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before implementation, certainly inde- 
pendent of the data distribution and ap- 
plication problems. 

� The large capacity hypothesis on the 
hypothesis space. The hypothesis space 
F should be large enough in capacity 
to embody the optimal solution to be 
found. It is certainly preset indepen- 
dent of the application problems. 

� The completeness hypothesis on train- 
ing data. Samples (x, y ) in the training 
dataset should be well labeled, of low- 
level noise, class balanced and of suffi- 
cient number. 

� The prior determination hypothesis on 
the regularizer. Regularizer R is fixed and 
preset by a prior of the hypothesis space 
F , while only hyperparameter λ is ad- 
justed. 

� The Euclidean space hypothesis on the 
analysis tool. The performance of ML 

can be analyzed in the Euclidean space, 
which means that the optimization al- 
gorithm (i.e. arg min ) of solving param- 
eters θ can always be naturally embed- 
ded in Rp with the Euclidean norm. 

All of these prerequisites are standard 
settings in ML research. They can be 
seen as both the prompt for the rapid 
development of ML and the restraints 
on its progress. To improve the perfor- 
mance of existing AI technologies, it is 
necessary to break through these prior 
hypotheses of ML. However, it is easy 
to observe that we can optimally set 
these components if and only if the op- 
timal solution to the problem is known 

dilemma. Therefore, it is fundamental to 
establish some kind of best-fitting strate- 
gies to ML setting-up for ML applica- 
tions. Recently, there have been a series of 
strategies towards breaking through these 
hypotheses of ML with a best-fitting 
theory, e.g. model-driven deep learning 
for large capacity/regularizer hypotheses, 
the noise modeling principle for the in- 
dependence hypothesis, self-paced learn- 
ing for the completeness hypothesis, Ba- 
nach space geometry for the Euclidean 
hypothesis (see [1 ] and the references 
therein). 

Though these strategies have demon- 
strated effectiveness and powerfulness, 
they sti l l highly rely on manually preset- 
ting, not automatically designing purely 
from data. Specifically, at the data level, 
we sti l l rely on human effort to collect, 
select and annotate data. Humans must 
determine which data should be used 
for training and testing purposes. At the 
model and algorithm level, we have to 
manually construct the fundamental 
structure of learning models (e.g. deep 
neural networks), predefine the basic 
forms of loss functions, determine the 
algorithm types and their hyperparame- 
ters of the optimization algorithms, etc. 
Moreover, at the task and environment 
level, current techniques are good at 
solving single tasks in a closed environ- 
ment, while they are limited in handling 
complex and varying multi-tasks in a 
more realistic open and evolutionary 
environment. In a nutshell, the current 
learning paradigm that relies on extensive 
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ACHINE LEARNING REQUIRES 

UTOMATION 

achine learning (ML) is a fundamen- 
al technology of artificial intelligence 
AI) that focuses on searching the pos- 
ibly existing mapping f : X → Y to fit 
 given dataset D = { (xi , yi ) }N i =1 , where 
ach (x, y ) ∈ X × Y ⊂ R

d × R . The 
raditional learning paradigm of ML re- 
earch is to find a mapping f ∗ from a 
redefined hypothesis space F = { fθ : 
 → Y, θ ∈ �} by solving the follow- 
ng equation, based on a given optimal- 
ty criterion (i.e. a loss function � : Y ×
 → R

+ ): 

f ∗ = arg min 
fθ∈F 

ED 

[ � ( fθ (x ) , y )] 

+ λR( fθ ) . (1) 

ere ED 

denotes expectation with re- 
pect to D, R(·) is a regularizer that con- 
rols the property of the solution and � is 
he set of parameters θ ∈ R

p . 
Under such a learning paradigm, ML 

echniques like deep learning have revo- 
utionized various fields of AI, e.g. com- 
uter vision, natural language process- 
ng and speech recognition, by effectively 
ddressing complex problems that were 
nce considered intractable. However, 
he effectiveness of ML always highly re- 
ies on some prerequisites of ML’s fun- 
amental components before solving the 
forementioned formulation. Some ex- 
mples are as follows. 
� The independence hypothesis on the loss 

function. The loss function � is preset in advance, falling into a ‘chicken or egg’ 
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Figure 1. Illustration of the SLeM framework, theories, algorithms and applications for machine learning automation. 
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anual interventions on ML’s com- 
onents struggles to handle complex 
ata and diverse tasks in the real world, 
esulting in a degradation and unsatis- 
ed learning capability of current ML 

echniques. 
A natural approach to address the 

forementioned challenges is to reduce 
anual interventions in the ML process 
ia some learning strategies towards au- 
omation of ML. In other words, we hope 
o design ML’s fundamental components 
or enhancing adaptive learning capabil- 
ties of ML in an open and evolutionary 
nvironment with diverse tasks, thereby 
chieving the so-called machine learning 
utomation (Auto 6 ML)[1 ]. We can sum- 
arize Auto 6 ML as the following six au- 
omation goals. 

� Data and sample level : automat- 
ically generate data and select 
samples. 

� Model and algorithm level : automatically 
construct models/losses and design 
algorithms. 
� Task and environment level : automati- 
cally transfer between varying tasks and 
adapt to dynamic environments. 

Achieving Auto 6 ML could be under- 
tood as the automation regulation and 
esign of ML’s fundamental components 
uch as data, models, losses and al- 
orithms, which intrinsical ly cal ls for 
 determination of ‘learning methodol- 
gy’ mapping. In the following, we pro- 
ose a ‘simulating learning methodol- 
gy’ (SLeM) approach for the learning 
ethodology determination in general 
nd for Auto 6 ML in particular. We report 
he SLeM framework, approaches, algo- 
ithms and applications in Fig. 1 . 

L e M FRAMEWORK AND 

PPROACHES 

n this section, we propose a SLeM frame- 
ork by formalizing the learning task, 
earning method and learning methodol- 
gy, and then we present three possible 
omputations to implement SLeM. 
Page 2 of 6
earning task 

achine learning summarizes the ob- 
ervable laws in the real world. From 

he view of mathematics and statistics, 
 learning task can thus be defined 
s a work that infers the underlying 
aws (i.e. probabilit y densit y function) 
rom observed data. In some sense, it 
s equivalent to a statistical inference 
ask, and its specific forms include 
lassification, regression, clustering, 
imensionality reduction, etc. A learn- 
ng task could be represented in many 
ifferent ways; for example, (i) a task 
an be described by prompts via natural 
anguage instructions/demonstrations 
2 ], i.e. T = (t1 , . . . , tn ) , where ti is 
he task demonstration. The current 
opular large language model (LLM) 
olves the problem just via text prompt 
nteraction with the model. Moreover, a 
ask can be decomposed into a series of 
ub-tasks, i.e. T = t1 ◦ t2 | 1 ◦ t3 | 2 , 1 ◦ · · ·. 
uch a hierarchical prompt representa- 
ion of a learning task can help solve a 
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omplicated reasoning task for LLM [3 ]. 
ii) A task can be characterized by small- 
ize high-quality data, called meta-data 
4 ], denoted D(q ) = { (x(q ) i , y(q ) i ) }m i =1 , 
hich is popularly used in meta learn- 
ng. (iii) A task can also be defined by 
 set of logic rules/knowledge, called 
eta-knowledge [5 ], which could also 
e utilized to quantify the task represen- 
ation. More forms of task representation 
re sti l l required, and the research on the 
recise mathematical formulation of a 
earning task is sti l l ongoing. 

earning method 

e define a learning method as a spec- 
fication of all four elements of ML in 
quation ( 1 ). More precisely, we define 
he learning space K = (D, F, L , A ) , 
here D, F, L , A denote the data 
distribution functions), model (hypoth- 
sis), loss (loss functions) and algorithm 

paces, respectively, and we define a learn- 
ng method as an element in K when a 
earning task is given, with D, F, L , A 

epresenting a proper data scheme, a 
earner’s architecture, a specific loss 
unction and an optimization algorithm, 
espectively. The determination of the 
earning method could be considered as 
esigning ML’s components for the task, 
hich is potential ly hopeful to al leviate 
he above ML prerequisites. To make the 
omputation tractable, we suppose that 
is separable, that is, each element in the 

earning space K can be expanded with a 
ountably infinite number of base func- 
ions, and then K could be represented 
y the product of four infinite sequence 
paces � = (�D 

, �F , �L , �A 

) . From 

his perspective, a learning method then 
orresponds to a hyperparameter assign- 
ent of K. In other words, an effective 
yperparameter configuration involved 
n the ML process can be interpreted as 
 proper ‘learning method’ imposed on 
 learning task [6 ]. In practice, we em- 
loy finite hyperparameter assignment 
equences to approximate � . 

earning methodology 
he learning methodology is a mapping 
rom the task space T to the learning 
pace K or � , denoted LM : T → (K
r �) . Thus, a learning methodology 
ould be understood as a hyperparam- 
ter assignment rule of the learning 
ethod. Determination of the learn- 

ng methodology is, however, an in- 
rinsically infinite-dimensional ML 

roblem. 

LeM 

LeM aims to learn the learning method- 
logy mapping LM , or, in other words, 
earn the hyperparameter assignment 
ule of ML. To this end, we can em- 
loy an explicit hyperparameter setting 
apping h : T → � conditioned on 

earning tasks that map from the learning 
ask space T to the hyperparameter space 
, covering the whole learning process 

o simulate the ‘learning methodology’. 
ormally, we propose solving the fol- 
owing formulation to get the ‘learning 
ethodology’ mapping h shared among 
arious learning tasks: 

h = arg min 
h ∈H 

E(T,ψ ) ∼S L (h (T ) , ψ ) . 

(2) 

ere L is a metric evaluating the learn- 
ng method ψ = (ψD 

, ψF , ψL , ψA 

) ∈ 

for learning task T ∈ T , S is the joint 
robability distribution over T × � and 
is the hypothesis space of h . 
The obtained learning methodology 
apping is promising to help ML model 
nely adapt to varying tasks from dy- 
amic environments with fewer human 
nterventions, and thereby achieving 
uto 6 ML. Note that the formulation 
n equation ( 2 ) is computationally in- 
ractable; a natural method to solve it is to 
ollect observations { (Ti , �i )t i =1 } from 

. We propose three typical realization 
pproaches for SLeM according to dif- 
erent task representation forms, which 
re verified to be effective for achieving 
uto 6 ML in practice. 

rompt-based SLeM 

uppose that we have access to obser- 
ations S = { (Ti , ψi ) }M 

i =1 , denoted by 
ask prompts and corresponding learn- 
ng methods; then we can rewrite equa- 
Page 3 of 6
ion ( 2 ) as 

h = arg min 
h ∈H 

1 
t 

t ∑ 

i =1 

L (h (Ti ) , ψi ) . (3) 

his approach is closely related to the re- 
ent LLM techniques [2 ]. When given 
 task prompt, the LLM directly pre- 
icts its solution, while SLeM firstly pre- 
icts its learning method, and then pro- 
uces the solution based on the learning 
ethod. This understanding potentially 
eveals the insight of the task generaliza- 
ion ability of LLM techniques. However, 
uch a ‘brute-force’ learning paradigm is 
umbersome and labor intensive; how to 
evelop lightweight-reduced implemen- 
ations for this formulation is left for fu- 
ure study. 

eta-data-based SLeM 

uppose that we have enough meta-data 
(q ) 
i that can be used to properly evalu- 
te learning methods adapting to learning 
ask Ti ; then we can rewrite equation ( 2 )
s 

 = arg min 
h ∈H 

1 
t 

t ∑ 

i =1 

�meta 
(
f ∗i (h ) , D

(q ) 
i 

)

with 

f ∗i (h ) = arg min 
f∈F 

�task 
(
f, D(s ) 

i ; h (Ti )
)
, 

(4)

here �meta and �task are meta and 
ask losses, respectively, � ( f, D ) = 

( 1 
| D | )

∑ | D | 
i =1 � ( f (xi ) , yi ) and f ∗i (h ) is 

he optimal learner for task Ti given 
yperparameter configurations predicted 
y h (Ti ) . To better distinguish f and h ,
e usual ly cal l h a meta-learner. Here
(s ) 
i is the training set for task Ti , and we 
rop its explicit dependence on h (Ti ) . 
ormulation ( 4 ) can be very easily inte- 
rated into the traditional ML framework 
o provide a fresh understanding and 
xtension of the original ML framework. 
n the next section, we further show that 
uch a meta-data-based SLeM formu- 
ation could greatly enhance adaptive 
earning capabilities of existing ML 

ethods. We have provided a statistical 
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earning guarantee for the task transfer 
eneralization ability of the so-obtained 
earning methodology in [6 ], which 
akes Auto 6 ML directly tractable and 
ore solid. 

eta-knowledge-based SLeM 

ollecting meta-data may be costly and 
ifficult in some applications. Instead, we 
lso suggest utilizing meta-knowledge to 
valuate the learning methodology [5 ]. 
pecifically, we propose the following 
eta-regularization (MR) approach for 
omputing the learning methodology h : 

h = arg min 
h ∈H 

λ

t 

t ∑ 

i =1 

�meta 
(
f ∗i (h ) , D

(q ) 
i 

)

+ γMR (h ) with 

f ∗i (h ) = arg min 
f∈F 

�task 
(
f, D(s ) 

i ; h (Ti )
)
. 

(5) 

ere MR (h ) is a meta-regularizer that 
onfines the meta-learner functions in 
erms of data augmentation consistency 
DAC), regulated by meta-knowledge, 
nd λ, γ ≥ 0 are hyperparameters 
aking a trade-off between meta-loss 
nd the meta-regularizer. In [5 ], we 
heoretically showed that the DAC- 
R approach can be treated as a proxy 
eta-objective used to evaluate the meta- 

earner without high-quality meta-data 
i.e. λ = 0 , γ > 0 ). Besides, meta-loss 
ombined with the DAC-MR approach 
s capable of achieving better meta-level 
eneralization (i.e. λ > 0 , γ > 0 ). We 
lso empirically demonstrated that the 
AC-MR approach could learn well- 
erforming meta-learners from training 
asks with noisy, sparse or even un- 
vailable meta-data, well aligned with 
heoretical insights. 

emark 

he learning process of SLeM contains 
eta-training and meta-test stages, re- 
pectively. In the meta-training stage, we 
xtract the learning methodology from 

iven meta-training tasks. However, it of- 
en sti l l needs human interventions to 
elp get the learning methodology, like 
ollecting meta-training tasks, designing 
he architecture of the learning method- 
logy mapping, configuring hyperparam- 
ters of meta-training algorithms, etc. 
et we want to emphasize that, in the 
eta-test stage, our meta-learned learn- 

ng methodology is fixed, which could 
e used to tune hyperparameters of ML 

n a plug-and-play manner. In this sense, 
t should be more rational to say that 
uch a SLeM scheme alleviates the work 
oad of tune additional hyperparameters 
f machine learning at the meta-test stage 
f SLeM, and thus potentially achieves 
uto 6 ML at the data and sample and 
odel and algorithm levels. It is essen- 
ial to note that SLeM sti l l requires a 
uman to specify what problem or task 
hey want ML to solve, and to set input 
ask information for the learning method- 
logy mapping. When task information 
pecified by users reflects the characteris- 
ic of varying tasks, the learning method- 
logy could adaptively predict the ma- 
hine learning method for varying tasks. 
n this sense, SLeM is potentially effec- 
ive for addressing varying tasks from 

ynamic environments. In other words, 
LeM could achieve Auto 6 ML at the task 
nd environment level with proper task 
nformation specified by a human. 

L e M ALGORITHMS AND 

PPLICATIONS 

ased on the proposed SLeM frame- 
ork, we can readily develop a series 
f SLeM algorithms for Auto 6 ML, as 
resented in the following. It is worth 
mphasizing that the realizations of 
uto 6 ML are mainly based on meta- 
ata-based SLeM approaches in this 
aper. 

ata auto-selection 

e explore the assignment of a weight 
i ∈ [0 , 1] to each candidate datum xi , 
hich represents the possibility of xi 
eing selected. Compared with conven- 
ional methods using pre-defined weight- 
ng schemes to assign values of the vi , we 
dopt an MLP net called MW-Net [4 ] to 
earn an explicit weighting scheme. It has 
een substantiated that weighting func- 
ions automatically extracted from data 
Page 4 of 6
omply with those proposed in the hand- 
esigned studies for class imbalance or 
oisy labels. We further reform MW-Net 
y introducing a task feature as the sup- 
lementary input information, denoted 
MW-Net [7 ], for addressing real-world 
eterogeneous data bias. CMW-Net is 
ubstantiated to be performable in dif- 
erent complicated data bias cases, and 
elps improve the performance of sam- 
le selection and label correction in a se- 
ies of data bias issues, including datasets 
ith class imbalance, different synthetic 
abel noise forms and real-life compli- 
ated biased datasets. The meta-learned 
eighting scheme can especially be used 
n a plug-and-play manner, and can be di- 
ectly deployed on unseen datasets, with- 
ut needing to specifically tune extra hy- 
erparameters of the CMW-Net algo- 
ithm. 

odel auto-adjustment 
he existing backbone networks have 
imited ability to adapt to different dis- 
ribution shifts. They always use a noise 
ransition matrix to adjust the predic- 
ion of the deep classifier for address- 
ng the influence of noisy labels. Com- 
ared with previous methods specifically 
esigned based on knowledge of the tran- 
ition matrix, we use a transformer net- 
ork, called IDCS-NTM [8 ], to automat- 
cally predict the noise transition for ad- 
usting the prediction of the deep clas- 
ifier adapting to various noisy labels. 
eanwhile, the meta-learned noise tran- 
ition network can help adjust the predic- 
ion of the deep classifier on unseen real 
oisy datasets, and achieves better perfor- 
ance compared with manually designed 
oise transition. 

oss auto-setting 

or a regression task, the form of the 
oss function corresponds to the distri- 
ution of the underlying noise. How to 
et the loss function could be formulated 
s a weighted loss optimization prob- 
em. Conventional methods attempt to 
olve weighted loss by assigning the un- 
nown distribution subjectively or fix- 
ng the weight vector empirically, which 
akes them hard to address complex 
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cenarios adaptively and effectively. We 
se a hyper-weight network (HWnet) 
9 ] to predict the weight vector. HWnet 
ould automatically adjust weights for 
ifferent learning tasks, so as to auto-set 
he loss function in compliance with the 
asks at hand. The meta-learned HWnet 
an be explicitly plugged into other un- 
een tasks to finely adapt to various com- 
lex noise scenarios, and helps improve 
heir performance. For the classification 
ask, we also explore a loss adjuster [10 ] 
o automatically set robust loss functions 
f every instance for various noisy la- 
el tasks. The meta-learned loss adjuster 
ould also transfer to unseen real-life 
oisy datasets, and achieves better perfor- 
ance compared with hand-designed ro- 
ust loss functions with carefully tuned 
yperparameters. 

lgorithm auto-designing 

he stochastic gradient descent algo- 
ithm requires manually presetting a 
earning rate (LR) schedule (i.e. { αt }T t=1 
ith T the total iteration steps) for the 
ask at hand. We use a long short-term 

emory-based net, called MLR-SNet 
11 ], to adaptively set the LR sched- 
le. MLR-SNet could automatically 
earn a proper LR schedule to comply 
ith the training dynamics of different 
eep neural network (DNN) training 
roblems, which are more flexible than 
and-designed policies for specific learn- 
ng tasks. The meta-learned LR schedule 
s plug and play, and could be readily 
ransferred to unseen heterogeneous 
asks. MLR-SNet is substantiated to be 
ransferable among DNN training tasks 
f different training epochs, datasets and 
etwork architectures and the large-scale 
mageNet, and achieves comparable per- 
ormance with the corresponding best 
and-designed LR schedules in the test 
ata. 

LeM applications 
e have released the aforementioned 
LeM algorithms on an open-source plat- 
orm at https://github.com/xjtushujun/
uto-6ML based on Jittor, aiming to pro- 
ide a toolkit box for users to handle 
fi
eal-life Auto 6 ML problems. Recently, 
ur CMW-Net algorithm [12 ] was the 
hampion of the 2022 International Algo- 
ithm Case Competition, which achieves 
 competitive sample selection and label 
orrection performance on real-life het- 
rogeneous and diverse label noise tasks, 
howing its potential usefulness for more 
ractical datasets and tasks. It is possible 
o utilize SLeM algorithms to real applica- 
ion problems possessing features of vary- 
ng multiple tasks from dynamic environ- 
ents. For example, the visual unmanned 
avigation problem calls for reliable fea- 
ure extraction and matching techniques 
hat generalize to different geophysical 
cenarios and multimodal data; the smart 
ducation problem calls for effective vi- 
ual recognition, detection and analy- 
is techniques that generalize to diverse 
eaching scenarios and analysis tasks; and 
o on. 

ELATED FIELDS 

utoML [13 ,14 ] encompasses a wide 
ange of methods aiming to automate 
raditionally manual aspects of the ma- 
hine learning process, such as data 
reparation, algorithm selection, hyper- 
arameter tuning and architecture search, 
hile it has limited researches on auto- 
atical transfer between varying tasks, 
hich is emphasized by aforementioned 
uto 6 ML. Existing AutoML methods 
re mostly heuristic, making it difficult to 
evelop theoretical evidence. In compar- 
son, our SLeM framework establishes 
 unified mathematical formulation for 
uto 6 ML, and provides theoretical in- 
ight into the task transfer generalization 
bility of SLeM [6 ]. 
Algorithm selection [15 ] learns a 
apping from the problem space to the 
lgorithm space by searching for the 
ptimal algorithm from a pool of finite 
lgorithms for the tasks at hand. It is 
sually inflexible to addressing vary- 
ng tasks. The SLeM adopts bi-level 
ptimization tools to extract learning 
ethodology mapping for predicting 
he proper learning method of different 
asks with a sound theoretical guarantee, 
hich could more flexibly and adaptively 

t query tasks. 

Page 5 of 6
HALLENGES 

xisting SLeM algorithms only realize 
utomation for each component of ML, 
hich is far from the goal of Auto 6 ML. In
articular, the learning process of SLeM 

ti l l requires extensive human interven- 
ions and selections. Achieving SLeM al- 
orithms with stronger automation ca- 
abilities and more complex automation 
roblems/scenarios is sti l l an important 
roblem in future research. Moreover, de- 
eloping the lightweight prompt-based 
LeM approach is worth deeper and 
ore comprehensive exploration for the 
eduction of the LLM. Besides, we try 
o construct a novel learning theory on 
nfinite-dimensional functional space to 
nely reveal the insights of SLeM, and 
evelop task-generalized transfer learning 
heory to provide a theoretical founda- 
ion for handling varying tasks and dy- 
amic environments in real-world appli- 
ations. Building connections between 
LeM and other techniques on explor- 
ng task-transferable generalization, like 
eta-learning, in-context learning and 

arge foundation models, is also valuable 
or future research. 
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