。当前研究的核心任务,是为水利工程生态服务价值构建一个科学的系统化测算体系。该体系需要有效评估其价值的时空动态,并阐明其与社会福祉目标的关系。虽然早期的环境经济学理论与评估方法为此提供了基础 ^[7-9],但尚不足以解决这一关键问题。

为应对水利工程生态服务价值评估面临的复杂性与动态性挑战,本文聚焦其系统特性,旨在构建一套更为精准有效的 ESV 系统化测算体系。该体系运用时空耦联方法,分类动态量化不同时空尺度下生态系统的多元生态服务功能量,克服静态评估的局限性;结合土地利用变化分析,深入探究 ESV 的空间分布格局及其与工程影响程度和范围的内在关联性,揭示水利工程生态服务价值空间异质性。针对 ESV 有效实现这一实践难题,本文从博弈论视角出发,引入基于纳什均衡理论的讨价还价动态均衡

收稿日期: 2024-07-28; 网络首发日期: 2025-07-10


网络首发地址: https://link.cnki.net/urlid/11.1882.TV.20250709.1511.001

基金项目: 国家自然科学基金项目(黄河水科学研究联合基金)(U2243601, U2443208); 广西重点研发计划项目(桂科AB25069137); 水体污染控制与治理科技重大专项项目(2018ZX07105-002); 三峡后续工作项目(WE110161A0042025)

作者简介:付意成(1983-),博士,正高级工程师,主要从事流域生态补偿研究。E_mail: swfyc@126.com

通信作者: 张春玲(1974-), 正高级工程师, 主要从事水资源经济与管理研究。E_mail: zhangcl@iwhr.com

博弈模型[10-11],以定量解析补偿的均衡标准和可行的价值实现路径。本文构建的系统化测算体系,通过整合动态量化、空间分析与机制模拟,可实现对水利工程生态服务价值的全面、动态测算,清晰阐明其时空分异规律可视化特征,为水利工程生态效益的科学评估和生态补偿政策的制定提供了坚实依据,对提升流域综合治理效能与可持续发展水平具有指导意义。论文研究思路框架见图1。

2 水利工程生态服务价值测算体系

区域 ESV 总值并非各生态要素服务价值的简单叠加。当前 ESV 评估方法往往忽视了生态系统内部相互作用所产生的潜在多元价值^[12-13]。目前广泛采用的基于生态要素或因子分类加总的生态系统生产总值计算方法,容易割裂各类生态系统服务功能之间内在的有机联系及其相互依赖性^[14]。为克服这一局限性,本文致力于构建更具系统整体性的测算体系。

- **2.1 ESV 测算过程** 在协调人地关系、推动经济社会-生态系统可持续发展的概念框架下, ESV 测算是不可或缺的核心环节。本文着眼于水利工程生态服务功能及其价值在空间上的变化规律与分布特点,深入分析特定类型生态服务功能在不同空间单元(如地物类型或行政区域)上的供给能力及其价值贡献,并进一步评估不同类型生态系统在同一生态服务功能上的空间分异价值。
- 2.1.1 理论基础与现象解析 生态服务功能通常包括物质供给、调节服务和文化服务等多种类型。这些服务的供给与需求并非彼此独立,而是通过复杂的"映射"关系相互关联,具体表现为服务捆绑、权衡与协同等关系模式^[15]。因此,准确评估区域综合 ESV,需深入剖析区域的实际需求特征,并揭示服务"映射"关系中各要素间的相互作用机制。本文通过整合地图比较、综合指数法、统计分析及网络评估等多种方法,构建了一套系统化的分析工具集,旨在揭示生态系统服务供需关系的空间格局及其主要制约因素^[16]。在水利工程影响下,生态系统服务功能空间单元的组合为生态系统服务供需关系的动态演变提供了驱动力。单一类型的生态服务功能(无论是供给还是服务)通常由多个空间单元上同类服务的集合共同构成。值得注意的是,水利工程对单一生态要素(如水文情势、土地利用)的改变可能对多种 ESV 产生方向一致或相反的复杂效应,且在特定条件下可能存在加速生态服务功能退化的潜在风险^[17]。
- 2.1.2 测算方法与步骤 水利工程生态服务价值的空间化测算主要包括以下步骤:
- 1)绘制生态服务供需图谱。首先,在明确流域研究区域范围及空间分析单元特征的基础上,采用适宜的模型或方法,分别绘制研究区内供给、调节与文化等主要生态服务功能的供给量与需求量的空间分布图。为避免数据归一化过程中异常值可能引发的偏差,需对原始指标数据进行预处理,例如可采用极值推压法(如设定 P=5% 分位数阈值)。随后,运用归一化模型对不同空间单元的生态服务供需指标值进行标准化处理,以确保不同类型生态服务功能量的可比性。

2)量化各空间单元特定生态服务的供需比(Ecosystem Service Swpply-Demand Ratios, ESDR)。为显化水利工程体系生态服务供给与需求之间的空间异质性及不匹配问题,需计算各空间单元j上第i类生态服务的供需比($ESDR_{ij}$)。该指标综合反映了区域尺度上服务的供需平衡状况,其计算公式如下:

$$ESDR_{ij} = \frac{ES_{ij}^{s} - ES_{ij}^{D}}{(ES_{i}^{s_{\max}} + ES_{i}^{D_{\max}})/2}$$
(1)

式中: $ESDR_{ij}$ 为计算单元j中i型生态服务的供需比; ES_{ij}^{s} 为计算单元j中i型生态服务的供给量; ES_{ij}^{o} 为计算单元j中i型生态服务的需求量; ES_{i}^{s} 加数分计算单元j中i型生态服务供给的最大值, ES_{i}^{s} 加数分网格单元j中i型生态服务需求的最大值。

- 3)解读生态服务供需平衡状况。基于计算得到的 $ESDR_{ij}$ 值,分析各单元生态服务的供需平衡状态。当 $ESDR_{ij}$ 值接近或等于1时,表示供需相对平衡; $ESDR_{ij}$ 值大于1(正值)表示服务盈余; $ESDR_{ij}$ 值小于1(负值)表示服务赤字^[18]。通过空间可视化 $ESDR_{ii}$,可直观展示供需关系的整体空间格局。
- 4)识别生态服务供需关系簇群。采用自组织映射神经网络等降维与聚类分析方法,对各空间单元由多种服务 *ESDR*_y构成的向量进行处理,识别具有相似供需特征的空间聚类特征,从而形成不同的生态服务供需关系簇群^[19]。为确定最优的簇群数量,计算不同簇数下的戴维森堡丁指数(Davies-Bouldin Index, DBI),选取使 DBI最小的簇数作为最佳分类方案。
- 5)判定生态服务供需关系的协同与权衡。利用斯皮尔曼相关性分析方法,检验不同生态服务(基于其 $ESDR_{ij}$ 值)在空间分布上的相关性,以判定服务间是否存在显著的协同(正相关)或权衡(负相关)关系。研究中可借助 R 语言 corrplot 等可视化工具包生成相关系数矩阵,并进一步采用网络分析方法(如 R igraph 包或 Python NetworkX包),构建基于功能单元数据的加权网络模型,识别协同/权衡网络中的关键服务类型(节点)及其多级关联模式(如"伞形"结构),量化不同生态服务功能的协同程度^[20]。同时,应对所用元数据的合理性进行评价,以确保分析结果的可靠性。
- 6)探索供需关系簇群的社会-自然驱动因素。针对识别出的不同供需关系簇群,采用冗余分析并结合正向逐步选择等变量筛选算法,确定在不同簇群类型中显著影响生态服务供需关系的社会-自然驱动因素(如气候、地形、土地利用、人口密度、经济发展水平等)的关键组合。通过对单个生态服务供需关系进行深入分析(如层次分析、统计回归),量化驱动因素的影响程度与作用方式[21]。

综上所述,在完成水利工程生态服务功能的供需分析、空间格局刻画、关系簇群识别、协同/权衡判定及驱动因素探索后,给出最终价值量化成果。本文在整合上述分析结果的基础上,运用线性回归模型测算水利工程生态服务价值。该模型旨在建立水利工程生态服务价值与其关键影响因素之间的定量关系,结构如下:

$$V = \beta_0 + \beta_1 \cdot C + \beta_2 \cdot F + \beta_3 \cdot V_{\text{pred}} + \varepsilon$$
 (2)

式中: V为生态服务总价值; β_0 为常数项;C、F和 V_{pred} 代表影响服务价值的三组不同的自变量或调节变量组,分别为环境背景因子、功能类型因子和社会经济因子; β_1 、 β_2 、 β_3 分别为对应变量组的(综合)回归系数; ε 为随机误差项,假定服从独立同分布的正态分布。

- 2.2 ESV 综合评估与归并计算 在评估水利工程体系整体生态效益时,需对不同类型生态要素提供的同类型 ESV 进行汇总。然而,简单的价值加和可能因忽略生态系统各组分间的相互作用及综合功效而低估总价值。ESV 的货币化有助于有效体现生态资源的稀缺性,为筛选经济上更具可行性的生态保护与恢复措施、提升流域整体生态健康水平提供科学依据。同时,评估结果可通过水生态补偿、水权交易置换、水生态品市场化交易等方式实现价值转化与区域间生态资源的合理配置,从而在一定程度上克服单一货币估值的局限性。
- 2.2.1 理论背景与现实挑战 近年来,生态系统方法作为指导全球生物多样性评估的一项关键原则,已受到广泛认可并在实践中得到充分应用。然而,人类活动加剧对全球生态系统造成了一定程度的负面影响,致使人类从中获得的惠益持续受到威胁。水利工程生态服务价值同样易受外界干扰。为确保价值测算结果的科学性与合理性,需对生态资源或生态产品所承载的服务功能量进行定量评估。其

中,准确界定生态服务的空间溢出范围(即惠益区域)并量化其溢价效应是关键环节^[22]。实践中,许多生态服务具有显著的空间异质性和动态性。因此,评估工作需构建能够反映生态服务功能量与价值量时空动态特征的系统模型,以综合体现多重因素的影响。鉴于此,寻求一个统一且可比的水利工程生态服务价值测算方法显得尤为重要。

2.2.2 价值综合评估方法 生态服务的空间位置、评估结果的应用场景(即可达性)、区域主体功能定位等是影响评估结果准确性的关键因素。当研究地点(原始估值研究区域)与政策应用地点(价值转移目标区域)在时空背景上存在差异时,效益转移法的应用显得尤为必要^[23]。特别是基于元分析构建的价值函数转移法,能够整合多项研究成果,且考虑了社会-生态系统特征及区域发展阶段的差异,适用于评估供给、调节、文化等多种类型的生态服务功能量。本文采用此方法,并借助传递误差分析,利用现有生态服务评估数据库的数据进行元分析。

考虑到社会经济发展阶段对 ESV 及其影响因素的作用可能存在差异,本文采用分段回归方法,针对不同发展阶段分别构建多变量线性回归模型,以更准确地量化各因素的影响程度,并寻求绝对误差最小化。同时,考虑到不同评估方法具有各自的适用范围和侧重点,即使针对同一类型水利工程生态服务功能,采用不同测算方法也可能得到差异明显的价值评估结果。此外,ESV 的空间溢出效应在现有评估中常被忽视。已有研究尝试运用热点分析和空间自相关分析等方法探究 ESV 的时空集聚特征与空间依赖性^[24]。本文在借鉴上述方法的基础上,综合运用改进的回归分析与效益转移法,从空间变异性和功能相关性两个维度构建水利工程生态服务价值系统化测算体系。

1)基于元回归分析的 ESV 测算。在 ESV 评估中,元回归分析通过整合多项独立研究的结果,有助于生成更稳健的效益传递函数,识别影响价值的关键因素,系统分析 ESV 变化规律,并认知生态服务功能发挥与经济增长间的关系,从而规避单一研究或敏感因素可能带来的偏差^[25]。本文采用元回归分析方法,比较水利工程建设前后生态服务功能的变化,识别和探索价值变动的决定性因素,为流域生态健康管理提供科学依据。具体而言,基于最小二乘法构建计量经济学模型以开展元回归分析,其一般形式可表示为:

$$y_{ij} = \beta + \sum_{i=1}^{I} \alpha_i X_{ij} + e_{ij} \quad (i = 1, 2, \dots, I; j = 1, 2, \dots, J)$$
 (3)

式中: y_{ij} 为第j次调研第i次观测得到的水利工程生态服务价值,万元/a; X_{ij} 为包含所有解释变量(影响因素)的数值; α_i 为待估计的系数; e_{ij} 为误差项,服从正态分布。

为尽可能降低因样本量差异所引发的量化偏差,本文采用样本量的平方根作为权重进行回归分析,进而构建加权最小二乘法(WLS)模型如下:

$$y_{ij} = \beta + \sum_{i=1}^{I} \alpha_i X_{ij} + \beta_0 \frac{1}{\sqrt{n_j}} e_{ij} \quad (i = 1, 2, \dots, I; j = 1, 2, \dots, J)$$
(4)

式中: β 为去除研究异质性与认知偏倚后的"真实"平均效应值; n_i 为第j项研究的观测值数量。

为检测并校正潜在的认知偏倚或模型设定偏误,本文采用漏斗图不对称性检验以改进计算结果的偏差。公式如下:

$$y_{ij}^{n} = \beta_{0} + \beta \sqrt{n_{j}} + \sum_{i=1}^{I} \sqrt{n_{j}} \cdot \alpha_{i} \cdot X_{ij} + \sqrt{n_{j}} \cdot e_{ij} \quad (i = 1, 2, \dots, I; j = 1, 2, \dots, J)$$
 (5)

式中: β_0 为 t 检验时截距,表征偏离程度; β 为偏离状况修正,代表真实效应。

综合考虑各计算过程的精度差异,水利工程生态服务价值的加权估计值可基于加权平均法计算:

$$V_T = \sum_{i=1}^{k} (w_i \cdot y_i) / \sum_{i=1}^{k} w_i$$
 (6)

式中: V_r 为 ESV 加权平均估计值,代表综合效应; y_j 为第 j项研究中的效应估计值; w_j 为第 j项研究对应的权重,通常与研究的精度有关; k为纳入元回归分析的研究总数。

为应对元回归分析中广泛存在的异方差问题,可采用稳健标准误估计方法。通过构建计量经济学模型,并对不同类型生态服务功能的量化数据进行元回归分析,能够进一步明确水利工程的多重经济

价值及其变化的关键驱动因素。已有研究表明,在模型中引入地理坐标作为代理变量时,流域 ESV 随 纬度升高而降低,随经度增加而上升,这或许与降水量、日照等气候因子随经纬度的空间分异密切相 关^[26]。鉴于水利工程生态服务价值量化过程中固有的复杂性和不确定性,未来研究应更加注重生态系统服务功能的精细分类、价值表征方法的差异性比较,以及针对微地貌单元或特定功能区 ESV 的综合评估。

2)基于效益转移法的 ESV 测算。区域经济社会的可持续发展与自然资源禀赋及其市场化程度呈现显著的耦合特征。然而,流域自然资本的量质双降往往导致生态服务功能衰退,可利用的生态服务簇数量亦随之减少^[27]。尽管学界在条件价值法、支付意愿分析、旅游成本法等非市场价值评估方法的应用与完善方面取得了进展,但面对大尺度评估或数据稀疏区域,效益转移法仍是测算 ESV 的重要实用工具^[28]。

本文运用效益转移法对水利工程生态服务功能量及相关自然资源进行价值测算。该方法的核心是利用已有研究中对相似生态系统或资源的价值评估结果,并基于研究地点与政策应用地点间的区域相似性,生成目标区域 ESV 的推算值。鉴于其数据需求相对较低且操作便捷,效益转移法尤其适用于大空间、长时间尺度的价值评估,或在数据有限条件下开展快速的成本-效益分析。通过为生态系统服务赋予经济价值,效益转移法不仅将复杂的价值评估过程转化为一个更易于推广应用的方法框架,还有助于提升决策者对 ESV 经济显性化的认知效率。

该方法的有效性已在实践中得到验证。基于 ESV 数据库的生物群落量化数据并结合综合单位价值 修正体系,对冰岛土地覆盖类型的效益转移评估显示,2019年其陆地 ESV 高达 261 亿美元,相当于该 国同年国内生产总值的 1.08 倍^[29]。在全球尺度上,河流、湖泊和湿地等水体相关的生态系统展现出显著的单位面积高价值特征。这印证了水利工程生态服务功能的发挥程度与其所依托的河湖水系连通特性、区域自然地理格局等因素密切相关,凸显了采用效益转移法对该区域进行 ESV 测算的现实意义。

3 水利工程生态服务价值空间分布特征

水利工程的建设与运行深刻改变了区域水文情势与土地利用格局,从而对区域生态服务功能的空间分布产生了显著影响。随着工程调控下水资源、水环境及水生态条件的改变,工程影响区的生态系统空间结构得以重塑,其服务功能亦随之发生时空动态变化。本文基于ESV的分类与综合计算结果,旨在阐明水利工程生态服务价值的空间分布特征,揭示各服务功能的时空演变规律,为区域生态空间的优化管理提供科学依据。

- 3.1 空间特征分析 选择适宜的空间展示方法并建立合理的空间分布评价流程,是开展水利工程生态服务功能量空间权衡与优化的前提。土地利用/覆被变化(Land-Use and Land Cover Change, LUCC)作为生态系统类型和状态的直接反映,其变化是连接水利工程功能发挥与生态服务价值实现的关键节点^[30]。因此,本文以LUCC变化为核心指标,剖析水利工程建设(或运行)前后土地利用模式的转变对其生态服务价值空间分布格局的影响。具体借助AreGIS等空间分析工具,对研究区 2000年至 2020年的 LUCC 景观特征和空间分布进行量化分析,并将 ESV 评估结果空间化,通过叠加分析土地利用变化图谱,解析 ESV 的空间展布特征与演变驱动力。
- 3.2 研究方法 为定量揭示 LUCC 变化及其对 ESV 空间格局的影响,采用以下方法:
- 1)转移矩阵分析:利用ArcGIS叠置分析及数据透视表功能,构建不同时期土地利用类型之间的转移矩阵,精确量化各类用地间的相互转化面积与方向,揭示LUCC结构性变化特征。
- 2)土地利用变化图谱分析:结合"图"的空间表达能力与"谱"的时间序列分析能力,生成土地利用时空变化图谱,直观展示LUCC的动态演变过程,为价值评估提供空间化的基础数据。
 - 3)景观类型变化度量分析:
 - ①单一土地利用动态度(K): 衡量特定土地利用类型在研究时段内的变化速度与幅度, 计算公式为

$$K = \frac{U_b - U_a}{U_a} \times \frac{1}{T} \times 100\% \tag{7}$$

式中: U_a 、 U_b 分别为研究初期和末期某土地利用类型的面积;T为研究时长。

②区域土地利用动态度(LC): 反映整个研究区域土地利用变化的总体活跃程度, 计算公式为

$$LC = \left(\sum_{k=1}^{n} \Delta L U_k / \sum_{k=1}^{n} L U_k\right) \times \frac{1}{T} \times 100\%$$
 (8)

式中: LU_k 为第k类土地利用类型的面积; ΔLU_k 为研究时段内第k类土地利用类型转换为其他类型的面积绝对值之和。

- 4) 景观指数分析法:应用 Fragstats 等软件计算相关景观格局指数(如斑块数量、密度、边缘密度、聚集度等),分析研究区土地利用的破碎化程度、空间异质性及连通性等景观特征,从景观生态学角度揭示水利工程影响区下垫面结构变化对生态服务价值的潜在影响。
- 3.3 数据处理与价值空间化 本文选用 Landsat 5 TM(2000年、2010年)和 Landsat 8 OLI_TIRS(2020年)遥感影像作为主要数据源,以量化研究时段内的 LUCC 变化。所有原始影像均选取云量干扰较少的旱季时相,以保证数据可比性。影像预处理包括图层叠加、波段合成、辐射定标和大气校正等步骤,以提高影像质量。本文采用基于最大似然分类法的监督分类技术,在 ERDAS Imagine 平台中将研究区 LUCC 划分为耕地、林地、灌木林、草地、水体、建设用地等若干类型。分类精度通过野外实测 GPS样点数据进行验证,确保 LUCC 分类结果的可靠性。

基于分类后的LUCC空间分布图,结合通过效益转移法修正后的区域ESV系数,测算不同时期各土地利用类型提供的生态系统服务总价值,并在ArcGIS平台中实现价值的空间化表达与制图。通过对比不同年份的ESV空间分布图,分析LUCC变化(特别是与水利工程建设相关的变化,如水域面积增减、库岸带植被演替、灌区农田扩张等)对区域生态系统服务总价值及其各项服务功能(如水源涵养、洪水调蓄、水质净化、生物多样性维持等)空间分布格局的影响。

3.4 ESV 空间分异特征解析 LUCC 变化是影响生态系统服务功能的关键驱动因素。不同土地利用类型与特定的生态服务类型组合及其价值供给能力相对应。在优化某一特定服务(如通过扩大耕地面积以提高粮食产量)时,通常会对其他生态服务功能(如水源涵养和生物多样性保护)产生权衡或协同效应^[31]。因此,对水利工程生态服务价值与LUCC 互动关系进行空间化分析,有助于决策者更科学地配置水土资源,制定兼顾工程效益与生态保护的政策。

然而,当前研究较少关注水利工程调蓄引起的土壤含水量、地下水位等水文要素变化对流域生态服务功能的精细化影响,这构成了未来研究的一个重要方向^[32]。本文通过时间序列遥感影像分析,量化了LUCC变化并初步评估了其对ESV的影响。后续研究将致力于深化水利工程生态服务价值的核算方法,如引入能值分析,构建能值流空间转换模型,更系统地评估水资源调配、农业灌溉、工程建设等活动在生态经济系统中的价值流向与空间效应。

4 水利工程生态服务价值实现的博弈机制

水利工程生态服务价值的有效实现,尤其是在涉及跨区域利益的流域上下游之间,往往需要设计合理的协调机制。考虑到生态保护行动的成本(通常由上游承担)与生态系统服务效益(通常为下游获益)的空间分离和信息不对称性,本文引入博弈论工具,特别是基于不完全信息的动态博弈与讨价还价模型,探索流域上下游生态补偿标准的形成机制与均衡策略。

4.1 不完全信息动态博弈框架 在现实中,流域上下游在生态保护补偿协商中面临信息不完全(如保护成本仅自身知晓)和动态交互(决策受历史行为影响)的复杂情境。静态或完全信息模型(如标准纳什均衡)难以充分刻画此类过程。因此,应采用不完全信息动态博弈框架进行分析。完美贝叶斯均衡(Perfect Bayesian Equilibrium, PBE)是处理此类博弈的核心概念,它要求参与者的策略在博弈的每个信息集上都是最优的,并且信念(对不确定性的判断)能够通过贝叶斯法则合理更新[33]。当参与者的行

动可以部分传递信息时,生态补偿协商可视为一种信号传递博弈。PBE确保了参与者在预测对手反应 及更新自身信念时的理性与一致性。

为捕捉长期互动和声誉效应,本文构建了"可观察行动的不完全信息多阶段博弈"模型。假设参与者i(如上游或下游)的私有信息(如生态保护成本 c_i)为 θ_i ,且其取值属于有限集合 Θ_i 。联合类型 θ =(θ_1 ,…, θ_i)的概率分布 $p(\theta)$ 被假定为各参与者类型边缘分布的乘积形式(即独立性假设):

$$p(\theta) = \prod_{i=1}^{I} p_i(\theta_i) \tag{9}$$

式中 $p_i(\theta_i)$ 为参与者i类型为 θ_i 的概率。

博弈按时期 t=0, 1, …, T进行。每一时期,参与者根据历史信息和当前状态做出影响当期及未来收益的决策。以一个两参与者 (i=1, 2)、两时期 (t=0, 1)的 ESV 供给博弈为例:每期参与者同时决定是否投入成本 c_i (私有信息,从分布 $P(\cdot)$ 中抽取, c_i \in $[0, \overline{c}]$, \overline{c} >1)提供生态系统服务 (0-1) 决策)。若至少一方提供,则双方各获益 1;均不提供则收益为 0 。参与者 i 的收益如表 1 所示。

表1 双方博弈条件下参与人收益列表

行为选择	提供	不提供
提供	$1-c_1, 1-c_2$	1-c1, 1
不提供	1, 1-c2	0, 0

参与者的总效用为当期收益加上 $\delta(0<\delta<1$,贴现因子)乘以未来期收益。此方法可用于分析重复互动中合作(提供生态系统服务)的可能性及均衡策略。

- **4.2** 流域生态补偿标准的讨价还价机制设计 在确定具体的生态补偿标准时,流域上下游的协商过程可模型化为讨价还价问题。为实现有效率(整体利益最大化)且激励相容(参与者自愿接受)的补偿协议,本文分析了几种经典的讨价还价机制^[34]。
- 一个激励相容机制(g, x)(其中,g表示交易概率,x表示转移支付)被认为是有效率的,当且仅当不存在其他激励相容机制 (\hat{g}, \hat{x}) ,能够在至少某一类型组合 (v_1, v_2) 上实现严格帕累托改进,同时对所有类型组合均不产生帕累托恶化(基于参与者期望效用 $U_i(v_i, g, x)$)

$$\int_{0}^{1} U_{i}(v_{i}, \hat{g}, \hat{x}) dv_{j} \ge \int_{0}^{1} U_{i}(v_{i}, g, x) dv_{j} \quad \forall v_{i} \in [0, 1], i \ne j$$
(10)

考虑以下三种具体机制(设上游为卖方,成本/保留价值 v_1 ;下游为买方,收益/支付意愿 v_2)进行具体分析:

1)卖方定价:流域上游卖方有权对他的标的要求任意一个价格,然后流域下游买方可以接受或者拒绝这个标准。在博弈过程中,卖方的最优价格是 $q_1 = (1 + v_1)/2$,价格的期望利润最大化为 $(1 - q_1)(q_1 - v_1)$ 。此时,这个机制可以用 (g^1, x^1) 来表示,其中

$$g^{1}(v_{1}, v_{2}) = \begin{cases} 1 & v_{2} \ge \frac{1+v_{1}}{2} \\ 0 & v_{2} < \frac{1+v_{1}}{2} \end{cases}; \quad x^{1}(v_{1}, v_{2}) = \begin{cases} \frac{1+v_{1}}{2} & v_{2} \ge \frac{1+v_{1}}{2} \\ 0 & v_{2} < \frac{1+v_{1}}{2} \end{cases}$$
(11)

依托 Holmström & Myerson 的研究成果, 机制 (g^1, x^1) 是有效率的。

2)买方定价:流域下游买方可对标的承诺任意一个报价,然后流域上游卖方只能接受或者拒绝这个报价。在此博弈中,买方的最优价格是 $q_2 = (1+v_2)/2$,价格的期望利润最大化为 $q_2(v_2-q_2)$ 。因此,此机制可以用 (g^2,x^2) 来表示,其中

$$g^{2}(v_{1}, v_{2}) = \begin{cases} 1 & \frac{v_{2}}{2} \geq v_{1} \\ 0 & \frac{v_{2}}{2} < v_{1} \end{cases} \qquad x^{2}(v_{1}, v_{2}) = \begin{cases} \frac{v_{2}}{2} & \frac{v_{2}}{2} \geq v_{1} \\ 0 & \frac{v_{2}}{2} < v_{1} \end{cases}$$
(12)

议价博弈均衡解的求解过程表明,机制(g², x²)是有效率的。

3)双向拍卖:流域上下游同时进行报价。如果流域上游卖方的报价低于下游买方的报价,那么买 方按照两个报价的平均值进行补偿。如果卖方的报价高于买方的报价,则交易不成立。博弈的均衡报 价是 $q_1 = \frac{2}{3}v_1 + \frac{1}{4}$, $q_2 = \frac{2}{3}v_2 + \frac{1}{12}$ 。在 $q_1 \ge q_2$, 当且仅当 $v_2 \ge v_1 + \frac{1}{4}$ 时成立。因此,这个机制可以用 (g^3, x^3) 来表示,其中

$$g^{3}(v_{1}, v_{2}) = \begin{cases} 1 & v_{2} \ge v_{1} + \frac{1}{4} \\ 0 & v_{2} < v_{1} + \frac{1}{4} \end{cases}; \quad x^{3}(v_{1}, v_{2}) = \begin{cases} \frac{v_{1} + v_{2} + \frac{1}{2}}{3} & v_{2} \ge v_{1} + \frac{1}{4} \\ 0 & v_{2} < v_{1} + \frac{1}{4} \end{cases}$$
(13)

依据无限议价纳什均衡解的含义,机制(g³, x³)是有效率的[35]。

在上述三种有效机制中,机制③(双向拍卖)被证明能最大化上下游期望总利润之和,即最大化 $\sum_{i=1}^2 \int_0^1 \int_0^1 U_i(v_i, g, x) \mathrm{d}v_1 \mathrm{d}v_2$ 。这相当于求解带权重(如各 1/2)的个体理性约束($U_i(v_i, g, x) \ge 0$)的拉格 朗日函数最大化问题:

$$\begin{cases}
L_{1}(v_{1}) = \begin{cases} \frac{2v_{1}}{3} & v_{1} < 1 \\ 1 & v_{1} = 1 \end{cases}; L_{2}(v_{2}) = \begin{cases} 0 & v_{2} = 0 \\ \frac{2v_{2}}{3} + \frac{1}{3} & v_{2} < 0 \end{cases}; \\
\int_{0}^{1} U_{1}(v_{1}, g, x) dL_{1}(v_{1}) \int_{0}^{1} U_{2}(v_{2}, g, x) dL_{2}(v_{2}) = \frac{2}{3} \left[\int_{0}^{1} U_{1}(v_{1}, g, x) dv_{1} + \int_{0}^{1} U_{2}(v_{2}, g, x) dv_{2} + \frac{1}{2} U_{1}(1, g, x) + \frac{1}{2} U_{2}(0, g, x) \right]
\end{cases} (14)$$

方括号中的表达式即为将 1/2 的影子价格赋予个人理性约束条件 $U_1(1, g, x) \ge 0$ 和 $U_2(0, g, x) \ge 0$ 时,流域上下游期望总利润最大化问题的拉格朗日函数。在上述 3 种激励相容机制中, (g^3, x^3) 可实现参与个体收益最大化,并且可使流域上下游个体理性约束条件中的等号成立,因此,在所有的可行机制中其可实现流域生态补偿期望总利润最大化。

综上,基于不完全信息动态博弈和讨价还价理论设计的机制,能够更贴切地模拟流域上下游生态补偿的复杂现实,为确定有效率、可持续的补偿标准提供决策依据。未来研究可将此框架应用于具体流域,并考虑如减碳增汇等多重 ESV 的整合补偿问题。

- 5 廊坊市水利工程生态服务价值测算
- **5.1** 研究区域概况 本文选取河北省廊坊市(38°30′N —40°05′N, 116°07′E —117°15′E; 市域面积 6429 km²)作为案例区。该区域地势平坦,河流众多(流域面积≥50 km²的河流总长 2021 km,流域面积<50 km²的支渠斗渠总长约 5096 km),水闸密布(流量≥1 m³/s 水闸 276座),是典型的受人类活动和水利工程(如引调水、灌溉、防洪工程体系)深刻影响的平原河网地区。其生态系统服务功能对区域可持续发展及京津冀生态安全具有关键支撑作用,符合本文构建的系统化测算体系的实证研究应用场景。
- **5.2** 数据来源与研究方法应用 采用 Landsat TM/ETM+/OLI遥感影像(30 m分辨率,源自 USGS),获取廊坊市2000年、2010年和2020年三个时期的 LUCC 数据。经图像预处理与监督分类(ENVI 5.3),获取耕地、林地、草地、水域、建设用地和未利用地等 LUCC 空间分布图。在此基础上,应用本文提出的系统化测算体系:
- 1)时空耦联量化:结合修正后的区域 ESV 当量系数,基于不同时期的 LUCC 面积数据,分类、分层量化计算各时期、各土地利用类型的 ESV,实现 ESV 的动态评估。
- 2)LUCC与空间格局分析:利用ArcGIS平台,采用转移矩阵、土地利用动态度及景观格局指数等方法,定量分析2000—2020年间LUCC的时空演变特征。将ESV评估结果空间化,并与LUCC变化图谱进行叠加分析,揭示ESV空间分布格局的演变及其与土地利用变化的关联性,间接反映水利工程活动的潜在影响。

3)博弈补偿接口:基于测算出的ESV时空变化及其归因,引入讨价还价博弈模型,为相关利益主体间的生态补偿标准确定提供量化输入。

5.3 结果与分析

5.3.1 ESV 时空动态变化 计算结果表明,廊坊市水利工程生态服务价值呈现显著增长态势,从2000年的383.91亿元增加至2020年的608.23亿元,增幅达58.43%。两个时间段(2000—2010年、2010—2020年)的增幅分别为26.37%和25.37%。从服务功能看(见图2),调节服务和文化服务价值增长趋势尤为突出,是总价值提升的主要贡献者。

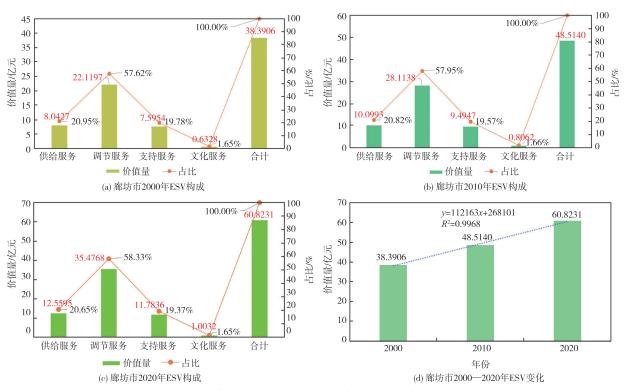


图 2 廊坊市水利工程生态服务价值构成与总价值变化

- 5.3.2 LUCC 变化对 ESV 空间格局的影响 时序 LUCC 分析显示,研究期内廊坊市建设用地显著扩张,同时水域面积和林草地面积有所增加,耕地面积则相应调整。这些变化深刻影响了 ESV 的空间分布。水域(河流、坑塘、湿地)面积的增加(ESV增长 64.1%)直接提升了水源涵养、洪水调蓄和生物多样性维持等的服务价值;植被覆盖(林地、草地)的增加(ESV增长 54.6%)则提升了气候调节、土壤保持等功能。空间叠加分析进一步显示,ESV 高值区主要分布在河流沿线、连片坑塘及林地集中区域,并随这些地类的扩张而扩展;而建设用地的蔓延则导致局部区域 ESV 降低。这些变化格局与区域水资源管理、土地整治及生态修复等活动密切相关。
- 5.3.3 补偿分析 本文基于生态服务功能分项时空动态变化数据开展水利工程生态服务价值测算,为博弈补偿机制的设计提供了支撑。该变量对博弈谈判中的关键参数进行了量化(如保护成本 v_1 、支付意愿 v_2),并基于此构建双向拍卖模型以确定生态补偿标准。
- **5.4** 研究结论 本案例应用系统化测算体系,成功量化了廊坊市 2000—2020 年水利工程生态服务价值的时空动态变化态势,并通过 LUCC 分析揭示了其空间格局演变与土地利用变化的内在联系。结果表明,尽管面临城镇化压力,但通过水域、林草地等生态用地的恢复与建设,区域整体 ESV 呈现增长趋势,验证了积极的水土资源管理和生态工程措施的有效性。研究成果不仅展示了该测算体系的实用性,也为国内同类型流域的水资源-生态环境协同管理和生态补偿机制设计提供了经验参考。

6 结论

为应对传统水利工程生态服务价值评估不足,构建并应用了基于生态系统结构完整性和功能多样性的系统化测算体系。该体系融合时空耦联方法实现ESV 动态量化,结合 LUCC 分析揭示水利工程生态服务价值的时空异质性,并引入动态博弈模型量化生态补偿标准与价值实现路径。廊坊市案例验证了其可行性与有效性,能评估工程综合生态效益及时空演变。该测算方法整合动态评估、空间分析与机制设计,系统性与操作性良好,其特点在于为 ESV 量化向生态补偿机制设计的转化提供了系统化路径。未来应深化博弈模型,加强水文-生态耦合模拟,并将体系推广至不同工程类型及更广流域尺度,为水资源可持续管理和水生态产品价值实现提供科学支撑。

参考文献:

- [1] ZHUGE J, ZENG J, CHEN W X, et al. Impacts of land-use change on ecosystem services value in the South-to-North Water Diversion Project, China [J]. International Journal of Environmental Research and Public Health, 2023, 20: 5069.
- [2] GREEVES S, MCGOVERN R, CASTRO A. A social assessment of ecosystem services: a comparative stakeholder analysis of the Portneuf River Watershed, Idaho[J]. Ecosystems and People, 2025, 21(1): 2478568.
- [3] YANG P, ALIFUJIANG YILINUER, JIANG Y, et al. Study on the evaluation of ecosystem service values of typical lakes in Xinjiang[J]. Journal for Nature Conservation, 2025, 86: 126906.
- [4] GUERRERO P, HAASE D, ALBERT C. Identifying spatial patterns and ecosystem service delivery of nature-based solutions[J]. Environmental Management, 2022, 69: 735-751.
- [5] 张剑,付意成,彭文启,等.生态服务价值与社会经济因素交互影响下的流域生态补偿标准研究[J].水利学报,2024,55(6):654-665.
- [6] 高慧忠,许凤冉,陈娟,等.基于水资源价值流的跨多区域横向生态补偿标准研究[J].中国水利水电科学研究院学报(中英文),2023,21(3):203-211.
- [7] ODUM H.T. Self-organization, transformity, and information[J]. Science, 1988, 242: 1132-1139.
- [8] HÄYHÄ T, FRANZESE P P. Ecosystem services assessment: A review under an ecological-economic and systems perspective[J]. Ecological Modelling, 2014, 289: 124-132.
- [9] 付湘, 陆帆, 胡铁松. 利益相关者的水资源配置博弈[J]. 水利学报, 2016, 47(1): 38-43.
- [10] LIU X, ERKIP E. A game-theoretic view of the interference channel: impact of coordination and bargaining [J]. IEEE Transactions on Information Theory, 2011, 57(5): 2805-2820.
- [11] 刘佳,王先甲.物品价值变化下多人动态讨价还价的策略博弈均衡与参与者拖延行为[J].系统工程理论与实践,2021(5):1282-1293.
- [12] BRANDER L M, DE GROOT R, SCHÄGNER J P, et al. Economic values for ecosystem services: A global synthesis and way forward [J]. Ecosystem Services, 2024, 66: 101606.
- [13] GREEVES S, MCGOVERN R, CASTRO A. A social assessment of ecosystem services: a comparative stakeholder analysis of the Portneuf River Watershed, Idaho[J]. Ecosystems and People, 2025, 21(1): 2478568.
- [14] BRONZES A, HEIN L, GROENEVELD R, et al. A comparison of valuation methods for cultural ecosystem services in support of ecosystem accounting[J]. One Ecosystem, 2025, 10: e108556.
- [15] 安健吉,杨悦,员学锋,等.陕北地区生态系统服务的时空演变、集聚特征及权衡与协同关系[J].水土保持研究,2025,32(1):316-327,335.
- [16] LIN Y, CHEN X M, HUANG L Y. Fine-scale mapping of urban ecosystem service demand in a metropolitan context: a population-income-environmental perspective [J]. Science of the Total Environment, 2021, 781: 146784.
- [17] LASINIO G J, POLLICE A, MARCON E. Assessing the role of the spatial scale in the analysis of lagoon biodiversity: A case-study on the macrobenthic fauna of the Po River Delta [J]. Ecological Indicators, 2017, 79: 112-123.

- [18] 孙颖,杨君,袁淑君,等.环长株潭城市群生态系统服务供需变化分析[J].西北林学院学报,2024,39(5): 202-209.
- [19] HUANG X Y, XIU L A, LU Z X, et al. Ecological networks construction and optimization in the Longdong Loess Plateau: The advantages of self-organizing map and complex networks [J]. Ecological Indicators, 2025, 170: 113138.
- [20] XU J J, JIANG X F, LIU H, et al. Monitoring of spatiotemporal changes in ecosystem service functions and analysis of influencing factors in Pingtan Island[J]. Ecological Indicators, 2024, 158: 111590.
- [21] 田世民, 江恩慧, 王远见, 等. 基于黄河流域系统治理的水库多目标调度约束阈值研究[J]. 水利学报, 2024, 55(6): 631-642, 665.
- [22] RAO N S, GHERMANDI A, PORTELA R, et al. Global values of coastal ecosystem services: A spatial economic analysis of shoreline protection values [J]. Ecosystem Services, 2015, 11: 95-105.
- [23] 胡晓燕,于法稳,徐湘博.用效益转移法评估生态系统服务价值:研究进展、挑战及展望[J].长江流域资源与环境,2022,31(9):1963-1974.
- [24] LU Y, WANG J, JIANG X. Spatial and temporal changes of ecosystem service value and its influencing mechanism in the Yangtze River Delta urban agglomeration [J]. Scientific Reports, 2024, 14: 19476.
- [25] TAYE FA, FOLKERSEN MV, FLEMING CM. The economic values of global forest ecosystem services: A meta-analysis[J]. Ecological Economics, 2021, 189: 107145.
- [26] BOCKARJOVA M, BOTZEN W J W, KOETSE M J. Economic valuation of green and blue nature in cities: A meta-analysis [J]. Ecological Economics, 2020, 169: 106480.
- [27] PELLETIER M C, HORNER C, VICKERS M, et al. The exploration of natural capital on the balance sheet: a case study of a water utility company [J]. Meditari Accountancy Research, 2025, 33(7): 60-87.
- [28] COSTANZA R, DE GROOT R, SUTTON P. Changes in the global value of ecosystem services [J]. Global Environmental Change-Human and Policy Dimensions, 2014, 26: 152-158.
- [29] ING'OLFSD'OTTIR A H, GUNNARSD'OTTIR G P. Tourism as a tool for nature conservation? Conflicting interests between renewable energy projects and wilderness protection in Iceland [J]. Journal of Outdoor Recreation and Tourism-research Planning and Management, 2020, 29: 100276.
- [30] 张新荣,刘林萍,方石,等.土地利用、覆被变化(LUCC)与环境变化关系研究进展[J].生态环境学报, 2014,23(12):2013-2021.
- [31] LIM, REMMERP, VAN BODEGOM, PM, et al. Solution to what? Global assessment of nature-based solutions, urban challenges, and outcomes[J]. Landscape and Urban Planning, 2025, 256: 105294.
- [32] 李敏,孟全省.水源涵养林生态产权与水文生态服务价值实现:基于讨价还价博弈[J].中国人口·资源与环境,2021,31(1):173-181.
- [33] SIHOMNOU I C K, BENSLIMANE A, ANWAR A H, et al. Cyber deception against battery drain dos attacks in wireless sensor networks using signaling game[J]. IEEE Access, 2025, 13: 5219-5235.
- [34] HOLMSTRÖM B, MYERSON R B. Efficient and durable decision rules with incomplete information [J]. Econometrica, 1983, 51(6): 1799-1819.
- [35] MILGROM P R, WEBER R J. A theory of auctions and competitive bidding [J]. Econometrica, 1982, 50(5): 1089-1122.