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MACHINE LEARNING REQUIRES
AUTOMATION

Machine learning (ML) is a fundamen-
tal technology of artificial intelligence
(AI) that focuses on searching the pos-
sibly existing mapping f : X — )Y to fit
a given dataset D = {(«;, y;)}Y |, where
each (x,y) € X x Y C RY x R. The
traditional learning paradigm of ML re-
search is to find a mapping f* from a
predefined hypothesis space F = {fy :
X — Y, 0 € ©} by solving the follow-
ing equation, based on a given optimal-
ity criterion (i.e. a loss function £ : ) X

Y — RY):

f* = argmin Ep[€(fy(x), y)]
foeF

+AR(fs)- (1)

Here Ep denotes expectation with re-
spect to D, R(-) is a regularizer that con-
trols the property of the solution and ® is
the set of parameters 6 € R?.

Under such a learning paradigm, ML
techniques like deep learning have revo-
lutionized various fields of Al, e.g. com-
puter vision, natural language process-
ing and speech recognition, by effectively
addressing complex problems that were
once considered intractable. However,
the effectiveness of ML always highly re-
lies on some prerequisites of ML’s fun-
damental components before solving the
aforementioned formulation. Some ex-
amples are as follows.

* Theindependence hypothesis on the loss
function. The loss function £ is preset

before implementation, certainly inde-
pendent of the data distribution and ap-
plication problems.

The large capacity hypothesis on the
hypothesis space. The hypothesis space

F should be large enough in capacity
to embody the optimal solution to be
found. It is certainly preset indepen-
dent of the application problems.

The completeness hypothesis on train-
ing data. Samples (x, y) in the training
dataset should be well labeled, of low-
level noise, class balanced and of suffi-
cient number.

The prior determination hypothesis on
the regularizer. Regularizer R is fixed and

preset by a prior of the hypothesis space
F, while only hyperparameter A is ad-
justed.

The Euclidean space hypothesis on the
analysis tool. The performance of ML

can be analyzed in the Euclidean space,
which means that the optimization al-
gorithm (i.e. arg min) of solving param-
eters 0 can always be naturally embed-
ded in R” with the Euclidean norm.

All of these prerequisites are standard
settings in ML research. They can be
seen as both the prompt for the rapid
development of ML and the restraints
on its progress. To improve the perfor-
mance of existing Al technologies, it is
necessary to break through these prior
hypotheses of ML. However, it is easy
to observe that we can optimally set
these components if and only if the op-
timal solution to the problem is known
in advance, falling into a ‘chicken or egg’
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dilemma. Therefore, it is fundamental to
establish some kind of best-fitting strate-
gies to ML setting-up for ML applica-
tions. Recently, there have been a series of
strategies towards breaking through these
hypotheses of ML with a best-fitting
theory, e.g. model-driven deep learning
for large capacity/regularizer hypotheses,
the noise modeling principle for the in-
dependence hypothesis, self-paced learn-
ing for the completeness hypothesis, Ba-
nach space geometry for the Euclidean
hypothesis (see [1] and the references
therein).

Though these strategies have demon-
strated effectiveness and powerfulness,
they still highly rely on manually preset-
ting, not automatically designing purely
from data. Specifically, at the data level,
we still rely on human effort to collect,
select and annotate data. Humans must
determine which data should be used
for training and testing purposes. At the
model and algorithm level, we have to
manually construct the fundamental
structure of learning models (e.g. deep
neural networks), predefine the basic
forms of loss functions, determine the
algorithm types and their hyperparame-
ters of the optimization algorithms, etc.
Moreover, at the task and environment
level, current techniques are good at
solving single tasks in a closed environ-
ment, while they are limited in handling
complex and varying multi-tasks in a
more realistic open and evolutionary
environment. In a nutshell, the current
learning paradigm that relies on extensive
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Figure 1. lllustration of the SLeM framewaork, theories, algorithms and applications for machine learning automation.

manual interventions on ML’s com-
ponents struggles to handle complex
data and diverse tasks in the real world,
resulting in a degradation and unsatis-
fied learning capability of current ML
techniques.

A natural approach to address the
aforementioned challenges is to reduce
manual interventions in the ML process
via some learning strategies towards au-
tomation of ML. In other words, we hope
to design ML'’s fundamental components
for enhancing adaptive learning capabil-
ities of ML in an open and evolutionary
environment with diverse tasks, thereby
achieving the so-called machine learning
automation (Auto®ML)[1]. We can sum-
marize Auto®ML as the following six au-
tomation goals.

® Data and sample level: automat-

ically generate data and select
samples.

* Model and algorithm level: automatically
construct models/losses and design

algorithms.

* Task and environment level: automati-
cally transfer between varying tasks and
adapt to dynamic environments.

Achieving Auto®ML could be under-
stood as the automation regulation and
design of ML’s fundamental components
such as data, models, losses and al-
gorithms, which intrinsically calls for
a determination of ‘learning methodol-
ogy’ mapping. In the following, we pro-
pose a ‘simulating learning methodol-
ogy’ (SLeM) approach for the learning
methodology determination in general
and for Auto®ML in particular. We report
the SLeM framework, approaches, algo-
rithms and applications in Fig. 1.

SLeM FRAMEWORK AND
APPROACHES

In this section, we propose a SLeM frame-
work by formalizing the learning task,
learning method and learning methodol-
ogy, and then we present three possible
computations to implement SLeM.
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Learning task

Machine learning summarizes the ob-
servable laws in the real world. From
the view of mathematics and statistics,
a learning task can thus be defined
as a work that infers the underlying
laws (i.e. probability density function)
from observed data. In some sense, it
is equivalent to a statistical inference
task, and its specific forms include
classification, regression, clustering,
dimensionality reduction, etc. A learn-
ing task could be represented in many
different ways; for example, (i) a task
can be described by prompts via natural
language instructions/demonstrations
[2], ie. T=(t;,...,t,), where ¢ is
the task demonstration. The current
popular large language model (LLM)
solves the problem just via text prompt
interaction with the model. Moreover, a
task can be decomposed into a series of
sub-tasks, ie. T =t oty ot3p1 0.
Such a hierarchical prompt representa-
tion of a learning task can help solve a



complicated reasoning task for LLM [3].
(ii) A task can be characterized by small-
size high-quality data, called meta-data
[4], denoted D@ = {(xl-(q),y,-(q))}?“zl,
which is popularly used in meta learn-
ing. (iii) A task can also be defined by
a set of logic rules/knowledge, called
meta-knowledge [S], which could also
be utilized to quantify the task represen-
tation. More forms of task representation
are still required, and the research on the
precise mathematical formulation of a
learning task is still ongoing.

Learning method

We define a learning method as a spec-
ification of all four elements of ML in
equation (1). More precisely, we define
the learning space K = (D, F, L, A),
where D, F, L, A denote the data
(distribution functions), model (hypoth-
esis), loss (loss functions) and algorithm
spaces, respectively, and we define alearn-
ing method as an element in C when a
learning task is given, with D, F, L, A
representing a proper data scheme, a
learner’s architecture, a specific loss
function and an optimization algorithm,
respectively. The determination of the
learning method could be considered as
designing ML’s components for the task,
which is potentially hopeful to alleviate
the above ML prerequisites. To make the
computation tractable, we suppose that
IC is separable, that is, each element in the
learning space K can be expanded with a
countably infinite number of base func-
tions, and then /C could be represented
by the product of four infinite sequence
spaces W = (Wp, Wz, Wy, W y). From
this perspective, a learning method then
corresponds to a hyperparameter assign-
ment of C. In other words, an effective
hyperparameter configuration involved
in the ML process can be interpreted as
a proper ‘learning method’ imposed on
a learning task [6]. In practice, we em-
ploy finite hyperparameter assignment
sequences to approximate W.

Learning methodology

The learning methodology is a mapping
from the task space 7 to the learning
space K or W, denoted LM : T — (K
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or W). Thus, a learning methodology
could be understood as a hyperparam-
eter assignment rule of the learning
method. Determination of the learn-
ing methodology is, however, an in-
trinsically  infinite-dimensional ML

problem.

SLeM

SLeM aims to learn the learning method-
ology mapping LM, or, in other words,
learn the hyperparameter assignment
rule of ML. To this end, we can em-
ploy an explicit hyperparameter setting
mapping h: 7T — W conditioned on
learning tasks that map from the learning
task space T to the hyperparameter space
W, covering the whole learning process
to simulate the ‘learning methodology"
Formally, we propose solving the fol-
lowing formulation to get the ‘learning
methodology” mapping & shared among

various learning tasks:

h = argmin E(r )~ sL(h(T), V).
heH

)

Here L is a metric evaluating the learn-
ing method ¥ = (Yp, Y7, Y, Yu) €
W for learning task T € T, S is the joint
probability distribution over 7 x W and
*H is the hypothesis space of h.

The obtained learning methodology
mapping is promising to help ML model
finely adapt to varying tasks from dy-
namic environments with fewer human
interventions, and thereby achieving
Auto®ML. Note that the formulation
in equation (2) is computationally in-
tractable; a natural method to solve itis to
collect observations {(7;, ¥;)!_,} from
S. We propose three typical realization
approaches for SLeM according to dif-
ferent task representation forms, which
are verified to be effective for achieving
Auto®ML in practice.

Prompt-based SLeM

Suppose that we have access to obser-
vations S = {(T;, ¥;)}*,, denoted by
task prompts and corresponding learn-
ing methods; then we can rewrite equa-
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tion (2) as

h = arg min % ZL(h(Ti), ¥i). (3)

heH i=1

This approach is closely related to the re-
cent LLM techniques [2]. When given
a task prompt, the LLM directly pre-
dicts its solution, while SLeM firstly pre-
dicts its learning method, and then pro-
duces the solution based on the learning
method. This understanding potentially
reveals the insight of the task generaliza-
tion ability of LLM techniques. However,
such a ‘brute-force’ learning paradigm is
cumbersome and labor intensive; how to
develop lightweight-reduced implemen-
tations for this formulation is left for fu-
ture study.

Meta-data-based SLeM

Suppose that we have enough meta-data

Di(q) that can be used to properly evalu-
ate learning methods adapting to learning
task T;; then we can rewrite equation (2)
as

t

h= argmin% Zﬁmm(fi*(h), DSQ))

heH i=1
with

ft*(h) = argmin @tmk(f, Di(s); h(T,—)),
feF

(4)

where ¢4 and ¢ are meta and
task losses, respectively, £(f,D) =
() X2 £(f (i), 3:) and f5(h) is
the optimal learner for task T; given
hyperparameter configurations predicted
by h(T;). To better distinguish f and h,
we usually call & a meta-learner. Here
Di(s) is the training set for task T;, and we
drop its explicit dependence on h(T;).
Formulation (4) can be very easily inte-
grated into the traditional ML framework
to provide a fresh understanding and
extension of the original ML framework.
In the next section, we further show that
such a meta-data-based SLeM formu-
lation could greatly enhance adaptive
learning capabilities of existing ML
methods. We have provided a statistical



learning guarantee for the task transfer
generalization ability of the so-obtained
learning methodology in [6], which
makes Auto®ML directly tractable and
more solid.

Meta-knowledge-based SLeM

Collecting meta-data may be costly and
difficult in some applications. Instead, we
also suggest utilizing meta-knowledge to
evaluate the learning methodology [S].
Specifically, we propose the following
meta-regularization (MR) approach for
computing the learning methodology h:

t

_ . A meta * (q)
h—argmmt ZE (ﬁ (h), D; )

heH i=1

+ Yy MR(h) with

fih) = argminﬁt“k(f, Di(s); h(Ti)>.
feF

(5)

Here MR (h) is a meta-regularizer that
confines the meta-learner functions in
terms of data augmentation consistency
(DAC), regulated by meta-knowledge,
and A,y >0 are
making a trade-off between meta-loss

hyperparameters

and the meta-regularizer. In [S], we
theoretically showed that the DAC-
MR approach can be treated as a proxy
meta-objective used to evaluate the meta-
learner without high-quality meta-data
(ie. A =0,y > 0). Besides, meta-loss
combined with the DAC-MR approach
is capable of achieving better meta-level
generalization (ie. A > 0,y > 0). We
also empirically demonstrated that the
DAC-MR approach could learn well-
performing meta-learners from training
tasks with noisy, sparse or even un-
available meta-data, well aligned with
theoretical insights.

Remark

The learning process of SLeM contains
meta-training and meta-test stages, re-
spectively. In the meta-training stage, we
extract the learning methodology from
given meta-training tasks. However, it of-
ten still needs human interventions to

help get the learning methodology, like
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collecting meta-training tasks, designing
the architecture of the learning method-
ology mapping, configuring hyperparam-
eters of meta-training algorithms, etc.
Yet we want to emphasize that, in the
meta-test stage, our meta-learned learn-
ing methodology is fixed, which could
be used to tune hyperparameters of ML
in a plug-and-play manner. In this sense,
it should be more rational to say that
such a SLeM scheme alleviates the work
load of tune additional hyperparameters
of machine learning at the meta-test stage
of SLeM, and thus potentially achieves
Auto®ML at the data and sample and
model and algorithm levels. It is essen-
tial to note that SLeM still requires a
human to specify what problem or task
they want ML to solve, and to set input
task information for the learning method-
ology mapping. When task information
specified by users reflects the characteris-
tic of varying tasks, the learning method-
ology could adaptively predict the ma-
chine learning method for varying tasks.
In this sense, SLeM is potentially effec-
tive for addressing varying tasks from
dynamic environments. In other words,
SLeM could achieve Auto®ML at the task
and environment level with proper task
information specified by a human.

SLeM ALGORITHMS AND
APPLICATIONS

Based on the proposed SLeM frame-
work, we can readily develop a series
of SLeM algorithms for Auto®ML, as
presented in the following. It is worth
emphasizing that the realizations of
Auto®ML are mainly based on meta-
data-based SLeM approaches in this

paper.

Data auto-selection

We explore the assignment of a weight
v; € [0, 1] to each candidate datum «x;,
which represents the possibility of x;
being selected. Compared with conven-
tional methods using pre-defined weight-
ing schemes to assign values of the v;, we
adopt an MLP net called MW-Net [4] to
learn an explicit weighting scheme. It has
been substantiated that weighting func-
tions automatically extracted from data
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comply with those proposed in the hand-
designed studies for class imbalance or
noisy labels. We further reform MW-Net
by introducing a task feature as the sup-
plementary input information, denoted
CMW-Net [7], for addressing real-world
heterogeneous data bias. CMW-Net is
substantiated to be performable in dif-
ferent complicated data bias cases, and
helps improve the performance of sam-
ple selection and label correction in a se-
ries of data bias issues, including datasets
with class imbalance, different synthetic
label noise forms and real-life compli-
cated biased datasets. The meta-learned
weighting scheme can especially be used
in a plug-and-play manner, and can be di-
rectly deployed on unseen datasets, with-
out needing to specifically tune extra hy-
perparameters of the CMW-Net algo-
rithm.

Model auto-adjustment

The existing backbone networks have
limited ability to adapt to different dis-
tribution shifts. They always use a noise
transition matrix to adjust the predic-
tion of the deep classifier for address-
ing the influence of noisy labels. Com-
pared with previous methods specifically
designed based on knowledge of the tran-
sition matrix, we use a transformer net-
work, called IDCS-NTM [ 8], to automat-
ically predict the noise transition for ad-
justing the prediction of the deep clas-
sifier adapting to various noisy labels.
Meanwhile, the meta-learned noise tran-
sition network can help adjust the predic-
tion of the deep classifier on unseen real
noisy datasets, and achieves better perfor-
mance compared with manually designed
noise transition.

Loss auto-setting

For a regression task, the form of the
loss function corresponds to the distri-
bution of the underlying noise. How to
set the loss function could be formulated
as a weighted loss optimization prob-
lem. Conventional methods attempt to
solve weighted loss by assigning the un-
known distribution subjectively or fix-
ing the weight vector empirically, which
makes them hard to address complex



scenarios adaptively and effectively. We
use a hyper-weight network (HWnet)
[9] to predict the weight vector. HWnet
could automatically adjust weights for
different learning tasks, so as to auto-set
the loss function in compliance with the
tasks at hand. The meta-learned HWnet
can be explicitly plugged into other un-
seen tasks to finely adapt to various com-
plex noise scenarios, and helps improve
their performance. For the classification
task, we also explore a loss adjuster [10]
to automatically set robust loss functions
of every instance for various noisy la-
bel tasks. The meta-learned loss adjuster
could also transfer to unseen real-life
noisy datasets, and achieves better perfor-
mance compared with hand-designed ro-
bust loss functions with carefully tuned
hyperparameters.

Algorithm auto-designing

The stochastic gradient descent algo-
rithm requires manually presetting a
learning rate (LR) schedule (i.e. {or}
with T the total iteration steps) for the
task at hand. We use a long short-term
memory-based net, called MLR-SNet
[11], to adaptively set the LR sched-
ule. MLR-SNet could automatically
learn a proper LR schedule to comply
with the training dynamics of different
deep neural network (DNN) training
problems, which are more flexible than
hand-designed policies for specific learn-
ing tasks. The meta-learned LR schedule
is plug and play, and could be readily
transferred to unseen heterogeneous
tasks. MLR-SNet is substantiated to be
transferable among DNN training tasks
of different training epochs, datasets and
network architectures and the large-scale
ImageNet, and achieves comparable per-
formance with the corresponding best
hand-designed LR schedules in the test
data.

SLeM applications

We have released the aforementioned
SLeM algorithms on an open-source plat-
form at https://github.com/xjtushujun/
Auto-6ML based on Jittor, aiming to pro-
vide a toolkit box for users to handle
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real-life Auto®ML problems. Recently,
our CMW-Net algorithm [12] was the
champion of the 2022 International Algo-
rithm Case Competition, which achieves
a competitive sample selection and label
correction performance on real-life het-
erogeneous and diverse label noise tasks,
showing its potential usefulness for more
practical datasets and tasks. It is possible
to utilize SLeM algorithms to real applica-
tion problems possessing features of vary-
ing multiple tasks from dynamic environ-
ments. For example, the visual unmanned
navigation problem calls for reliable fea-
ture extraction and matching techniques
that generalize to different geophysical
scenarios and multimodal data; the smart
education problem calls for effective vi-
sual recognition, detection and analy-
sis techniques that generalize to diverse
teaching scenarios and analysis tasks; and
so on.

RELATED FIELDS

AutoML [13,14] encompasses a wide
range of methods aiming to automate
traditionally manual aspects of the ma-
chine learning process, such as data
preparation, algorithm selection, hyper-
parameter tuning and architecture search,
while it has limited researches on auto-
matical transfer between varying tasks,
which is emphasized by aforementioned
Auto®ML. Existing AutoML methods
are mostly heuristic, making it difficult to
develop theoretical evidence. In compar-
ison, our SLeM framework establishes
a unified mathematical formulation for
Auto®ML, and provides theoretical in-
sight into the task transfer generalization
ability of SLeM [6].

Algorithm selection [15] learns a
mapping from the problem space to the
algorithm space by searching for the
optimal algorithm from a pool of finite
algorithms for the tasks at hand. It is
usually inflexible to addressing vary-
ing tasks. The SLeM adopts bi-level
optimization tools to extract learning
methodology mapping for predicting
the proper learning method of different
tasks with a sound theoretical guarantee,
which could more flexibly and adaptively
fit query tasks.
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CHALLENGES

Existing SLeM algorithms only realize
automation for each component of ML,
which is far from the goal of Auto®ML. In
particular, the learning process of SLeM
still requires extensive human interven-
tions and selections. Achieving SLeM al-
gorithms with stronger automation ca-
pabilities and more complex automation
problems/scenarios is still an important
problem in future research. Moreover, de-
veloping the lightweight prompt-based
SLeM approach is worth deeper and
more comprehensive exploration for the
reduction of the LLM. Besides, we try
to construct a novel learning theory on
infinite-dimensional functional space to
finely reveal the insights of SLeM, and
develop task-generalized transfer learning
theory to provide a theoretical founda-
tion for handling varying tasks and dy-
namic environments in real-world appli-
cations. Building connections between
SLeM and other techniques on explor-
ing task-transferable generalization, like
meta-learning, in-context learning and
large foundation models, is also valuable
for future research.
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