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ABSTRACT
Different from conventional brain–machine interfaces that focus more on decoding the cerebral cortex,
deep brain–machine interfaces enable interactions between external machines and deep brain structures.
They sense and modulate deep brain neural activities, aiming at function restoration, device control and
therapeutic improvements. In this article, we provide an overview of multiple deep brain recording and
stimulation techniques that can serve as deep brain–machine interfaces. We highlight two widely used
interface technologies, namely deep brain stimulation and stereotactic electroencephalography, for
technical trends, clinical applications and brain connectivity research. We discuss the potential to develop
closed-loop deep brain–machine interfaces and achieve more effective and applicable systems for the
treatment of neurological and psychiatric disorders.

Keywords: deep brain–machine interface, sensing and modulation, deep brain stimulation, stereotactic
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INTRODUCTION
Brain–machine interfaces (BMIs, also known as
brain–computer interfaces) provide novel ap-
proaches for humans to interact with external
devices and the environment. They help restore,
improve and modulate human physical or mental
functions [1,2]. Scientists investigate electrical,
magnetic, ultrasonic, optical and other physical
technologies to interface with the brain at different
levels, as shown in Fig. 1. The cerebral cortex
has long been the major target of brain–machine
interface research. Investigators record and inter-
pret neural activities of multiple cortical areas to
understand human intentions, enable paralysed
patients to control robotic arms and prostheses, and
assist disabled people to communicate efficiently
[3,4].They alsomake efforts in setting up diagnostic
procedures and treatments for brain injuries and
neurological and psychiatric disorders through
neural interventions [5–7].

While interfacing with the human cerebral cortex
allows us to decode sensory and motor signals such

as visual responses, hand movements and speech in
labs [8,9], there is still a long way to go before these
BMIs will be deployed in daily life or on a large
scale. Subcortical areas (e.g. the substantia nigra,
thalamus, hippocampus, etc.), contributing to vari-
ous cognitive, affective, social and critical life func-
tions, are the main targets for invasive neuromodu-
lation research and clinical neurotherapeutics [10].
For treatments ofmany neurological and psychiatric
disorders, interacting with deep brain structures is
necessary and applicable.

Deep brain structures (including basal ganglia,
limbic system, diencephalon, cerebellum and brain
stem) contribute to our vital functions ranging from
sensory and motor to cognition and consciousness,
as shown in Fig. 2. They are primitive and essen-
tial for our lives. Structural and functional abnor-
malities of deep brain structures are observed in
multiple neurological and psychiatric disorders such
as Parkinson’s disease, Alzheimer’s disease, depres-
sion, obsessive–compulsive disorder, etc. The Deep
Brain Machine Interface (DBMI), focusing on the
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Figure 1. Common approaches for sensing and modulating the human brain with depth distribution and spatial resolu-
tion. The horizontal axis lists major electrical, magnetic, ultrasonic and optical approaches including EEG (electroencephalo-
gram), ECoG (electrocorticography), EA (endovascular approach), TES (transcranial electrical stimulation), sEEG (stereotactic
electroencephalography), DBS (deep brain stimulation), MER (microelectrode recording), MEA (microelectrode array), TMS
(transcranial magnetic stimulation), MEG (magnetoencephalography), fMRI (functional magnetic resonance imaging), TUS
(transcranial ultrasound), fUS (functional ultrasound), fNIRS (functional near-infrared spectroscopy) and laser therapy. The
vertical axis represents the depth range covered by each approach from surface to deep brain. Color represents the scale of
spatial resolution, with opacity illustrating the application rate of each approach at different depth levels. EEG, ECoG, MEA,
MEG, fMRI, fUS and fNIRS are mainly used for sensing, whilst sometimes stimulation could also be delivered with ECoG and
MEA electrodes. TES, TMS, TUS and laser therapy are mainly for modulation. EA, sEEG, DBS and MER can be used in both
modalities.

understanding andmodulation of neural activities in
deep brain structures, is an emerging research field
with great application potential.

Besides recording and decoding, DBMIs are able
to modulate deep structures and pathological states
of the brain by delivering therapeutical stimulations.
Advanced DBMI technologies aim at recording and
decoding deep neural activities with high spatio-
temporal resolution and effectively configuring
stimulation parameters that can precisely regulate
brain states. Due to our limited understanding of
fundamental mechanisms and plasticity as well
as adaptability of the central nervous system, the
development of DBMIs with long-term efficacy is
still challenging.

Since electrical signals recorded directly from
brain tissues convey information of neuronal com-
munication, electrical BMIs have attracted the most
research interest in this field [11]. In this re-
view, we first overview the current neural electrical

activity-based BMI technologies and their applica-
tions in sensing and modulating deep brain struc-
tures. We then present two widely used DBMI sys-
tems, namely deep brain stimulation (DBS) and
stereotactic electroencephalography (sEEG), with a
special focus on the latest technical advances and
current clinical applications.Thepotential ofDBMIs
to be used as powerful brain research platforms is ad-
dressed along with their therapeutic utility. We also
discuss the closed-loop framework for DBMI sys-
tems, providing a perspective on technical and clini-
cal developments of closed-loop DBMIs.

FROM SURFACE TO DEEP BRAIN: THE
NEW TREND IN BRAIN–MACHINE
INTERFACES
Electrical activities in our brain underlie the co-
ordination of the thoughts, emotions and behav-
ior of humans. Neural electrical activity-based BMIs
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Cerebellum
Cerebellum, developing from hindbrain, lying in 
the back and below the cerebrum. Cerebellum 
plays an important role in movement coordina-
tion and also participates in balance control and 
proprioceptive information processing.

Pons (part of Brain Stem)
Brain stem consists of pons, midbrain, 
and medulla oblongata. Brain stem 
regulates cardiac and respiratory 
functions, and connects the cerebrum 
to the spinal cord.

Hippocampus (part of 
the Limbic System)
The limbic system is a primitive part 
of the brain overlapping with cortex 
and other deep brain structures. 
The limbic system consists of 
hippocampal formation, diencepha-
lon, basal ganglia, basal forebrain, 
amygdala, septal nuclei, brain 
stem, and olfactory cortex. Limbic 
system is closely related to emotion 
and motivation, as well as memory 
formation, attention and learning. 
Others include consciousness and 
sexual drive.

Thalamus (part of Diencephalon)
Thalamus forms the major part of diencephalon, the 
remaining include epithalamus, subthalamus and 
hypothalamus. Diencephalon severs as an 
essential relay and processing center for sensory, 
autonomic and motor control, with functionally 
diverse communication pathways connecting 
widely with cortex and other deep brain structures.

Putamen (part of Basal Ganglia)
Basal ganglia is a group of interconnected nuclei 
consisting of putamen, caudate nucleus, globus pallidus, 
subthalamic nucleus, and substantia nigra, which has 
partial structural overlap with the diencephalon and brain 
stem. The functions of basal ganglia include movement 
fine-tuning, reward and motivation processing, memory, 
and emotion.

We refer subcortical structures as deep brain, which typically include diencephalon, basal ganglia, 
limbic system, brain stem, and cerebellum.

Figure 2. Deep brain structures and their main functions.

capture and/or modulate these brain dynamics di-
rectly. As our understandingof brain functions deep-
ens, we are seeing a new trend in BMI research that
expands interest and focus from interacting with the
cortical areas of the brain to deep brain structures,
regardless of the deployed interface technology.

The main electrical sensing and modulating
approaches for the human brain include electroen-
cephalography (EEG), transcranial electrical stimu-
lation (TES), electrocorticography (ECoG), micro-
electrode recording (MER), stereotactic electroen-
cephalography (sEEG) and DBS. Figure 3 shows
examples of non-invasive recordings with EEG and
the non-invasive stimulation pattern of TES. ECoG
is usually used for cortical recordings while MER
is used mainly for subcortical recordings. DBS and
sEEG are capable of both recording and stimulation
in deep brain areas.We also show sample recordings
and stimulation patterns of sEEG and DBS in Fig. 3.

EEG is a non-invasive way to sense the electri-
cal activities traditionally from the surface of the
brain with electrodes placed onto the scalp. EEGhas
been the most popular interfacing modality for BMI
in the past decades. EEG-based BMIs have been
adopted in cognitive and behavioral research and
robotic controlling, assisting in the diagnosis of neu-
rological and mental disorders and neurorehabilita-
tion, with impressive cases of neuroprosthetic op-
eration and communication restoration for disabled
individuals [12–14]. Typical neural signals utilized
in EEG-based BMI systems are evoked or event-
related potentials and brain oscillations. More re-
cently, EEG-based decoding approaches have aimed
to leverage deep learning frameworks [15–17].
High-density recordings, novel signal-processing
methods and innovative algorithms have helped
to extend the potential applications of EEG-based
BMIs. At the forefront of current development,
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Figure 3.Major electrical recording and stimulation approaches for brain–machine interfaces. EEG, ECoG and MER for recording; TES for stimulation;
DBS and sEEG for both recording and stimulation.

several studies have shown evidence of the EEG-
based reconstruction of neural source activity from
subcortical structures [18,19], providing us with
a possible approach for non-invasive deep brain
recording.

While EEG is designed for recording, TES
is a non-invasive technique for electrical brain
stimulation delivered through the scalp to modulate
functional connectivity and cortical excitability
[20]. It is increasingly applied in treatments of
various neurological and psychiatric disorders such
as Alzheimer’s disease, motor impairment after
stroke, depression, etc. A recent study with epileptic
patients who simultaneously underwent intracranial
recordings showed that transcranial alternating
current stimulation (one major modality of TES)
delivered with small high-definition electrodes at
low intensities could induce an electrical field in
deep brain structures [21]. Efforts in stimulation
waveform and pulse design, and optimization of
electrode configuration might also facilitate DBS
with TES according to animal and modeling studies
[22]. These results demonstrate the possibility of
modulating deep brain networks through non-
invasive approaches. EEG and TES could also be
combined as a closed-loop system for non-invasive
clinical interventions [23].

Despite the relatively high temporal resolution of
EEG and TES, low spatial resolution and attenuated

signals are still the major limitations due to the re-
sistances and filtering effects of cerebrospinal fluid,
dura mater, skull and scalp. Intracranial interfaces,
with contacts directly placed on brain tissues, ensure
a much higher localization accuracy and signal-to-
noise ratio. Electrocorticography (ECoG), either
epidural or subdural, is an invasive approach widely
used in seizure detection and functional mapping
via electrode arrays placed mostly on the surface
of the cerebral cortex and sometimes subcortical
areas. Conventional ECoG uses macro-electrodes
with a diameter of 1–4 mm and inter-contact
space of 5–10 mm to record local field potentials.
High-frequency neural activities that cannot be
recorded using scalp EEG are of special interest for
their close relation to cognitive functions. Recently
introduced micro-ECoG electrodes with diameters
ranging from 10 to 300 μm have demonstrated su-
perior spatial resolution with less invasiveness [24].
Various ECoG-based BMI settings are proposed
depending on the electrode distribution in non-
epileptogenic areas [25], including motor control
and imagination, speech, visual spelling, auditory
and memory paradigms [26]. Direct electrical
stimulation can be delivered via ECoG electrodes,
enabling the bidirectional BMI paradigm and
providing new opportunities for the treatment of
neurological disorders [27]. While the design of
ECoG limits its ability to probe deep into the brain,
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similarly to EEG, advanced algorithms make ECoG
able to detect some source signals from subcortical
structures [19].

Both Microelectrode array (MEA) and Micro-
electrode recording (MER) insert high-impedance
electrodes into brain tissue and can record spike
trains and local field potentials. MEAs are usu-
ally placed on functional cortical areas for high-
dimensional multi-unit recordings and decoding of
human intentions and functional activities, laying
the foundation for different BMIs such as robotic
arm control, text typing, speech neuroprosthesis and
sensory restoration [8,28]. While MEAs are mainly
used for surface recording, microelectrode record-
ings canbeobtained fromthedeepbrainwith stereo-
tactic targeting. MER is capable of both single chan-
nel and multi-channel recordings, with the latter
aiming to bring in a more precise delineation of
structural boundaries andmore accurate localization
of subregions based on specific electrophysiological
activity patterns. When connected to a stimulator,
MER can supply monopolar or bipolar stimulation,
allowing the functional mapping of different brain
states.

Electrodes of the endovascular neural record-
ing and stimulating system, when first introduced,
were placed in the segments of middle and ante-
rior cerebral artery to detect epileptic foci with-
out opening of the dura mater in patients with
epilepsy in the 1990s. Recent progress in this in-
vasive approach has involved the development of
self-expanding stent-electrode arrays similar to tra-
ditional cerebrovascular stents, which can expand
inside the vessels. The electrodes are connected to
a transmission system within the body. This trans-
mission system can communicate wirelessly with ex-
ternal devices. Recent attempts have tried to utilize
this technology for the restoration of motor con-
trol based on cortical signals. Although the endovas-
cular system is not as widely applied compared to
other methods and many limitations remain, it pro-
vides a different way to interact with deep brain
structures [29].

A high quality of neural signal transmission with
sufficient temporal and spatial resolutions from dif-
ferent cortical and deep brain areas, minimal inva-
siveness and relatively long recording and stimula-
tion times are key issues for BMI development. DBS
and stereotactic electroencephalography (sEEG)
are the most widely used interface technologies in
current clinical practice that satisfy these require-
ments.Thus, wemake special emphasis on these two
BMI technologies, discuss their systematic constitu-
tion and clinical applications in detail, and provide
insights into their significant roles in scientific re-
search and future developments.

INTERFACING WITH THE DEEP BRAIN
Previous research onBMI hasmainly focused on de-
coding the brain signal and using it to encode an ex-
ternal device. However, modulating the brain could
be more important in DBMIs. This section reviews
deep interface technologies and their applications.

Interface technology
DBS is an electrical neuromodulation therapy that
involves minimally invasive deep brain implantation
for chronic applications. Current DBS systems typi-
cally contain two intracranial electrodes connected
to an implantable pulse generator (IPG) through
extended wires. A standard electrode contains four
to eight cylindrical contacts that are ∼1.5 mm in
length, 1.2mm in diameter and 0.5/1.5mm in inter-
contact space. With preoperativeMRI-based target-
ing and intraoperative electrophysiological testing,
electrodes of the DBS are implanted into the tar-
geted deep brain. Electrical stimulation is generated
in the IPG and delivered through implanted elec-
trodes, of which the applied electric field is shaped
by contact selection, amplitude, frequency and pulse
width.

Recent advances in DBS include optimization in
the electrode, IPG and programming system design,
together with development of sensing-enabled and
MRI-compactable technology. With the introduc-
tion of directional electrodes, while the top and
the bottom contacts are still cylindrical, each of the
middle two contacts is split into three segments,
making up eight contacts in total for a lead [30].
More diverse electric fields can be realized with
segmented contacts. The IPG is mostly implanted
in the infraclavicular subcutaneous pocket, which
involves neck tissue tunneling and chest incision. A
new IPGdesign has reduced its size for implantation
in the skull (NCT03837314). In addition, the
technology for controlling multiple independent
currents enables the automatic adjustment of
stimulating parameters according to impedance
changes, providing more accurate therapeutic de-
livery with fewer side effects [31]. Various attempts
in waveform design and temporal pattern selection
have been made to the programming system.
Conventionally, the waveform of stimulation, a
function of the current or voltage with respect to
time, is asymmetrical with a short-duration cathodic
phase of stimulus and a long-duration anodic phase
of recharge. Newly developed stimuli with symmet-
rical waveforms may lead to superior suppression
of motor symptoms in Parkinson’s disease and
essential tremor, as both the cathodic and anodic
phases contribute to neuromodulation efficacy

Page 5 of 15



Natl Sci Rev, 2022, Vol. 9, nwac212

[32].The temporal pattern of DBS is also a complex
setting. Computational models and algorithms are
investigated to determine the stimulus frequency
and contact combinations [33,34]. Pattern selection
can be viewed under the scope of parameter space
exploration, which we will discuss in ‘Closed-loop
deep brain-machine interface’ Section.

The development of sensing and MRI-
compatible DBS is an important trend in DBMI
technology to provide more options for clinical
application and promote research on human brain
network dynamics. Sensing-enabled IPGs have
the ability to extract electrophysiological signals
through implanted electrodes. The recorded signals
are mainly local field potential (LFP), the summing
electrical activity of neurons in the target region
[35]. Chronic sensing allows biomarker identifica-
tion for closed-loop neuromodulation, which will
be discussed in ‘Closed-loop deep brain-machine
interface’ Section. Previous DBS systems have
prevented patients from MRI scanning due to the
risks of device heating, current induction, IPG
dysfunction and magnetic field-induced device
movement. Heating is a major safety challenge for
MRI compatibility. The conducting wires of the
DBS lead interact with the radio frequency fields in
MRI, posing the risk of excessive heating at the lead
tip [36]. Recent progress in MRI-compatible DBS
systems now allows simultaneous MRI scanning
and electrical stimulation [37], making it possible
to reveal deep brain stimulation-induced effects on
neural activity at whole-brain level. New designs in
the lead structure are proposed to diminish radio
frequency heating and increase the intrinsic safety
of the device, such as a braided shield to alter the
resonance behavior [38–40] or wire winding with
varied diameters to increase the outflow area of
the induced currents [41]. Temperature-sensitive
MRI parameters can be leveraged to derive the
temperature rise when the electrode artifacts are
taken care of [42]. Other physical quantities that
are associated with the induced radio frequency
currents can also be used, such as the B1 maps [43].
Besides radio frequency heating, the strong static
magnetic field of the MRI can result in magnetic
saturation of electronic components [44]. As
ferromagnetic materials may cause magnetic forces
and torques, it is better to use less ferromagnetic
materials in the fabrication [37]. Currently, the
most clinically endurable DBS device can work with
radio frequency parameters as high as 3.4 μT in
B1+rms with 1 hour of continuous scanning under a
3.0T full-body MRI scan (G106R, PINS medical).
DBS can simultaneously work with an MRI scan
[40], which satisfies most research and clinical
needs.

DBS is a successful interface for the clinical treat-
ment of many neurological and psychiatric disor-
ders. However, highly focused targets and limited
channel numbers restrict its capability to sense and
modulate large brain networks. Stereotactic elec-
troencephalography (sEEG) could overcome these
limitations with distributed recording and stimu-
lation. It is a high-dimensional intracranial mon-
itoring approach of subcortical structures to help
localize epileptogenic zones and establish a 3D
epileptogenic network. The electrodes of sEEG
are typically made of platinum/iridium, containing
4–18 cylindrical contacts with a diameter of ∼0.8–
1 mm, length of 2 mm and inter-contact interval
of 2–10 mm. In clinical practice, usually 8–15 elec-
trodes are implanted per patient to record from
multiple brain areas with up to >100 channels si-
multaneously for several days to a few weeks. This
allows capturing ictal and pre-/inter-ictal neural ac-
tivities [45]. sEEG is also adopted in the identi-
fication of biomarkers of epileptogenic zones, the
delineation of functional brain areas and electrical
stimulation. The signals acquired by leads of the
sEEG are also LFPs. A broad range of oscillations in
different frequency bands from delta (0.5–3.5 Hz)
to high gamma (>80 Hz) are recorded, provid-
ing both localized and distributed information with
high spatial and temporal resolution [46]. The dy-
namics of neural activity and brain connectivity de-
rived from electrodes outside epileptogenic zones
and networks are of great value for clinical and neu-
roscientific research.

With the increasing application of sEEG, many
researchers have leveraged its advantages in si-
multaneous recording from bilateral cortical and
subcortical areas to conduct studies in perception,
cognition and behavior while recording directly
from the human brain. Here, broad aspects are
covered including visual and auditory perception,
attention, navigation, reward and decision-making,
and many more [47]. The dynamics of brain con-
nectivity and sleeping using sEEG recording has also
attracted adequate interest [48]. Another important
research topic is the development of sEEG-based
BMI systems. Besides visual, speech and motor
BMIs, sEEG allows interfacing with subcortical
areas and developing novel BMI systems with deep
brain signals [45].

Recently, progress has been made in the opti-
mization of sEEG electrode placement. In the stan-
dard frame-based process, a detailed preoperative
plan is defined by the clinical team to decide on tar-
geted recording areas, surgical entry points and tra-
jectories of implantation based on the information
fromMRI, EEG, MEG or PET. The sEEG leads are
implantedwith stereotactic guidance. Intraoperative
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fluoroscopy and CT scan can be used to confirm the
position of electrodes. Recently, frameless neuron-
avigationhas becomewidely used for an easier,more
flexible and suitable procedure. Implantation preci-
sion and surgery time could be improved by robotic
systems that can support the sEEG lead implantation
in frame-based or frameless settings.

sEEG can be applied together with other stereo-
tactic procedures. As an example, sEEG-guided
radiofrequency–thermocoagulation combines
sEEG investigation with radio frequency lesion-
ing directly through the electrodes. During the
procedure, preoperative vascular imaging and
frame-based robotic assistance are used. sEEG and
radiofrequency lesioning are used to treat epilepto-
genic zones inaccessible for surgery, large epileptic
networks and periventricular nodular heterotopia
[49].

Clinical applications
DBSwas first used in the alleviation of pain and psy-
chiatric diseases including depression and anorexia
[50]. In the 1970s,DBSwas introduced for the treat-
ment of movement disorders [51]. With the success
of treating essential tremor by Benabid et al. [52,53],
DBS entered the modern era. Today, DBS is a stan-
dard treatment for movement disorders including
Parkinson’s disease, essential tremor and dystonia,
amongwhich PD is themost common indication for
DBS. Besides movement disorders, other neurolog-
ical disorders such as epilepsy and Alzheimer’s dis-
ease have become the new frontiers for DBS appli-
cations in recent years [54]. In addition, obsessive–
compulsive disorder, Tourette syndrome, major
depression disorders, addiction, anorexia nervosa
and other psychiatric disorders are potential indica-
tions for DBS [55].

One major application of sEEG is to define the
epileptogenic network in the brain. The direct ap-
proach is to record electrophysiological changes of
different brain areas during ictal and interictal peri-
ods, thus mapping the level of seizures and propa-
gation, and identifying distributed regions involved
in seizures. Functional connectivity can also be anal-
ysed using linear or non-linear approaches measur-
ing the correlation in the temporal and frequency
domains of different regions. In addition, graph
theory-based analysis allows discussion about both
local and global features of epileptogenic networks
[45]. sEEG is used as a functional mapping inter-
face to identify the function of brain areas and as-
sess susceptibility to stimulation-triggered epileptic
seizures. The paradigm of stimulation includes low-
frequency stimulation that targets areas of the lower
after-discharge threshold and high-frequency stim-

ulation [56]. sEEG could also be used in the eval-
uation of comorbidities of patients with epilepsy
and guidance of subsequent interventional proce-
dures [57]. First applications in this context have re-
ported the localization of long-termmodulation tar-
gets for treatment-resistant depression [58,59]. In
the future, sEEGholds great potential in neurophys-
iological research and personalized treatment for
other neurological andpsychiatric disorders.Table 1
presents clinical applications for DBS and sEEG
[2,54,60–67].

DBMI AS A RESEARCH PLATFORM FOR
BRAIN CONNECTIVITY
One important function of theDBMI is understand-
ing deep brain activities, especially pathological
states. Prior knowledge of neuroanatomy and
neuropathophysiology has provided guidance for
deep brain sensing and interpretation. Advances
in brain–machine interface and artificial intelli-
gence technologies could capture dynamic brain
network activities [68,69]. The technology of MRI-
compatible DBMI provides a platform for directly
exploring changes in brain connectivity before and
after modulation [70]. The emergence of sensing
techniques inDBMIs and the joint recording of elec-
trophysiological signals frommultiple sites have also
improved the temporal resolution of brain network
dynamics. These studies provide more knowledge
for neural network modulation and help us deepen
the understanding of disease mechanisms, which
will lead to the optimization of biomarkers, implan-
tation targets and modulation patterns, towards the
design of next-generation closed-loop systems.

Diffusion MRI (dMRI) and functional MRI
(fMRI) are two popular techniques for modeling
the structural tractography and functional connec-
tivity of the active human brain [71]. Combined
with DBS and advanced computational methods,
dMRI and fMRI can reveal the impact of DBS on
connectivity patterns of the human brain. High-
quality normative connectivity data generated from
diffusion weighted imaging or resting-state fMRI
from healthy subjects have been used to investigate
brain connectivity patterns related to DBS effects.
Based on the normative connectome, for structural
connectivity, the volume of tissue activated (VTA)
byDBS is used as a seed to generate the probabilistic
tractography map, while for functional connectiv-
ity, temporal correlation analysis among voxels
sampled from VTA and every other voxel in the
brain is conducted.Then various statistical methods
and machine-learning algorithms can be used to
evaluate the relevance and predictability of specific
connections with clinical outcomes, leading to the
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Table 1. Clinical applications for DBS and sEEG [2,54,60–67].

Disease Targets

Parkinson’s disease Subthalamic nucleus, globus pallidus internus, ventral intermediate thalamic nucleus,
pedunculopontine nucleus

Dystonia Globus pallidus internus, subthalamic nucleus, ventral intermediate thalamic nucleus

Essential tremor Ventral intermediate thalamic nucleus, posterior subthalamic area/caudal zona incerta

Multiple sclerosis tremor Ventral intermediate thalamic nucleus, ventralis oralis anterior/ventralis oralis posterior
thalamic nuclei

Depression Subcallosal cingulate gyrus, nucleus accumbens, ventral capsule/ventral striatum, medial
forebrain bundle, lateral habenula, inferior thalamic peduncle

Obsessive–compulsive disorder Subthalamic nucleus, nucleus accumbens, ventral capsule/ventral striatum, nucleus
accumbens

Tourette syndrome Anterior limb of internal capsule, centromedian–parafascicular complex, globus pallidus
externus, nucleus accumbens

Epilepsy a The anterior nucleus of the thalamus, hippocampus, centromedian nucleus of the thalamus,
cerebellum, nucleus accumbens

Drug addiction Nucleus accumbens

Huntington’s disease Globus pallidus internus, globus pallidus externus

Chronic pain Sensory thalamus, the periaqueductal gray/periventricular gray

Conscious disturbance Centromedian–parafascicular nuclei of thalamus, cuneiform nucleus, pallidum

Anorexia Subcallosal cingulate, nucleus accumbens

Bipolar disorder Subcallosal cingulate, nucleus accumbens, ventral capsule/ventral striatum

Alzheimer’s disease Fornix, ventral capsule/ventral striatum

aIndication for sEEG.

identification of optimal target networks for neu-
romodulation [72]. Such research paradigms have
been used in various pathological conditions includ-
ing Parkinson’s disease [73–75], essential tremor
[76], dystonia, Tourette syndrome [77], obsessive–
compulsive disorder, epilepsy, treatment-resistant
depression and Alzheimer’s disease, leading to
new research avenues in the hope to optimize
pre-surgical targeting and post-surgical modulation.

Due to safety considerations, previous attempts
of simultaneous MRI scanning and DBS have
been made mostly with 1.5T MRI. With cur-
rent advances in MRI-compatible DBS, the stim-
ulation can work with 3T MRI. A paradigm of
On/Off stimulation combined with various fre-
quency or electrode configurations has been con-
ducted during MRI scanning, showing intriguing
findings. Frequency-dependent activation of the
GPi–thalamus–cerebellar circuit and deactivation of
the M1–putamen–cerebellum were shown, which
correlated with motor improvement in long-term
observations [40].The activation levels of monopo-
lar and bipolar stimulation are quite different in the
same patient [78]. These results demonstrate the
possibility of precise modulation at an individual
level via DBS.

Similar trends exist in sEEG-based research.
When combined with fMRI, they complement each

other in temporal and spatial resolutions. As the
functional localization of sEEG at the individual
level is the gold standard, the feasibility of non-
invasive preoperative surgical planning using fMRI
has been demonstrated by comparing fMRI and
sEEG mappings of brain functional areas. On the
other hand, sEEG can provide prior knowledge for
the whole-brain analysis of fMRI. For example, local
epileptic foci identified by sEEG can be combined
with fMRI to study the whole brain and subcortical
epileptic brain network. However, due to technical
limitations, no simultaneous sEEG–fMRI study has
been reported yet. Considering the corresponding
characteristics of these two techniques, building an
MRI-compatible sEEG system can help realize the
high-resolution recording of both spatial and tempo-
ral signals, allow correlation analysis and causal in-
ference among different structures, establish prob-
abilistic dynamic connectivity maps under diverse
states or tasks and lead to neural information acqui-
sition and processing from local neural populations
to the whole brain.

CLOSED-LOOP DEEP BRAIN–MACHINE
INTERFACE
Closing the sensory-control loop is a grand chal-
lenge for brain–machine interface research.DBSand
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Figure 4. Sensing and modulation via a deep brain–machine interface. The implanted deep brain stimulator can record LFP
signals and apply stimulation based on the sensing signals and the control policy. Control policies for current closed-loop
deep brain stimulation can be categorized as Bang-Bang control, PID control and model predictive control.

sEEG, as the most prevalent clinical DBMIs, pro-
vide safe and chronic interfaces for decoding and
modulating neural activities. These systems have
been developed for the treatment of pathological
brain activities underlying neurological and psychi-
atric disorders. The standard clinical protocols for
using these systems areopen-loop, the stimulationof
which does not respond to disease-related biomark-
ers. As DBS and sEEG systems becomemore widely
used in clinical treatments, the potential for closed-
loop applications becomes clearer. Real-time effi-
cacy improvement and reduction of side effects may
be reached with closed-loop neurostimulation. The
fact that the neural target population may adapt
to chronic stimulation, e.g. through neuroplastic
changes, calls for the temporal adjustment of neu-
romodulation in treatment. Closing the sensing-
modulation loop of DBMIs could regulate brain ac-
tivities based on temporal feedback.

Current system and applications
Typically, a closed-loop DBMI system comprises
three modules: (i) input—a sensing module mea-
suring internal/external disease-related biomarkers;
(ii) output—a stimulation module delivering stim-
ulation patterns to modulate deep brain activities;
(iii) control—an algorithmic module mapping
input sensing signals to output stimulations. Devel-
opment of a simultaneous sensing and stimulating
technique is the first step in building closed-loop
DBMI systems.

As mentioned above, various DBS systems with
stimulation and sensing capabilities have been de-
veloped in recent years. Early studies of closed-
loop modulation were carried out with external IPG
[79,80]. Most of the closed-loop modulation was in
PD patients, where local field potentials from the
subthalamus nucleus with a defined threshold was

used as the biomarker for bradykinesia and rigidity,
and the stimulation amplitudewas automatically ad-
justed. Such a paradigmwas comparedwith conven-
tional treatment and showedmore efficacy and fewer
side effects [79,81]. However, given the experimen-
tal settings of these studies, further evidence is re-
quired before large-scale clinical application. Recent
advances include the design of sensing and modu-
lating systems for longitudinal brain signal record-
ing [82,83] and their potential to serve as the decod-
ing and modulating platform for human cognitive
and motion states [84]. A recent study showed five
patients implanted with sensing-enabled DBS who
achieved long-term wireless recording and adaptive
stimulation for ≤15 months [85]. In addition, the
initial outcome of a preliminary cohort with bilateral
dual target bidirectional DBS (Summit RC + S) in
PDpatients has been reported to show long-term ef-
ficacy of adaptive DBS with dual targets [86].

Another applicable closed-loop DBMI system
is the responsive neurostimulation (RNS) device,
which was approved for the treatment of partial-
onset medication refractory epilepsy in 2013 [87].
It monitors neural activities at the epileptic foci
or through an electrocorticography strip on the
brain surface continuously, and delivers therapeu-
tic stimulation when a seizure onset is detected
[88]. With increasing use of the RNS system, long-
term data including treatment verification in med-
ication refractory epilepsy have been accumulated,
leading to more accurate prediction, personalized
stimulation and effective network identification. Be-
sides epilepsy, recent studies have demonstrated
closed-loop modulation for treatment-resistant ma-
jor depression [58], leading to the expansion of
indications.

Challenges for closed-loopDBMIs reside in three
parts. The first part is sensing and decoding deep
brain signals, where biomarker identification is the
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major challenge. The second part is encoding and
stimulation, of which the main focus is stimulation
parameter optimization. The last part is control, on
how to stimulate properly based on the decoded sig-
nals (Fig. 4).

Sensing and decoding
The sensing techniques of DBMIs enable record-
ing of neural activities under various circumstances.
Biomarkers in a closed-loop DBMI can be divided
into disease-specific and state-related categories.
The oscillation rhythms in LFP are the most fre-
quently analysedbiomarkers.The frequency-specific
oscillations have been used to identify pathologi-
cal states in patients. The most commonly used is
beta band (13–35 Hz) power in the subthalamic
nucleus (STN) in people with Parkinson’s disease,
which was shown to be a concrete biomarker for
brady-rigidity [89], and showed long-term validity
in follow-up studies [84,89]. Other oscillation fea-
tures include increased theta band (4–8 Hz) power
in STN, which is relevant to impulse control dis-
orders [90]. Increased theta band activity in the
GPi nucleus and centromedian–parafascicular tha-
lamus indicate motor tics in Tourette syndrome
[91] and high beta and gamma oscillations in GPi
were considered to resist tics in the syndrome [92].
Besides these pathological biomarkers, state-related
biomarkers have also been investigated. The LFP
delta band recorded from STN in the full sleep
state was more significant in the non-REM sleep
stage than the awake stage, while the beta band
was more significant in the awake stage and the
REM sleep stage, with strong individual heterogene-
ity [93]. Some other studies attempted to establish
sleep staging models based on STN local field po-
tentials [94,95], which provided a promising basis
for state-related modulation. A more recent study
decoded the initiation, termination and vigor of leg
muscle activation from STNLFPs and predicted the
occurrence of freezing of gait in patients with PD
[96], which might be applied to motor intention-
based stimulation.

In addition to the frequency domain, the phase
of oscillations also plays an important role. Oscil-
lation biomarkers from local field potentials enable
phase-lock encoding, which could provide a more
accurate and comprehensive presentation of the
disease states [97]. With the development of multi-
site recording techniques, more network-related
features have been investigated. Phase–amplitude
coupling of beta and gamma bands is found in the
primary motor cortex of patients with PD in the
‘OFF’ state [98,99]. Phase–amplitude coupling has
also been found in patients with freezing of gait

[100]. A recent study illustrated cortical response
features evoked by DBS that are closely related
to the hyperdirect pathway through which STN
receives input signals from cortical regions [101].
Another study used intraoperative H-reflex mea-
surement as a potential biomarker for optimal elec-
trode positioning [102]. Some closed-loop systems
could also take multi-modal signals such as accel-
eration and heart rate as biomarkers [103]. The
tremor-phase tracked strategy can be used to control
essential tremorwith thalamusDBS [104].These at-
tempts show the progress in deep brain decoding for
a closed-loop DBMI.

Encoding and stimulation
Stimulation patterns include waveform and elec-
trical field configuration. We have discussed the
former previously (‘Interfacing with the deep brain’
Section). Here, we mainly discuss the electrical
field configuration, which can be manually adjusted
during programming. Several parameters influence
the electrical field configuration: contact and
polarity selection, amplitude, frequency and pulse
width, among which frequency, or the temporal
pattern, is closely related to neural oscillation and
pathophysiology. Current DBS parameters are
mostly set at constant frequencies. For instance, a
commonly used frequency in DBS for PD is 130Hz,
which can alleviate symptoms of parkinsonism
obviously. However, it may introduce deterio-
ration of axial symptoms including gait, balance
and speech disorders in the long run. Variable
frequency stimulation was invented to balance
the tradeoff of treatment effects. It can switch
between different frequency patterns with selected
intervals [105]. Studies have shown that variable
frequency stimulation can increase gait speed,
reduce the number of freezing episodes while alle-
viating symptoms of parkinsonism in patients with
PD [106,107].

Another attempt at stimulation frequency op-
timization has been made on irregular stimulation
based on the hypothesis that the temporal pattern,
the precise timing of stimulation pulse sequence,
plays an important role in neural coding [108].
Such a perception brings parameter settings into a
huge space, making traditional iterative adjustment
by physicians impossible. Computational models
as well as machine-learning algorithms are applied
in this field. A genetic algorithm, a sequential
optimization method derived from the biological
evolution principles, can be used in the highly com-
plex optimization of non-linear systems [109]. For
temporal pattern exploration, a genetic algorithm
is used with computational models to predict the
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best non-regular pulse sequence in controlling
parkinsonism [33].

Besides frequency modulation, more general
exploration of parameter optimization has been
conducted. As directional leads for DBS become
more and more popular, the difficulty in program-
ming stimulation parameters has increased signifi-
cantly. With the help of MRI-compatible technol-
ogy, the position of each electrode contact in the
brain can be accurately mapped [70]. In addition,
machine-learning algorithms have been applied to
analyse clinical information for stimulation param-
eter optimization. Supervised learning algorithms
such as random forest, support vector machines,
Näıve Bayes and deep neural networks are widely
used to retrospectively learn stimulation parame-
ters and medication dosages for patients based on
clinical ratings [110]. With sensing and imaging
techniques, electrophysiological and imaging anal-
yses are used to tune stimulation parameters with
machine-learningmethods. Applying support vector
machines to a STN–LFP signal found the optimal
contact of stimulation with an accuracy of 91% in a
previous study with patient data [111]. Linear dis-
criminant analysis was used to establish a learning
model based on fMRI screening in Parkinson’s dis-
ease patientswith optimal andnon-optimalDBS set-
tings, and predicted the optimal settings of contacts
and amplitudes in unseen data sets [112].

Sequential optimization algorithms such as
Bayesian optimization, genetic algorithm and
simulated annealing have recently been used in
neuromodulation pattern selection, and are similar
to the process in which clinicians sequentially
choose stimulation parameters and determine the
optimal ones based on patient feedback. Bayesian
optimization is a sequential search framework
balancing between exploration and exploitation,
and is often more efficient than grid search and
random search [113] given the appropriate prior
information in multidimensional spaces. In these
studies, Bayesian optimization has been used in
neuromodulation to find the optimal stimula-
tion parameters based on personal preference
[114,115] and electrophysiological recording
[116,117]. In addition, combined with the finite
element model of the human brain, a framework
of simulating annealing was also established to
optimize the electrical configuration, target and
dosage of tDCS [118]. Safety is a top priority in the
process of parameter optimization. New methods
were developed to safely explore parameter space
while guaranteeing optimization efficiency [119].
These investigations provide a broad prospect for
DBMI encoding with advanced computational
techniques.

Control policies
When the scenario moves to a temporal dynamic
closed-loop system, the feedback control strategy
based on biomarkers is of great significance as it
determines the following stimulation patterns given
the patients’ pathological state estimation [120].
From theperspective of control theory, current feed-
back control policies used in a closed-loop DBMI
canbedivided into three categories: Bang-Bang con-
troller, proportional integral derivative (PID) con-
troller and model predictive controller (MPC).

Bang-Bang control, also referred to as respon-
sive control or On/Off control, is a commonly used
controller in closed-loop systems. Under Bang-Bang
control, stimulation of aDBMI is deliveredwhen the
threshold value or pathological state is detected in
real time. Such a strategy has been put into prac-
tice and has shown a promising reduction in stimula-
tion time and alleviation of pathological symptoms.
For instance, the threshold of the LFP beta band
power in the STN was predefined in PD and inter-
mittent stimulation was delivered when the thresh-
old was reached [80,81]. Similar patterns have also
been used in epilepsy treatment using the RNS sys-
tem, which showed improvements in seizure reduc-
tion over time [121,122].

As Bang-Bang control may not satisfy the con-
tinuous and dynamic nature of some pathological
states, PIDcontrol is taken into account. PIDcontrol
monitors the error value continuously, and then cal-
culates and combines the proportional, integral and
derivative values together to create the output. In
closed-loop DBMIs, PID simulation has been used
inParkinson’s disease, showinghigher efficiency and
utility than the conventional pattern [123]. PIDcon-
trol has also been extended to application in neuro-
prosthesis for standing balance with functional elec-
trical stimulation [124].

Model predictive control is a more advanced
control policy. Due to the heterogeneity of neuro-
logical and psychiatric diseases and the existence
of individual difference, patient-specific treatment
or individual therapy is needed in complex situa-
tions, especially in a long-term closed-loop system.
Therefore, apart from two control strategies men-
tioned above, model predictive control has received
increasing attention recently. An MPC strategy
was demonstrated based on the identified patient-
specific symptoms response to DBS, leading to the
optimization of closed-loop tremor control [125].
Another study constructed a multi-input multi-
output state-delayed system that took the effect of
time delay into consideration and showed higher ef-
ficiency than the conventional control policy based
on simulation. Current applications of MPC are
limited to simulation, so further studies will be
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needed to confirm the role of MPC in personalized
neuromodulation.

CONCLUSIONS AND FUTURE
DIRECTIONS
Deep brain structures are essential to our vital
functions including sensory, motor, cognition and
consciousness. For the treatment of many neuro-
logical and psychiatric disorders, interacting with
deep brain structures is unavoidable; therefore, deep
brain–machine interfaces provide exclusive tools for
directly recording deep brain activities, studying
deep brain functions and networks, and modulat-
ing pathological deep brain states. The clinically ap-
plicable DBS and sEEG-based DBMIs enable addi-
tional therapeutic options for many diseases. While
we still face big challenges in long-term safety, in-
teraction efficacy, accessibility and other public con-
cerns in neuroethics and regulations, with future
development of novel interfacing technologies and
advanced control methods, DBMIs would benefit
more disabled people and neurological patients, and
promote our understanding of neural networks and
brain functions.

FUNDING
This work was supported by the National Key Research and De-
velopment Program of China (2021YFE0111800), the Techno-
logical Innovation 2030–Brain Science andBrain-inspired Intelli-
gence Technology (2022ZD0209400) and the ShuimuTsinghua
Scholar Program (2019SM133).

Conflict of interest statement. None declared.

REFERENCES
1. Ajiboye AB, Willett FR and Young DR et al. Restoration of
reaching and grasping movements through brain-controlled
muscle stimulation in a person with tetraplegia: a proof-of-
concept demonstration. The Lancet 2017; 389: 1821–30.

2. Mayberg HS, Lozano AM and Voon V et al. Deep brain stim-
ulation for treatment-resistant depression. Neuron 2005; 45:
651–60.

3. Benabid AL, Costecalde T and Eliseyev A et al. An exoskeleton
controlled by an epidural wireless brain–machine interface in a
tetraplegic patient: a proof-of-concept demonstration. Lancet
Neurol 2019; 18: 1112–22.

4. Collinger JL, Wodlinger B and Downey JE et al. High-
performance neuroprosthetic control by an individual with
tetraplegia. The Lancet 2013; 381: 557–64.

5. Gui P, Jiang Y and Zang D et al. Assessing the depth of lan-
guage processing in patients with disorders of consciousness.
Nat Neurosci 2020; 23: 761–70.

6. Donati ARC, Shokur S and Morya E et al. Long-term training
with a brain-machine interface-based gait protocol induces

partial neurological recovery in paraplegic patients. Sci Rep
2016; 6: 30383.

7. Zeng LL, Shen H and Liu L et al. Identifying major depression
using whole-brain functional connectivity: a multivariate pat-
tern analysis. Brain 2012; 135: 1498–507.

8. Willett FR, Avansino DT and Hochberg LR et al. High-
performance brain-to-text communication via handwriting.
Nature 2021; 593: 249–54.

9. Anumanchipalli GK, Chartier J and Chang EF. Speech synthesis
from neural decoding of spoken sentences. Nature 2019; 568:
493–8.

10. Lozano AM, Lipsman N and Bergman H et al. Deep brain stim-
ulation: current challenges and future directions.Nat Rev Neu-
rol 2019; 15: 148–60.

11. Abiri R, Borhani S and Sellers EW et al. A comprehensive
review of EEG-based brain–computer interface paradigms. J
Neural Eng 2019; 16: 011001.

12. Edelman BJ, Meng J and Suma D et al. Noninvasive neu-
roimaging enhances continuous neural tracking for robotic de-
vice control. Sci Robot 2019; 4: eaaw6844.

13. Li Y, Pan J and Wang F et al. A hybrid BCI system combining
p300 and SSVEP and its application to wheelchair control. IEEE
Trans Biomed Eng 2013; 60: 3156–66.

14. Wang Y, Wang R and Gao X et al. A practical VEP-based brain-
computer interface. IEEE Trans Neural Syst Rehabil Eng 2006;
14: 234–40.

15. Chen X, Wang Y and Nakanishi M et al. High-speed spelling
with a noninvasive brain–computer interface. Proc Natl Acad
Sci USA 2015; 112: E6058–67.

16. Xu M, Xiao X and Wang Y et al. A brain–computer interface
based on miniature-event-related potentials induced by very
small lateral visual stimuli. IEEE Trans Biomed Eng 2018; 65:
1166–75.

17. ZhengWL and Lu BL. Investigating critical frequency bands and
channels for EEG-based emotion recognition with deep neural
networks. IEEE Trans Auton Ment Dev 2015; 7: 162–75.

18. Seeber M, Cantonas LM and Hoevels M et al. Subcortical elec-
trophysiological activity is detectable with high-density EEG
source imaging. Nat Commun 2019; 10: 753.

19. Fahimi Hnazaee M, Wittevrongel B and Khachatryan E et al.
Localization of deep brain activity with scalp and subdural EEG.
Neuroimage 2020; 223: 117344.

20. Reed T and Cohen Kadosh R. Transcranial electrical stimulation
(tES) mechanisms and its effects on cortical excitability and
connectivity. J Inherit Metab Dis 2018; 41: 1123–30.

21. Louviot S, Tyvaert L and Maillard LG et al. Transcranial electri-
cal stimulation generates electric fields in deep human brain
structures. Brain Stimulat 2022; 15: 1–12.

22. Grossman N, Bono D and Dedic N et al.Noninvasive deep brain
stimulation via temporally interfering electric fields. Cell 2017;
169: 1029–41.

23. Leite J, Morales-Quezada L and Carvalho S et al. Surface EEG-
transcranial direct current stimulation (tDCS) closed-loop sys-
tem. Int J Neur Syst 2017; 27: 1750026.

24. Schendel AA, Nonte MW and Vokoun C et al. The effect of
micro-ECoG substrate footprint on the meningeal tissue re-
sponse. J Neural Eng 2014; 11: 046011.

Page 12 of 15

http://dx.doi.org/10.1016/S0140-6736(17)30601-3
http://dx.doi.org/10.1016/j.neuron.2005.02.014
http://dx.doi.org/10.1016/S1474-4422(19)30321-7
http://dx.doi.org/10.1016/S1474-4422(19)30321-7
http://dx.doi.org/10.1016/S0140-6736(12)61816-9
http://dx.doi.org/10.1038/s41593-020-0639-1
http://dx.doi.org/10.1038/srep30383
http://dx.doi.org/10.1093/brain/aws059
http://dx.doi.org/10.1038/s41586-021-03506-2
http://dx.doi.org/10.1038/s41586-019-1119-1
http://dx.doi.org/10.1038/s41582-018-0128-2
http://dx.doi.org/10.1038/s41582-018-0128-2
http://dx.doi.org/10.1088/1741-2552/aaf12e
http://dx.doi.org/10.1088/1741-2552/aaf12e
http://dx.doi.org/10.1126/scirobotics.aaw6844
http://dx.doi.org/10.1109/TBME.2013.2270283
http://dx.doi.org/10.1109/TBME.2013.2270283
http://dx.doi.org/10.1109/TNSRE.2006.875576
http://dx.doi.org/10.1073/pnas.1508080112
http://dx.doi.org/10.1073/pnas.1508080112
http://dx.doi.org/10.1109/TBME.2018.2799661
http://dx.doi.org/10.1109/TAMD.2015.2431497
http://dx.doi.org/10.1038/s41467-019-08725-w
http://dx.doi.org/10.1016/j.neuroimage.2020.117344
http://dx.doi.org/10.1007/s10545-018-0181-4
http://dx.doi.org/10.1016/j.brs.2021.11.001
http://dx.doi.org/10.1016/j.cell.2017.05.024
http://dx.doi.org/10.1142/S0129065717500265
http://dx.doi.org/10.1088/1741-2560/11/4/046011


Natl Sci Rev, 2022, Vol. 9, nwac212

25. Schalk G and Leuthardt EC. Brain-computer interfaces using electrocortico-
graphic signals. IEEE Rev Biomed Eng 2011; 4: 140–54.

26. Proix T, Delgado Saa J and Christen A et al. Imagined speech can be decoded
from low- and cross-frequency intracranial EEG features. Nat Commun 2022;
13: 48.

27. Caldwell DJ, Ojemann JG and Rao RPN. Direct electrical stimulation in elec-
trocorticographic brain–computer interfaces: enabling technologies for input
to cortex. Front Neurosci 2019; 13: 804.

28. Hochberg LR, Bacher D and Jarosiewicz B et al. Reach and grasp by people
with tetraplegia using a neurally controlled robotic arm. Nature 2012; 485:
372–5.

29. Neudorfer C, Bhatia K and Boutet A et al. Endovascular deep brain stimu-
lation: investigating the relationship between vascular structures and deep
brain stimulation targets. Brain Stimulat 2020; 13: 1668–77.

30. Anderson DN, Osting B and Vorwerk J et al.Optimized programming algorithm
for cylindrical and directional deep brain stimulation electrodes. J Neural Eng
2018; 15: 026005.

31. Vitek JL, Jain R and Chen L et al. Subthalamic nucleus deep brain stimulation
with a multiple independent constant current-controlled device in Parkinson’s
disease (INTREPID): a multicentre, double-blind, randomised, sham-controlled
study. Lancet Neurol 2020; 19: 491–501.

32. Akbar U, Raike RS and Hack N et al. Randomized, blinded pilot testing of
nonconventional stimulation patterns and shapes in Parkinson’s disease and
essential tremor: evidence for further evaluating narrow and biphasic pulses.
Neuromodulation J Int Neuromodulation Soc 2016; 19: 343–56.

33. Brocker DT, Swan BD and So RQ et al. Optimized temporal pattern of brain
stimulation designed by computational evolution. Sci Transl Med 2017; 9:
eaah3532.

34. Hess CW, Vaillancourt DE and Okun MS. The temporal pattern of stimulation
may be important to the mechanism of deep brain stimulation. Exp Neurol
2013; 247: 296–302.
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91. Neumann WJ, Huebl J and Brücke C et al. Pallidal and thalamic neural oscil-
latory patterns in Tourette’s syndrome. Ann Neurol 2018; 84: 505–14.

92. Zhu GY, Geng XY and Zhang RL et al. Deep brain stimulation modulates pal-
lidal and subthalamic neural oscillations in Tourette’s syndrome. Brain Behav
2019; 9: e01450.

93. Thompson JA, Tekriwal A and Felsen G et al. Sleep patterns in Parkinson’s
disease: direct recordings from the subthalamic nucleus. J Neurol Neurosurg
Psychiatry 2018; 89: 95–104.

94. Chen Y, Gong C and Hao H et al.Automatic sleep stage classification based on
subthalamic local field potentials. IEEE Trans Neural Syst Rehabil Eng 2019;
27: 118–28.

95. Christensen E, Abosch A and Thompson JA et al. Inferring sleep stage from
local field potentials recorded in the subthalamic nucleus of Parkinson’s pa-
tients. J Sleep Res 2019; 28: e12806.

96. Thenaisie Y, Lee K and Moerman C et al. Principles of gait encoding in the
subthalamic nucleus of people with Parkinson’s disease. Sci Transl Med 2022;
14: eabo1800.

97. Weerasinghe G, Duchet B and Cagnan H et al. Predicting the effects of deep
brain stimulation using a reduced coupled oscillator model. PLoS Comput Biol
2019; 15: e1006575.

98. de Hemptinne C, Swann N and Ostrem JL et al. Therapeutic deep brain stim-
ulation reduces cortical phase-amplitude coupling in Parkinson’s disease. Nat
Neurosci 2015; 18: 779–86.

99. de Hemptinne C, Ryapolova-Webb ES and Air EL et al. Exaggerated phase-
amplitude coupling in the primary motor cortex in Parkinson disease. Proc Natl
Acad Sci USA 2013; 110: 4780–5.

100. Yin Z, Zhu G and Liu Y et al. Cortical phase-amplitude coupling is key to the
occurrence and treatment of freezing of gait. Brain J Neurol 2022; 145: 2407–
21.

101. Bahners BH,Waterstraat G and Kannenberg S et al. Electrophysiological char-
acterization of the hyperdirect pathway and its functional relevance for sub-
thalamic deep brain stimulation. Exp Neurol 2022; 352: 114031.

102. Andrews JC, Roy FD and Ba F et al. Intraoperative changes in the H-reflex
pathway during deep brain stimulation surgery for Parkinson’s disease: a po-
tential biomarker for optimal electrode placement. Brain Stimulat 2020; 13:
1765–73.

103. Powers R, Etezadi-Amoli M and Arnold EM et al. Smartwatch inertial sensors
continuously monitor real-world motor fluctuations in Parkinson’s disease. Sci
Transl Med 2021; 13: eabd7865.

Page 14 of 15

http://dx.doi.org/10.1038/mp.2018.2
http://dx.doi.org/10.1111/epi.13964
http://dx.doi.org/10.3389/fneur.2020.01033
http://dx.doi.org/10.1093/cercor/bhw157
http://dx.doi.org/10.1109/TBME.2018.2842769
http://dx.doi.org/10.3389/fnins.2021.632822
http://dx.doi.org/10.1002/hbm.21034
http://dx.doi.org/10.1002/ana.24974
http://dx.doi.org/10.1002/mds.28376
http://dx.doi.org/10.1007/s13311-022-01208-9
http://dx.doi.org/10.1007/s13311-022-01208-9
http://dx.doi.org/10.1093/brain/awaa148
http://dx.doi.org/10.1002/ana.26324
http://dx.doi.org/10.1093/brain/awaa188
http://dx.doi.org/10.1002/jmri.26321
http://dx.doi.org/10.1002/mds.26959
http://dx.doi.org/10.1002/ana.23951
http://dx.doi.org/10.1136/jnnp-2015-310972
http://dx.doi.org/10.1109/TNSRE.2016.2613412
http://dx.doi.org/10.1007/s11434-016-1159-y
http://dx.doi.org/10.1016/j.brs.2020.09.027
http://dx.doi.org/10.1016/j.brs.2020.09.027
http://dx.doi.org/10.1038/s41587-021-00897-5
http://dx.doi.org/10.1227/neu.0000000000001957
http://dx.doi.org/10.1212/WNL.0000000000010154
http://dx.doi.org/10.1016/j.eplepsyres.2019.02.003
http://dx.doi.org/10.1016/j.clinph.2017.08.028
http://dx.doi.org/10.1038/s41398-018-0165-z
http://dx.doi.org/10.1038/s41398-018-0165-z
http://dx.doi.org/10.1002/ana.25311
http://dx.doi.org/10.1002/brb3.1450
http://dx.doi.org/10.1136/jnnp-2017-316115
http://dx.doi.org/10.1136/jnnp-2017-316115
http://dx.doi.org/10.1109/TNSRE.2018.2890272
http://dx.doi.org/10.1111/jsr.12806
http://dx.doi.org/10.1126/scitranslmed.abo1800
http://dx.doi.org/10.1371/journal.pcbi.1006575
http://dx.doi.org/10.1038/nn.3997
http://dx.doi.org/10.1038/nn.3997
http://dx.doi.org/10.1073/pnas.1214546110
http://dx.doi.org/10.1073/pnas.1214546110
http://dx.doi.org/10.1093/brain/awac121
http://dx.doi.org/10.1016/j.expneurol.2022.114031
http://dx.doi.org/10.1016/j.brs.2020.09.024
http://dx.doi.org/10.1126/scitranslmed.abd7865
http://dx.doi.org/10.1126/scitranslmed.abd7865


Natl Sci Rev, 2022, Vol. 9, nwac212

104. Cagnan H, Brittain JS and Little S et al. Phase dependent modulation of tremor
amplitude in essential tremor through thalamic stimulation. Brain 2013; 136:
3062–75.

105. Jia F, Hu W and Zhang J et al. Variable frequency stimulation of subthalamic
nucleus in Parkinson’s disease: rationale and hypothesis. Parkinsonism Relat
Disord 2017; 39: 27–30.

106. Jia F, Guo Y and Wan S et al. Variable frequency stimulation of subthalamic
nucleus for freezing of gait in Parkinson’s disease. Parkinsonism Relat Disord
2015; 21: 1471–2.

107. Jia F, Wagle Shukla A and Hu W et al. Deep brain stimulation at variable
frequency to improve motor outcomes in Parkinson’s disease.Mov Disord Clin
Pract 2018; 5: 538–41.

108. Grill WM. Temporal pattern of electrical stimulation is a new dimension of
therapeutic innovation. Curr Opin Biomed Eng 2018; 8: 1–6.

109. Cassar IR, Titus ND and Grill WM. An improved genetic algorithm for design-
ing optimal temporal patterns of neural stimulation. J Neural Eng 2017; 14:
066013.

110. Shamir RR, Dolber T and Noecker AM et al.Machine learning approach to op-
timizing combined stimulation and medication therapies for Parkinson’s dis-
ease. Brain Stimulat 2015; 8: 1025–32.

111. Connolly AT, Kaemmerer WF and Dani S et al. Guiding deep brain stimulation
contact selection using local field potentials sensed by a chronically implanted
device in Parkinson’s disease patients. In: 2015 7th International IEEE/EMBS
Conference on Neural Engineering (NER). New York, NY: IEEE, 2015, 840–3.

112. Boutet A, Madhavan R and Elias GJB et al. Predicting optimal deep brain stim-
ulation parameters for Parkinson’s disease using functional MRI and machine
learning. Nat Commun 2021; 12: 3043.

113. Shahriari B, Swersky K and Wang Z et al. Taking the human out of the loop: a
review of Bayesian optimization. Proc IEEE 2016; 104: 148–75.

114. Sui Y, Yue Y and Burdick JW. Correlational dueling bandits with application to
clinical treatment in large decision spaces. In: International Joint Conferences
on Artificial Intelligence (IJCAI). San Francisco, CA: Margan Kaufmann, 2017,
2793–9.

115. Louie KH, Petrucci MN and Grado LL et al. Semi-automated approaches to
optimize deep brain stimulation parameters in Parkinson’s disease. J Neuro-
Engineering Rehabil 2021; 18: 83.

116. Dastin-van Rijn EM, König SD and Carlson D et al. Personalizing dual-target
cortical stimulation with bayesian parameter optimization successfully treats
central post-stroke pain: a case report. Brain Sci 2021; 12: 25.

117. Zhao Z, Ahmadi A and Hoover C et al. Optimization of spinal cord stimulation
using bayesian preference learning and its validation. IEEE Trans Neural Syst
Rehabil Eng 2021; 29: 1987–97.

118. Tavakoli R, Sadjedi H and Firoozabadi SMP. An application of simulated an-
nealing to optimal transcranial direct current stimulation of the human brain.
Turk J Elec Eng & Comp Sci 2016; 24: 1135–49.

119. Sui Y, Zhuang V and Burdick J et al. Stagewise safe Bayesian optimization
with gaussian processes. In: Proceedings of the 35th International Conference
On Machine Learning. New York, NY: ACM, 2018, 4781–9.

120. Marceglia S, Guidetti M and Harmsen IE et al. Deep brain stimulation: is it
time to change gears by closing the loop? J Neural Eng 2021; 18: 061001.

121. Sun FT and Morrell MJ. The RNS system: responsive cortical stimulation for
the treatment of refractory partial epilepsy. Expert RevMed Devices 2014; 11:
563–72.

122. Heck CN, King-Stephens D andMassey AD et al. Two-year seizure reduction in
adults with medically intractable partial onset epilepsy treated with respon-
sive neurostimulation: final results of the RNS system pivotal trial. Epilepsia
2014; 55: 432–41.

123. Fleming JE, Dunn E and Lowery MM. Simulation of closed-loop deep brain
stimulation control schemes for suppression of pathological beta oscillations
in Parkinson’s disease. Front Neurosci 2020; 14: 166.

124. Rouhani H, Same M and Masani K et al. PID controller design for FES ap-
plied to ankle muscles in neuroprosthesis for standing balance. Front Neurosci
2017; 11: 347.

125. Haddock A, Velisar A and Herron J et al.Model predictive control of deep brain
stimulation for parkinsonian tremor. In: 2017 8th International IEEE/EMBS
Conference on Neural Engineering (NER). New York, NY: IEEE, 2017, 358–62.

Page 15 of 15

http://dx.doi.org/10.1093/brain/awt239
http://dx.doi.org/10.1016/j.parkreldis.2017.03.015
http://dx.doi.org/10.1016/j.parkreldis.2017.03.015
http://dx.doi.org/10.1016/j.parkreldis.2015.10.002
http://dx.doi.org/10.1002/mdc3.12658
http://dx.doi.org/10.1002/mdc3.12658
http://dx.doi.org/10.1016/j.cobme.2018.08.007
http://dx.doi.org/10.1088/1741-2552/aa8270
http://dx.doi.org/10.1016/j.brs.2015.06.003
http://dx.doi.org/10.1038/s41467-021-23311-9
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1186/s12984-021-00873-9
http://dx.doi.org/10.1186/s12984-021-00873-9
http://dx.doi.org/10.3390/brainsci12010025
http://dx.doi.org/10.1109/TNSRE.2021.3113636
http://dx.doi.org/10.1109/TNSRE.2021.3113636
http://dx.doi.org/10.3906/elk-1305-134
http://dx.doi.org/10.1088/1741-2552/ac3267
http://dx.doi.org/10.1586/17434440.2014.947274
http://dx.doi.org/10.1111/epi.12534
http://dx.doi.org/10.3389/fnins.2020.00166
http://dx.doi.org/10.3389/fnins.2017.00347

