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Abstract

With the rapid development of deep learning technology, neural network models have achieved
remarkable results, but their large number of references and high computational resource require-
ments limit the wide range of applications.Therefore, model compression techniques emerge,
aiming to reduce computational complexity, memory occupation, and energy consumption over-
head of the models to meet the practical deployment requirements without sacrificing perfor-
mance. In this paper, we systematically sort out the research results in the field of model com-
pression in recent years. Firstly, we introduce the definition and goals of model compression, and
discuss its challenge and evolution of the techniques. Then a variety of mainstream compression
methods are elaborated in detail, including pruning, quantization, knowledge distillation, low-
rank factorization, and parameter sharing, and analyze their principles, strengths, weaknesses,
and applicability scenarios. We also provide a comparative analysis of these methods, high-
lighting their trade-offs in terms of compression rate, performance, and computational efficiency.
In addition, we introduce commonly used datasets, evaluation metrics, and future research di-
rections for model compression in image classification and natural language processing tasks.
By comprehensively summarizing and analyzing the existing work, we expect to provide model
compression researchers with a clear technology mapping and research roadmap to promote their
researches.
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1. Introduction

With the continuous evolution of deep learning technology, deep neural networks (DNN) have
dominated the AI landscape, revolutionizing fields such as computer vision (CV), natural lan-
guage processing (NLP), speech recognition, and recommender systems [1, 2, 3]. Since the
breakthrough achieved by AlexNet [4] in 2012, deep learning models have consistently surpassed
traditional methods in tasks such as machine translation [5, 6, 7], image generation [8, 9, 10],
image classification [11, 12, 13], object detection [14, 15, 16], and speech-to-text [17, 18, 19].
Key innovations such as VGGNet [20], ResNet [11],and DenseNet [21] have notably improved
the ability of models to generalize across various datasets and tasks.
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In recent years, pre-trained models, particularly in NLP, have become the forefront of AI
research. The introduction of BERT [22], for example, with its bidirectional transformer archi-
tecture, revolutionized tasks such as text classification, question and answering, and language
translation. Following this, the GPT series, especially GPT-3 [23] and GPT-4 [24], demonstrated
remarkable capabilities in generative tasks [25]. These models, leveraging massive amounts of
data and powerful architectures, have achieved state-of-the-art performance in a variety of sce-
narios, including chatbots, automated writing, and even legal and medical question-answering.

As AI continues to evolve, models like the Vision Transformer [12] are beginning to replace
traditional Convolutional Neural Networks (CNNs) in CV tasks. Pre-trained visual models are
not only better at image classification, but also demonstrate stronger capabilities in a variety
of tasks such as image generation and semantic segmentation [26]. Multimodal models such as
CLIP [27], DALL-E [28] and LLaVA [29] are expanding the application of AI, offering powerful
solutions in creative fields, including graphic generation and interactive experiences.
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Figure 1: Overview of this survey.

Despite the success and capabilities of large pre-trained models, they are accompanied by sig-
nificant computational and memory requirements. These models often require substantial com-
puting resources for both training and inference, posing challenges for deployment on devices
with limited resources, such as mobile phones, edge devices, and drones [30, 31]. Furthermore,
the high energy consumption involved in training models like GPT-3, which requires thousands
of GPUs and enormous amounts of electricity, makes them inaccessible to smaller research or-
ganizations or companies without substantial computational infrastructure [32, 33, 34].

For these reasons, as the demand for efficient AI applications grows, researchers are in-
creasingly focused on reducing the computational complexity and memory footprint of deep
learning models, without sacrificing the model performance. Methods such as model pruning,
knowledge distillation, and quantization are being explored to enhance the deployment of large
models while maintaining high accuracy. This shift towards more energy-efficient and resource-
conscious models is essential to ensure the broader adoption of AI across various industries.

In this survey, we aim to provide a comprehensive overview of model compression tech-
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niques, particularly focusing on the advances made in recent years. As shown in Fig. 1, we
begin by defining the concept of model compression and its primary goals in §2, and discuss
the challenges and trace the evolution of model compression techniques. In §3, we delve into
the methods used for compressing models, including pruning, quantization, knowledge distilla-
tion, low-rank decomposition, and parameter sharing. These techniques are examined in detail,
along with a comparative analysis of their advantages and challenges in §4, highlighting how
each method addresses the core goals of compression. We further examines the datasets and
evaluation metrics commonly used to assess compression methods in §5. Lastly, we conclude
with a discussion on potential future research directions and the ongoing evolution of model
compression techniques in §6.

2. Background

Model compression has emerged as a critical technique for deploying models on resource-
constrained devices and enabling efficient inference in real-time applications. In this section, we
first introduce the core concepts of model compression and the challenges that govern the com-
pression process. We then discuss the specific tasks and goals of model compression, followed
by an exploration of the historical development and related research areas of model compression.
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Figure 2: Illustration of the model compression pipeline. A large model with high computational demand is transformed
into a smaller, more efficient model through compression techniques such as pruning, quantization, and distillation. The
resulting lightweight model incurs lower computational cost and can be deployed on edge devices such as smartphones.

2.1. Definition of Model Compression

As shown in Fig. 2, model compression aims to learn a compressed mapping fθ′ : X 7→ Y from an
original, typically over-parameterized model fθ. The goal is to significantly reduce the model’s
resource consumption, including the number of parameters, computational cost (measured in
FLOPs), and memory footprint, while minimizing the degradation of its performance. This
can be formally expressed as finding a compressed model with parameters θ′ that satisfies the
following conditions:
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Parameter reduction: |θ′| ≤ α|θ|, α ∈ (0, 1),
Computation reduction: FLOPs( fθ′ ) ≤ βFLOPs( fθ), β ∈ (0, 1),
Memory reduction: Mem( fθ′ ) ≤ γMem( fθ), γ ∈ (0, 1),

(1)

where α, β, and γ are compression ratios for parameters, computations, and memory, respec-
tively. The primary and critical objective of model compression is to minimize the performance
degradation ∆A = A( fθ)−A( fθ′ ), whereA represents the accuracy of the model or other relevant
performance metrics. This leads to the following optimization problem:

min
θ′
L( fθ′ (x), y) s.t. Resource( fθ′ ) ≤ Budget, (2)

where,L is the task-specific loss function (e.g., cross-entropy for classification), and Resource( fθ′ )
represents the resource constraints (e.g., FLOPs) that must be within a predefined Budget.

2.2. Goals of Model Compression

Model compression aims to reduce the size, computational overhead, and memory occupation of
the model through a series of technical means, while maintaining the performance of the model
in specific tasks as much as possible. With the increasing size of deep learning models, driven by
the need to process complex data and achieve higher accuracy, model compression has become
an important research direction. This is particularly crucial for deploying sophisticated models
on resource-constrained devices and for enabling efficient inference in real-time applications.
The core tasks of model compression can be summarized into the following categories.
• Efficiency Goals: Model compression aims to optimize the speed at which a model performs
real-time inference, reducing the time required to make predictions. This can be achieved through
techniques like low-rank factorization, quantization and structured pruning, all of which reduce
computational complexity and enable faster processing on resource-constrained devices. This is
critical in real-time scenarios such as autonomous driving, video analytics, and online recom-
mendation systems, where low-latency responses are essential[35, 36, 30].
• Resource Goals: One of the core objectives of model compression is to decrease the model’s
size, making it more suitable for deployment on devices with limited storage, such as mobile
phones, embedded systems, and IoT devices. Efficient memory usage is another key goal, aiming
to reduce the model’s memory footprint during inference. This helps ensure smooth deployment
on devices with limited RAM and enables better performance in memory-constrained environ-
ments. Moreover, model compression seeks to reduce the computational cost, measured by
operations such as FLOPs, allowing models to run more efficiently on devices with lower pro-
cessing power [37, 38].
• Performance Goals: Besides improving efficiency and reducing resource consumption, it must
be ensured that the compressed model retains as much of the performance of the original, uncom-
pressed model. This implies that it is necessary to minimize model performance loss by carefully
designing algorithms. This is especially crucial in high-stakes applications where maintaining
high accuracy is paramount, such as medical diagnosis (e.g., detecting diseases from medical
images), financial forecasting (e.g., critical investment decisions), and scientific research, where
even small drops in accuracy could have severe consequences [39].
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2.3. Challenges in Model Compression
Despite significant advances in model compression techniques, several challenges remain that
limit their effectiveness and real-world applicability. The following are four major challenges
that need to be addressed to improve the applicability of compression methods.
• Trade-off between compression ratio and performance: Although model compression tech-
niques can effectively reduce the storage size and reasoning overhead of models, there is always
a difficult trade-off between compression ratio and accuracy. While techniques such as pruning,
quantization, and knowledge distillation can significantly reduce model size and computational
requirements, they must be carefully designed to minimize performance degradation. For ex-
ample, in scenarios with high compression ratios, the performance of the model tends to drop
drastically, resulting in its limited usability in real-world applications. Therefore, a more bal-
anced method to model compression is necessary, one that considers both compression ratio and
accuracy, which enables the widespread deployment of efficient deep learning models in various
applications. Achieving this balance requires careful tuning and often involves trade-offs that
must be tailored to the specific application or hardware requirements [40, 41].
• Lack of Generalizability: While model compression has seen impressive advancements, most
of these methods are tailored to specific types of models, architectures, or tasks, limiting their
broader applicability across different domains [42]. For example, a certain pruning strategies or
quantization techniques might work exceptionally well on CNNs used for image classification
but may not be as effective on transformer-based models used in NLP. This lack of generalization
is problematic because it hinders the ability to create universal compression techniques that can
be applied to a wide range of deep learning models, regardless of their architecture or the task
they are intended for. To address this issue, there is a growing need for generalizable compres-
sion methods that can work across a wide range of models and tasks. Ideally, these methods
would be robust enough to handle the complexities of different deep learning architectures, as
well as flexible enough to adapt to new tasks and diverse real-world data [43, 44].
• Lack of Hardware-aware Compression: A major challenge in model compression is the
lack of optimization for specific hardware environments. While many compression techniques
are designed to reduce model size, computational cost, and memory footprint, they often fail to
take into account the specific characteristics and capabilities of the target hardware. This lack of
hardware awareness can significantly limit the real-world effectiveness of compressed models,
as the model may not leverage the full potential of the underlying hardware, resulting in sub-
optimal performance [45, 46]. To address this issue, hardware-aware compression techniques
are required, as these methods tailor the compression process to the target hardware’s specific
strengths and weaknesses. Hardware-aware optimizations should take into account hardware
factors, including the number of cores, memory hierarchy, and the parallelism of the hardware.
• Handling Dynamic Input: One of the lesser-discussed yet critical challenges in model com-
pression is how well these techniques handle dynamic input variability. In numerous real-world
scenarios, the input data may come from a variety of sources and can exhibit significant variabil-
ity in its characteristics. But the compression techniques, such as pruning or quantization, often
assume a fixed, structured input type, where the characteristics of the data remain relatively sta-
ble during inference. When the data changes dynamically (such as different image resolutions,
sequence lengths, or feature distributions), these fixed assumptions may break down. As a result,
the compressed model might struggle to generalize across these different input types, leading to
decreased performance or accuracy. Therefore, it is necessary to develop adaptive compression
strategies such as dynamic pruning. These methods are designed to modify the model based on
the input’s characteristics, allowing it to handle dynamic data effectively [47, 48].
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2.4. Evolution of Model Compression Methods

The field of model compression has evolved significantly over the years, driven by the need to
optimize large deep learning models for practical deployment. From early techniques such as
pruning and quantization to more recent innovations like low-rank factorization and parameter
sharing, the landscape has continuously adapted to meet the growing demands of model effi-
ciency and performance. This section provides an overview of the key stages in the development
of model compression methods, highlighting the major milestones that have shaped the field.
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Transformers [51], LORS [52], TAPS [53], PS [54], etc.

Low-rank Factorization
OATS [55], Double Sparse [56], Dobi-SVD [57],
GaRare [58], etc.

KD

Relation-based KD Region-aware [59], Dual Relation [60], etc.

Feature-based KD
SLMREC [61], Proteus [62], OFA-KD [63], CKA-
based [64], etc.
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Iterative Pruning Pruner-Zero [85], AdaSAP [86], LLM Surgeon
[87], DS⊘T [88], NeurRev [89], etc.

Figure 3: Taxonomy of Model Compression methods.

• Early Foundations: Pruning and Quantization. The initial drive for model compression
stemmed from the practical limitations of deploying early deep learning models, which were
often too large for real-world applications. Pruning emerged as a fundamental technique, fo-
cusing on removing less important connections and neurons [90]. This process identifies and
eliminates redundant parameters, streamlining the network architecture and improving inference
speed. Quantization was introduced to decrease the precision of model parameters, (e.g., from
floating-point to lower-bit integers). This significantly reduces memory requirements and can ac-
celerate computation, as integer operations are faster than floating-point operations. These early
techniques established a crucial foundation for subsequent model compression research, tackling
the challenges of deploying deep learning models on resource-constrained devices.
• The Rise of Knowledge Distillation. As deep learning models evolved, achieving greater
accuracy and depth with architectures such as AlexNet [4], VGGNet [20], ResNet [11] and
DenseNet [21], the discrepancy between model size and deployment capabilities grew even
wider. Knowledge distillation became a vital technique to address this, enabling the transfer of
knowledge from a large, high-capacity teacher model to a smaller, more efficient student model
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[90]. The student model learns to mimic the teacher’s behavior, often surpassing its own capacity
by learning from the teacher’s soft outputs or intermediate representations. This method facili-
tates the deployment of accurate models in resource-limited environments, preserving much of
the teacher’s performance while significantly reducing computational demands.
• Compression for Large-Scale Models. The advent of large-scale models, such as BERT and
the GPT series, marked a new era in deep learning and introduced unprecedented challenges
for model compression. These models, with their massive number of parameters, require inno-
vative compression strategies to make them practical for deployment. Low-rank factorization
techniques gained prominence, decomposing weight matrices into lower-rank approximations to
reduce parameter redundancy and computational complexity. This method exploits the inherent
redundancy in weight matrices, representing them with fewer parameters. Additionally, param-
eter sharing strategies were explored to minimize the number of parameters by sharing them
across different parts of the model, further improving efficiency.

3. Compression Techniques

In recent years, researchers have proposed a variety of model compression methods, including
pruning, quantization, low-rank factorization, parameter sharing, and knowledge distillation, as
illustrated in Fig. 3, and Fig. 4 illustrates the fundamentals of these methods. Each of these
methods has its own advantages and disadvantages, and is applicable to different scenarios. This
part will systematically introduce several typical model compression methods and comparatively
analyze their performance, efficiency, and applicable scenarios.

3.1. Pruning

Pruning is an important technique in model compression and its core idea is to remove unim-
portant weights or neurons in the neural network, thus reducing the number of parameters and
computational complexity of the model. According to the strategy and implementation of prun-
ing, pruning methods can be categorized into static pruning and dynamic pruning as illustrated
in Fig. 5. Static pruning can be further categorized into iterative pruning and one-shot pruning.
We discuss each method in detail and lists the results of some studies in Tab. 1.

3.1.1. Iterative Pruning
Iterative pruning gradually prunes through multiple iterations. In each iteration, a portion of
the weights are first cut off according to certain criteria, and then the remaining weights are
fine-tuned. Specifically, iterative pruning can be divided into the following steps:

1. Start with a pre-trained large model as the initial baseline.
2. Prune a portion of the weights according to their importance.
3. Fine-tune the pruned model to recover performance degradation.
4. Repeat the above steps until the desired sparsity is achieved.
A significant advantage of iterative pruning is its low impact on model performance. Through

progressive pruning and fine-tuning, the method is able to reduce a large number of parameters
while maintaining high performance, as the model is not drastically changed at each iteration. In
addition, iterative pruning allows flexibility in adjusting the pruning ratio and fine-tuning strategy
for each iteration to accommodate different model and task requirements.

Some studies focus on minimizing performance loss when removing weights [86, 91]. Their
goal is to smoothly decay weights to zero prior to deletion, so that there is less impact on the

DataIntelligence 7



Lightweighting Large Models: A Review of Model Compression Techniques

Pruning Unstructured Structured

Fine-grained

Sparsity(0-D)

Layer-level

Sparsity(1-D)

Channel-level

Sparsity(2-D)
Filter-level

Sparsity(3-D)

Quantization Pre-trained model

Attach observers

Pre-trained model

Fuse modules

Training/Finetuning

Knowledge Distillation

Low-rank Factorization

Parameter Sharing

Calibrate

Quantized model

Unlabeled 

data

PTQ

Insert S&O

Training data

Quantization

QAT model

QAT

Data

Layer 1 Layer N…

Layer 1 Layer N…

Distillation Loss

Logits

Logits

Linear LinearLinear
kWqW

vW

Self Attention

Feed-Foward

Pre-trained     

Weights vW

0B =

2(0, )A N =

Tower A

Output A

Tower B

Output B

Tower A

Output A

Tower B

Output B

Hard P-S Soft P-S

Student

Teacher 

Figure 4: Overview of representative model compression techniques. The diagram illustrates five commonly used meth-
ods. Pruning removes redundant weights or neurons; quantization reduces numerical precision of weights and activations;
knowledge distillation transfers knowledge from a large teacher model to a smaller student model; low-rank decomposi-
tion factorizes large weight matrices into smaller ones; and parameter sharing enables reuse of weights across different
parts of the model. These techniques aim to reduce model size and computational cost while preserving accuracy.

model performance during pruning. For example, Anna et al. [86] propose a way to introduce
adaptive weight perturbations during training. By adjusting the size of the perturbations accord-
ing to the importance scores of neurons, the unimportant neurons will go to a flatter loss region,
resulting in a smaller impact on the model performance during pruning.

Other studies focus on the importance of weights. For example, Pruner-Zero [85] formalizes
the discovery process of pruning metrics as a symbolic regression problem and employs genetic
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Figure 5: Illustration of pruning. Redundant weights or neurons are removed from the original model to reduce its size
and computation.

programming to search for the optimal symbolic pruning metrics. Tycho et al. [87] propose an
extended Kronecker decomposition curvature approximation method called The LLM Surgeon,
which takes into account the correlation between weights, thus improving the performance of the
compressed model.

Although iterative pruning performs well in reducing the number of parameters and main-
taining performance, it has some limitations. In traditional iterative pruning, once each iteration
is completed, the structure of the network is fixed and the pruned weights cannot be recovered
[92, 93]. In addition, the model needs to be fine-tuned at each iteration, which increases the train-
ing cost [88, 83]. To overcome these limitations, researchers have proposed various improvement
methods, including mask-based pruning, weight averaging, and dynamic sparse training.
•Mask-based pruning uses a mask to mark the weights that need to be kept or cut. The mask is
a binary matrix of the same dimension as the weight matrix, with a value of 1 indicating that the
weight is retained and a value of 0 indicating that the weight is clipped. The idea of this method
is to transform the pruning operation of the weights into the optimization of the mask matrix. The
advantage is that the weights can be manipulated without modifying the structure. In addition,
mask pruning can dynamically adjust the sparsity of the network by updating the mask, which
allows the network to be flexible according to the task requirements [94, 95, 96, 97, 92, 93].
• Weight averaging optimizes a model by calculating the average of multiple model weights.
This method reduces overfitting and improves the generalizability of the model. The averaging
process can naturally remove some unimportant weights and optimize the remaining weights,
thus eliminating the cost of fine-tuning. Despite its advantages, weight averaging can introduce
challenges in maintaining the desired sparsity levels, as the average process may cause the zero
weights to become non-zero, necessitating innovative algorithmic solutions to effectively man-
age the trade-off between model efficiency and performance [98, 99].
• Dynamic sparse training aims to find the best sparse model by dynamically adjusting the
connections between neurons. Dynamic sparse training begins with a sparse model (which can
be achieved in any way) and then iteratively adds and subtracts weights to keep the sparsity con-
stant during training [100, 101]. This means that previously pruned weights can be recovered in
subsequent training, thus better adapting to the learning needs of the network [102, 88, 89, 103].
However, compared with traditional training, dynamic sparse training requires additional algo-
rithms to manage the addition and deletion of weights, which is more complicated to implement.

Future research for iterative pruning could include hardware-aware optimization and efficient
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pruning of large-scale models. For example, explore how to take into account the parallelism of
the hardware in the pruning process to generate sparse models that are more compatible with
the hardware requirements. In addition, we can also explore how to reduce the computational
resources required for pruning, meeting the needs of emerging large-scale models such as LLMs.

Table 1: Pruning Results on LLMs. This table presents pruning results for various pruning methods on different LLaMA
models. The compression ratios and corresponding perplexities on the Wikitext-2 dataset [104] are shown. Perplexity
is used as the evaluation metric, measuring how well the model predicts the next token. Lower values indicate better
performance.

Model Method Compression Ratio Perplexity

LLaMA-7B

Pruner-Zero [85] 0.5 6.95

DS⊘T [88]

0.1 5.68
0.2 5.73
0.4 6.28
0.5 7.12
0.6 10.22

ECoFLaP [80] 0.6 9.83

OWL [105]

0.1 5.70
0.2 5.80
0.4 6.39
0.6 9.35

LLaMA-2-7B

DSF [56] 0.5 6.12

PP [78] 0.2 8.10
0.4 16.80

SliceGPT [106] 0.2 6.86
0.3 8.64

DS⊘T

0.1 5.48
0.2 5.49
0.3 5.65
0.4 5.85

LLaMA-2-13B

DSF 0.5 4.87

PP 0.2 6.70
0.4 11.30

SliceGPT 0.2 6.04
0.3 7.44

LLM Surgeon [87]

0.1 4.70
0.2 5.29
0.3 6.21
0.4 7.25

LLaMA-3-8B
OATS [55]

0.3 9.59
0.4 9.24
0.5 10.87

PP 0.2 9.30
0.4 14.90

10 DataIntelligence



Lightweighting Large Models: A Review of Model Compression Techniques

3.1.2. One-shot Pruning
The core idea of one-shot pruning is to remove a large number of unimportant weights at one time
after model training is complete, instead of iterative training. The pruning criteria are usually
based on the importance score of the weights, such as the size of the weights, the gradient, or the
impact on the model output. The main advantage of this method is its efficiency. Since only one
training process needs to be performed, the training time and computational cost are significantly
reduced. In addition, one-shot pruning methods are usually simple, easy to implement, and
suitable for resource-limited environments.

However, one-shot pruning also has some obvious limitations. As a large number of weights
are dropped at once, the performance of the model may be significantly degraded, especially
in the case of high sparsity. Moreover, one-shot pruning usually requires fine-tuning to recover
the performance, and the fine-tuning process itself requires some computational resources. To
avoid intolerable performance degradation after pruning, accurately determining the importance
of parameters and efficiently allocating the pruning ratio of each module becomes a key issue.
For different granularity of pruning, different criteria are usually used to judge the importance.

Unstructured pruning focuses on certain weights. This method requires computing an im-
portance score for each weight. Common criteria are magnitude and gradient. Magnitude-based
pruning reduces the number of parameters in a model by removing weights with smaller absolute
values. The underlying assumption is that smaller weights contribute less to the model output
and can therefore be safely removed [107]. Gradient-based pruning determines the importance
of weights by analyzing their gradient. Weights with larger gradients typically have a greater
impact on the loss function and are therefore considered more important [80, 81, 82].

Structured pruning aims to prune certain neurons. This method can either calculate the
importance score for each neuron [83, 108, 109], or calculate the sum of the importance scores
of weights connected to each neuron [81]. For the neuron importance score, common criteria
are the output loss and eigenvalue size. Pruning based on neuron output determines the impor-
tance of a neuron by analyzing its response error to an input value [110, 96]. Pruning based on
the size of eigenvalues, on the other hand, determines the importance of a neuron by analyz-
ing the eigenvalues of its weight matrix. Neurons with larger eigenvalues typically contribute
more to the expressiveness of the model and are therefore considered more important [106, 111].
A significant advantage of structured pruning is that it enables speedups at the hardware level.
Since it removes the whole set of weights, the pruned model is more efficient in both storage and
computation. In contrast, unstructured pruning, although it can further reduce the number of pa-
rameters, has limited actual performance improvement due to the fact that the weight distribution
after pruning is sparse and hardware acceleration is more difficult [112, 113, 114].

Layer pruning directly cuts out certain layers, such as the attention layer or the MLP layer.
This method requires calculating the importance of a certain layer. Common criteria are the
output characteristics of each layer or the output similarity between layers. The output character-
istics of each layer can be obtained from the output of this layer [84], or obtained by comparing
the loss of model performance after removing a certain layer [115]. A layer is considered unim-
portant if it has little effect on the output. In terms of output similarity, experiments demonstrate
that layers deemed less critical often appear consecutively. This pattern gives rise to the idea of
removing multiple layers at one time. If two layers have similar outputs, the layers between them
can often be considered redundant [116, 117].

Future research directions for one-shot pruning could include more accurate importance as-
sessment and pruning without fine-tuning. For example, combine explanatory techniques with
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deep learning models to explore how to identify redundant weights more accurately before prun-
ing. In addition, pruning without fine-tuning can be explored to pursue higher pruning efficiency.

3.1.3. Dynamic Pruning
The dynamic pruning decides which weights or neurons are activated during model inference,
rather than pruning the model to a fixed structure. This method allows the inference process
to be dynamically adapted according to the characteristics of the input data, thereby improving
the inference efficiency while maintaining the model performance. Compared with static prun-
ing, dynamic pruning can significantly improve the representation ability of the network, thus
achieving better performance. Additionally, since all weights are retained and part of them are
temporarily skipped, it avoids the permanent structural change [118, 119]. The core of dynamic
pruning lies in input adaptation and real-time adjustment [79]. The goal is to select a mask M(x)
for the input such that the pruned weight matrix W ′ = W ⊙ M(x) can provide best performance.
The common process is divided into three phases.
1. Training Phase: The model learns the pruning strategy. For example, a lightweight selection

gating network is introduced to generate a mask matrix under current input.
2. Feedback Mechanism: The pruning strategy is co-trained with the model parameters to opti-

mize the decision-making ability of the gating through back-propagation.
3. Pruning Decision: During inference, the gating module dynamically generates sparse masks

based on the input features and retains only the high response weights for computation.
However, not all methods use the gating network. Recently, Qi et al. [78] propose a dynamic

structured pruning framework called Probe Pruning (PP). Instead of generating masks by gating
during inference, PP optimizes the model performance by selecting key data based on the residual
importance in each layer of the model, running partial layers to evaluate their impact on the
output, and dynamically calculating the importance scores to guide the pruning.

Future research directions for dynamic pruning could include efficiency improvements. For
example, it can be investigated how to further optimize the real-time performance of dynamic
pruning, especially in high-throughput scenarios, by reducing the latency of pruning decisions.
In addition, more different dynamic pruning schemes can be explored.

3.2. Quantization

Quantization is a key technique in model compression, which reduces the storage requirements
and computational complexity by compressing the weights and activation values into low-bit
precision. Quantization methods can be classified into two categories based on the timing of the
quantization: Quantization-Aware Training (QAT) and Post-Training Quantization (PTQ). We
summarize the performance of various quantization methods and list the results in Tab. 2

3.2.1. Quantization-Aware Training
QAT is an method that introduces quantization during the training phase of a model, with the
aim of enabling the model to adapt to the changes brought about by quantization. Specifically,
during training, weights and activation values are quantized to low-bit representations (e.g., 8-bit
integers) during forward propagation and restored to floating-point numbers for gradient compu-
tation during backpropagation. This mechanism allows the model to gradually adapt to quanti-
zation errors and learn to maintain performance under quantization constraints.

A significant advantage of QAT is the ability to significantly reduce accuracy loss. Since the
model has learned how to work under quantization constraints during the training process, there
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Table 2: Quantization Results on LLMs. This table summarizes the performance of various quantization methods on
different LLaMA models. For each method, the precision configuration (Weight-Activation) and the corresponding
perplexity on the Wikitext-2 dataset are presented.

Model Method Precision(W-A) Perplexity

LLaMA-2-7B

Scaling FP8 [75] 8-8 5.55

SpinQuant [120] 4-8 5.70
4-4 5.90

LeanQuant [121] 4-16 5.73
2-16 25.69

CBQ [72] 4-16 5.52
4-8 5.72

OSTQuant [122] 4-16 5.64
4-4 5.60

ARB-LLM [123] 1.08-16 16.44
SeedLM [124] 4-16 5.70

STBLLM [125] 0.80-16 13.06
0.70-16 18.74

LLaMA-2-13B

SpinQuant 4-8 5.10
4-4 5.20

LeanQuant 4-16 5.08
2-16 24.43

OSTQuant [122] 4-16 5.64
4-4 5.14

RRS [126] 16-4 5.22
4-4 5.36

ARB-LLM 1.08-16 11.85
SeedLM 4-16 5.10

STBLLM 0.80-16 11.67
0.70-16 13.26

LLaMA-3-8B

SpinQuant 4-8 6.50
4-4 7.30

ARB-LLM 1.06-16 27.42

OSTQuant [122] 4-16 6.53
4-4 7.24

RRS 16-4 7.55
4-4 8.11

SeedLM 4-16 7.00

is less accuracy loss in the quantized model. In addition, QAT allows flexibility in adjusting the
quantization strategy during training to optimize the model performance. For example, the accu-
racy and computational complexity of the model can be balanced by adjusting the quantization
parameters (e.g., the number of quantization bits and the quantization range) [74, 75].

Although QAT performs well in reducing the loss of accuracy, it has some limitations. First,
the complexity of the training process increases significantly because quantization and inverse
quantization operations need to be performed between each forward propagation and back prop-
agation, substantially extending the training time. In addition, traditional QAT methods require
a large amount of training data and computational resources, which may be difficult to achieve
in some cases (e.g., data privacy or insufficient computational resources) [76, 77, 75].

DataIntelligence 13



Lightweighting Large Models: A Review of Model Compression Techniques

Future research directions include improving outlier handling methods, designing data-free
quantization methods, and exploring higher-bit quantization methods. For example, researchers
could explore how to handle outliers during quantization to reduce quantization errors. In addi-
tion, designing data-free quantization methods to address data privacy issues is also an important
research direction. Finally, it is possible to investigate how to quantize the model to higher bits,
such as binarization, without causing a significant degradation of the model performance.

3.2.2. Post-Training Quantization
PTQ is a method that quantizes the weights and activation values of a pre-trained model to lower-
bit representations directly after the model training is completed. This method saves time and
computational resources by quantizing the model directly without modifying the training process.
It centers on determining the quantization range, calculating quantization parameters (e.g., scales
and zeros), and applying quantization operations. A significant advantage of PTQ is that it
is simple to implement and consumes less computational resources [69, 127, 128, 129, 130].
However, PTQ may lead to a large loss of accuracy as the model is not adapted to the quantization
operation during the training phase. In addition, in large-scale LLMs, activation outliers lead
to an increase in the quantization range, causing most activations to be mapped into the same
quantization bucket, resulting in poorer quantization [75, 71, 70, 73].

To overcome these limitations, researchers have proposed a series of improvements. For ex-
ample, Tim et al. [69] reduce the impact of anomaly weights on the overall quantization error
by identifying the anomaly weights in the model and storing them with higher precision, while
other weights are compressed to 3-4 bits. Jing et al. [70] reduce the quantization error through an
adaptive channel reorganization technique and an efficient gradient basis error correction strat-
egy, which reduces the magnitude of outliers and makes the activation values easier to quantize.
Jung et al. [71] group the weights in the direction of the input channels, so that the effect of out-
liers is limited to a single group, effectively isolating the outliers. Xin et al. [72] handle weight
outliers by quantizing them across blocks and optimizing multiple blocks at once using a sliding
window method that ensures connectivity between blocks. There are also methods that reduce
the impact of outliers by transforming the activation values so that the outliers are dispersed
among other values [120, 131].

Moreover, existing quantization methods mainly rely on reducing memory movement rather
than actually reducing computation because the inverse quantization process still consumes a lot
of resources. To avoid the inverse quantization process, Gunho et al. [132] use lookup-table
(LUT) to calculate the multiplication of the quantized matrix, thus reducing the computational
cost. In large language models, the distribution of weights may show complex patterns. Uni-
formly distributed quantization grids can lead to excessive quantization errors for some weights
when dealing with such non-uniform distributions, thus affecting the overall quality of the model.
To solve this, Tianyi et al. [121] propose a new quantization grid learning method LEANQUANT
based on the iterative loss error quantization framework, which learns loss-error-aware grids,
instead of using non-adaptive min-max affine grids.

Future research directions include improved outlier handling methods, hardware-aware quan-
tization and multi-precision quantization. The handling of outliers is an important research direc-
tion in both PTQ and QAT. In addition, the quantized model needs to run on specific hardware, so
hardware-aware quantization is an important research direction. Finally, multi-precision quan-
tization allows different layers or parts of the model to use different quantization accuracies in
order to strike a balance between accuracy and efficiency.

14 DataIntelligence



Lightweighting Large Models: A Review of Model Compression Techniques

3.3. Knowledge Distillation

Knowledge distillation(KD) is a method of transferring knowledge learned from a “large model”
to a “small model”. As shown in Fig. 6, the method aims to train a student model to mimic the
behavior of the teacher model, so that the student model can have a smaller parameter size while
maintaining higher performance. The core idea of KD is to use the outputs or intermediate fea-
tures of the teacher’s model to guide the learning of the student model to reduce the complexity
of the model while maintaining high performance [133]. According to the type of KD, the KD
can be categorized into response-based KD, feature-based KD, and relation-based KD.

Teacher Model

Student Model

Data Loss

Knowledge Transfer

Feed-forward Data Model Outputs

Figure 6: Illustration of KD. A smaller student model is trained to mimic the outputs or intermediate representations of
a larger, pre-trained teacher model, thus achieving comparable accuracy with fewer parameters and computations.

3.3.1. Response-based KD
Response-based KD is one of the earliest proposed and widely used methods. Its core idea is
to let the student model learn the output of the teacher model, which is usually the probability
distribution of the categories. The teacher model generates a soft label through a softmax layer
that contains information about the relative relationships between categories. The student model
is trained by imitating these soft labels, thus learning the generalizability of the teacher model.

Response-based KD is an important branch in the field of KD and has made significant
progress in several directions in recent years. The advantage of this method is that it is simple and
easy to implement and does not require complex feature extraction and comparison mechanisms.
However, since it ignores the feature representation inside the model, the student model may not
be able to learn the deeper features of the teacher model. Jin et al. propose a multi-level Logit dis-
tillation method [134]. Through this framework, the prediction alignment is conducted not only
at the instance level, but also at the batch and class level, through which the student model learns
the instance prediction, input correlation, and category correlation simultaneously. LLaVA-MoD
[65] balances the computational efficiency and performance by integrating the sparse Mixture of
Experts (MoE) architecture. The framework significantly improves the performance of the stu-
dent model by gradually transferring the knowledge from the teacher model to the student model
through two phases: imitation distillation and preference distillation.
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In traditional KD methods, the teacher and the student models share a global temperature
parameter, which limits the performance of the student model. Sun et al. [67] propose a logit
normalization method, which maps the logit to a bounded range through Z-score preprocessing,
allowing the student model to have arbitrary range and variance while maintaining the logit
relationship of the teacher model.

In some cases, the raw data may not be available due to copyright and privacy issues. To
address this issue, researchers have proposed data-free KD methods [68]. For example, the SKD
method [66] generates high-quality training data by interleaving sampling between teacher and
student models and aligning them with the students’ reasoning time distributions.

Response-based KD methods have made significant progress in both theory and application.
These methods not only improve the performance of student models, but also address problems
in traditional methods. In the future, response-based KD will be developed in the direction
of being more efficient and more widely applied. Possible research directions include further
optimization of distillation algorithms and data-free distillation techniques. Researchers can
improve existing distillation methods or combine techniques such as multi-teacher distillation
and adversarial distillation to enhance the performance and generalization of student models. In
addition, data-free distillation will become a research hotspot to meet the needs of data privacy.

3.3.2. Feature-based KD
Feature-based KD is able to better preserve the internal structural information of the model by
allowing the student model to learn the feature representation of the intermediate layer of the
teacher model. This method is usually implemented through feature matching or feature align-
ment, where the middle layer features of the student model are trained to match the correspond-
ing features of the teacher model [135, 136]. The advantage of this method is that it can help
the student model learn richer feature representations, thus improving its generalization ability.
However, its limitations are that it requires the design of complex feature extraction and compar-
ison mechanisms and is less compatible with different model architectures.

To overcome these limitations, researchers have proposed improved methods for feature dis-
tillation. For example, Wujiang et al. [61] propose a simple and effective KD method SLMREC
that guides the student model to learn the intermediate level feature representation of the teacher
model through multi-supervised signals, thus achieving comparable performance to large lan-
guage models while using only 13% of the parameters. Sayantan et al. [64] propose a hidden
state matching technique based on centered kernel alignment that allows hidden states of differ-
ent dimensions to be matched, thus achieving higher compression ratios. In addition, Yitian et al.
[62] propose a method called Proteus. This method significantly improves knowledge transfer
by removing the design that leads to dataset bias in traditional KD setups and introducing multi-
level training objectives (e.g., token level, patch level, and feature level). Hao et al. [63] propose
a simple but effective cross-architecture KD framework OFA-KD by projecting intermediate fea-
tures to an aligned latent space and discarding architecture-specific information, thus realizing
KD between different architectural models.

As an improved method to KD, multi-teacher distillation is an advanced KD method. It
significantly improves the generalizability and robustness of the student models by integrat-
ing knowledge from multiple teacher models. Compared with single-teacher distillation, multi-
teacher distillation can provide richer and more comprehensive knowledge to the student model
from multiple perspectives, thus enabling it to show greater adaptability in the face of complex
tasks and diverse data. However, this method requires training multiple teacher networks, which
is computationally expensive and resource intensive. To solve this, Hossain et al. [137] propose

16 DataIntelligence



Lightweighting Large Models: A Review of Model Compression Techniques

the TeKAP method, which generates multiple synthetic teacher knowledge by perturbing the
knowledge of a single pre-trained teacher model, thus providing diverse learning perspectives
for the student model without increasing computational resources.

These improved methods not only improve the performance and generalization ability of the
student models, but also reduce the demand for computational resources and enhance the flexibil-
ity and adaptability of KD methods. Possible future research directions focus on feature selection
and alignment optimization. Researchers can explore smarter feature selection mechanisms to
dynamically identify the most valuable features for the task in the teacher’s model and avoid the
transfer of redundant information. By improving the feature alignment algorithm, the representa-
tion of the student model in the feature space can be enhanced, while reducing the computational
complexity and realizing more efficient feature distillation.

3.3.3. Relation-based KD
Relation-based KD focuses on the relation among samples rather than on an individual sample.
The assumption is that the essence of knowledge lies in the relation among samples, not just in
the representation of independent features. Student models capture the global structure of the
data by learning these relation and thus perform better on complex data distributions [138].

However, it increases computational complexity and requires a suitable similarity metric. To
overcome these limitations, researchers have proposed improved methods. A new dual relational
distillation method has been proposed in the target detection task [60]. The method solves the
problems of imbalance between foreground and background features and under-representation of
small target features by pixel-level relational distillation and instance-level relational distillation.
The method also utilizes graph convolution to capture global pixel relations so that the student
model can learn the relation between foreground and background.

In the semantic segmentation task, Region-aware Mutual Relational KD [59] decouples the
foreground and background regions by introducing a region-aware module and performs feature
distillation and response distillation on intermediate features and the output graph. The method
utilizes region tokens to capture the interrelationships between the teacher model and the student
model for more effective knowledge transfer. Other researchers have proposed Cross-Image
Relational KD [139], where the global structural information in the teacher network is transferred
to the student model through global pixel relational distillation.

In the vision task, token-level relationship graph-based KD [140] captures finer-grained se-
mantic information by constructing a token relationship graph. The method divides the feature
graph into fixed-size patch tokens and constructs a relational graph to achieve KD from the
teacher model to the student model through local retention loss and global topology loss.

Relation-based KD is rapidly evolving and it shows great potential in several domains. How-
ever, the current research of relation-based KD are relatively limited. Future research will further
expand its application scope and enhance its performance to provide a more solid foundation
for the wider application of KD technology. Future research directions include designing more
efficient similarity metrics. In addition, exploring how to better utilize the global structural in-
formation of teacher models in the distillation process is also an important research direction.

3.4. Low-rank Factorization
Low-rank Factorization is a method of reducing the number of model parameters by decompos-
ing the weight matrix into the product of two or more low-rank matrices. This method utilizes the
low-rank property of matrices, as the redundant information in the weight matrix can be effec-
tively represented by a low-rank approximation. Low-rank Factorization not only significantly
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reduces the storage requirements of the model, but also reduces the computational complexity,
thus improving the inference efficiency of the model [58].

Given a weight matrix W ∈ Rm×n, the goal of low-rank factorization is to find two low-rank
matrices U ∈ Rm×k and V ∈ Rk×n such that W ≈ U ×V . Here k is the rank, which is much smaller
than m and n, thus significantly reducing the number of parameters.

For example, Wang et al. [57] propose a microscopic truncation mechanism that combines
gradient-robust backpropagation to enable the model to adaptively find the optimal truncation
location. In addition, the method utilizes the Eckart-Young-Mirsky theorem to derive a theoreti-
cally optimal weight updating formula, and sequentially extracts and updates the features of the
weight matrix via incremental principal component analysis. Lin et al. [141] propose a holis-
tic CNN compression framework by low rank decomposition compression of both convolution
and fully connected layers, and introduces a knowledge migration training scheme that recovers
cumulative accuracy loss and overcomes the gradient vanishing problem by aligning the outputs
and intermediate responses of the teacher network to the student network. Stephen et al. [55] pro-
pose a new compression method that decomposes the model weights into the sum of the sparse
and low-rank matrices. The second-order moment information of the input embedding is used
to better capture important features in the weight matrix. Vladimir et al. propose Double Sparse
Factorization [56], which further optimizes the sparsity of the neural network by decomposing
the weight matrix into the product of two sparse matrices.

For large-scale pre-trained models, traditional parameter fine-tuning consumes a large amount
of computational resources. Therefore, Low-Rank Adaptation (LoRA) [142] technique emerged.
LoRA uses a matrix decomposition technique that introduces low-rank matrices to approximate
the update of the weight matrices, thus realizing the rapid model tuning and adaptation with-
out a significant increase in the computational and storage costs. Recently, many studies have
proposed improvements to LoRA. Han et al. [143] propose a low-rank plus quantization matrix
decomposition method, which decomposes the pre-training matrix into high-precision low-rank
components and memory-efficient quantization components by an iterative algorithm. During
the fine-tuning process, only the low-rank components are updated while the quantized compo-
nents are kept fixed. NOLA [144], on the other hand, optimizes linear mixing coefficients by
re-parameterizing the low-rank matrices in LoRA as linear combinations of random bases, thus
decoupling the number of parameters from the rank and network architecture. Lialin et al. [145]
propose a method ReLoRA for high-rank training via low-rank updates. ReLoRA utilizes the
gradual accumulation of low-rank updates during the training process, realizing the training of
a high-rank network. MOS [146] further unleashes the parametric efficiency of LoRA by means
of a hybrid fragmentation method. This method works by decomposing the model into multi-
ple fragments and applying LoRA to each of them. QA-LoRA [147] and LOFTQ [148] focus
on further compressing the parameters by utilizing quantization. QA-LoRA further reduces the
model’s memory by taking quantization errors into account during the fine-tuning process. This
method not only reduces time and memory usage during the fine-tuning phase, but also naturally
integrates the model and auxiliary weights into a quantized model after fine-tuning, without the
need for an additional quantization step. LoftQ minimizes the difference between the quantized
model and the original high-precision model by alternately optimizing the quantization and the
low-rank approximation, thus providing a suitable low-rank initialization for LoRA fine-tuning.
The emergence of these methods has further advanced the development of LoRA techniques,
making them more efficient and flexible in model compression and fine-tuning.

Low-rank factorization techniques have great potential in the field of model compression and
can effectively reduce the number of model parameters while maintaining high performance. Fu-
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ture research directions include the development of more efficient algorithms factorize the weight
matrix. In addition, combining low-rank factorization with other model compression techniques
(e.g., pruning and quantization) to achieve higher compression ratio is also an area worth explor-
ing. Finally, the theoretical basis of low-rank factorization can be further investigated to guide
the design of more efficient compression algorithms.

3.5. Parameter Sharing

Parameter sharing is a technique to reduce storage requirements and computational complexity
by reducing the number of redundant parameters in a model. The core idea is to map network
parameters onto a small amount of data using methods such as structured matrices or clustering.

In Convolutional Neural Networks (CNNs), one of the most widely recognized applications
of parameter sharing is in the use of shared convolution kernels across the entire input image.
This reduces the total number of parameters compared to a fully connected layer, where each
input element is connected to each weight. As a result, convolutional layers achieve substantial
parameter reduction, enabling efficient computation without a significant loss of performance
[49]. For example, Jingcun et al. [50] introduce a method to decompose weight matrices across
different layers into linear combinations of shared basis vectors and unique coefficients, facili-
tating parameter sharing across layers. This allows the model to retain the flexibility of learning
diverse feature representations while reducing redundancy in parameter usage.

Additionally, Sangmin et al. [51] propose a cyclic reuse approach, where a set of unique
layers are reused across different parts of the model. This cyclic approach further reduces pa-
rameter usage and ensures that the learned features remain applicable across multiple stages of
the network. Similarly, Jialin et al. [52] introduce a hybrid approach where the model parameters
are divided into shared and private parameters. The shared parameters are learned collectively
across all modules, while the private parameters are unique to each module. This decomposition
helps balance the trade-off between parameter sharing and the ability to adapt to specific tasks.

Task Adaptive Parameter Sharing (TAPS) [53] is an emerging parameter sharing method that
efficiently adapts pre-trained models to new tasks by dynamically selecting a small subset of
task-specific network layers for adjustment. This method excels in multitask learning scenar-
ios, achieving performance close to full fine-tuning while introducing only a minimal number of
task-specific parameters. TAPS determines which layers to adjust through a joint optimization
problem and minimizes the number of task-specific parameters via sparsity constraints. Suitable
for various network architectures (such as ResNet and Vision Transformers), TAPS is simple and
efficient to implement, requiring only minor modifications to the training scheme. The emer-
gence of TAPS offers new ideas for the application of parameter sharing in multitask learning,
demonstrating its potential in reducing parameter redundancy and enhancing model adaptability.

In the field of Single Image Super-Resolution (SISR), significant progress has also been
made in the application of parameter sharing techniques. The Partial Filter-Sharing (PS) method
proposed by Park et al. [54] effectively addresses the limitations of traditional parameter sharing
methods in terms of representational capability by introducing a partial filter sharing mechanism.
The core of the PS method lies in dividing the filter into multiple partial filters and dynamically
reconstructing the complete filter through a coefficient matrix. This method not only reduces the
number of parameters but also significantly enhances the network’s representational capacity by
allowing each layer or task to use different filter combinations.

Currently, there are relatively few studies related to parameter sharing, suggesting more re-
search in this method. Future research can explore more efficient algorithms to achieve better
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performance. In addition, research can be conducted on how to dynamically adjust the parame-
ter sharing based on input data and tasks. Finally, combining parameter sharing with other model
compression techniques to achieve higher compression ratio is also an area worth exploring.

4. Comparison and Analysis

Pruning, quantization, knowledge distillation, low-rank factorization, and parameter sharing are
the five main technical approaches introduced before. While methods like iterative pruning
and QAT can significantly reduce model size and computational requirements, they tend to be
more computationally intensive and may require additional training. In contrast, techniques like
response-based KD and one-shot pruning, which aim to reduces the size of the model quickly,
often lead to high loss of accuracy. Therefore, selecting the appropriate method often involves
balancing the degree of compression, the desired performance, and the training efficiency. In
the following, we will comprehensively compare the characteristics of these methods in terms of
performance, efficiency, and applicability scenarios, and analyze the applicability of each method
based on model architecture, task requirements, and resource constraints, as shown in Tab. 3.

Table 3: Comparison of different model compression methods across five dimensions. “Efficiency” refers to how quickly
compression can be applied; “Rate” indicates the achievable reduction in model size; “Performance” reflects how well
performance is preserved after compression; “Difficulty” refers to the practical complexity of implementing the method;
and “Structural Change” indicates whether the method alters the original model structure.

Method Efficiency Rate Performance Difficulty Structural Change

Iterative Pruning Low High High Hard !

One-shot Pruning High Medium Low Medium !

Dynamic Pruning Medium Medium High Hard %

QAT Low High High Hard %

PTQ Medium High Medium Medium %

Response-based KD High Medium Medium Easy %

Feature-based KD Medium Medium High Medium %

Relation-based KD Medium Medium High Hard %

Low-rank Fact Medium High Medium Medium !

Parameter Sharing Medium High Medium Easy !

Pruning reduces the number of parameters in a model by removing unimportant weights
or neurons from the neural network. Traditional iterative pruning has less impact on model
performance, but is more expensive to train. One-shot pruning reduces the number of parameters
quickly, but can lead to significant degradation in model performance. Dynamic pruning can
dynamically adjust the model structure according to the input data, but complex algorithms need
to be designed in order not to introduce additional inference latency. For resource-constrained
environments, one-shot pruning is an effective method because it does not require additional
training. For resource-sufficient environments, iterative pruning maintains better performance.

Quantization reduces storage requirements and computational complexity by converting
weights and activation to low-bit representations. QAT perceives a small loss of accuracy but
high training complexity. PTQ is simple and fast to implement but has a high loss of accuracy.
Quantization methods are suitable for scenarios where storage requirements and computational
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complexity need to be reduced, especially on hardware platforms where low-precision operations
can often significantly speed up the inference process. For scenarios that require fast inference,
such as real-time image processing or speech recognition, quantization is an ideal choice because
it can significantly increase inference speed while maintaining high accuracy. However, the bit-
width reduction of the network parameters loses a portion of the amount of information, which
can cause the inference accuracy to degrade. While it is possible to restore some of the accuracy
through fine-tuning, it also brings about an increase in time cost. In addition, the quantized model
may require specific hardware support to take full advantage of the low-precision operations.

Knowledge distillation allows student models to have smaller parameter sizes while main-
taining high performance by transferring knowledge learned from “big models” to “small mod-
els”. Response-based KD is simple and easy to implement, but is prone to overfitting. Feature-
based KD can better preserve the internal structure information of the model, but is less compat-
ible with different model architectures. KD is an effective solution for scenarios that require the
deployment of high-performance models in resource-constrained environments. However, KD
requires training two models (teacher model and student model). Without a pre-trained teacher
model, training the student model will require a large-scale dataset and a long time.

Low-rank factorization reduces the number of parameters by decomposing the weight ma-
trix into the product of multiple low-rank matrices. This method has a solid mathematical foun-
dation and the factorization process is well documented. Low-rank factorization is suitable for
large networks and convolutional networks, and can effectively reduce the number of parameters
in the model. However, the low-rank factorization process may lose some information, resulting
in an error between the reconstructed matrix and the original matrix, which affects the perfor-
mance of the model and usually requires retraining to recover the performance. In addition, for
large-scale models, a large computational overhead is required to factorize the matrix.

Parameter sharing reduces the number of parameters by mapping network parameters via
methods such as structured matrices or clustering. Especially in the fully-connected layer, as the
parameter storage occupies a large part of the whole network model, parameter sharing can play a
better role in removing the redundancy. Meanwhile, due to its easy operation, parameter sharing
is also suitable to be used in combination with other methods to achieve better compression and
acceleration effects. However, parameter sharing may lead to optimization problems such as
gradient vanishing or gradient explosion, especially in deep networks.

5. Datasets and Evaluation Metrics

The evaluation criteria for model compression not only focus on the compression rate itself, but
also emphasize the performance of the compressed model in real tasks. Therefore, a reasonable
selection of datasets and evaluation metrics is crucial for validating the effectiveness of com-
pression algorithms. The evaluation benchmarks used for different task types vary, but some
task-independent universal compression metrics also exist. In this section, we will start from
two mainstream tasks, namely, image classification and NLP, introduce their commonly used
evaluation benchmarks, and summarize the widely used general evaluation metrics in model
compression at the end.

5.1. Image Classification

Image classification is one of the earliest and most widely used tasks in model compression, and
many methods were initially validated in image classification scenarios. In this task, evaluation
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metrics typically focus on classification accuracy (Top-1/Top-5 Accuracy), paired with model
size versus computational complexity variations. Commonly used datasets include:
• CIFAR-10 [149]:
− Number of images: 60,000 color images of 32×32 pixels divided into 10 categories.
− Data division: The dataset is divided into 50,000 training images and 10,000 test images.
− Categories: Include airplane, automobile, bird, cat, deer, dog, frog, horse, ship and truck.
• CIFAR-100 [149]:
− Number of images: 60,000 color images of 32×32 pixels divided into 100 categories.
− Data division: Again divided into 50,000 training images and 10,000 test images.
− Categories: The categories are more granular and difficult to distinguish between categories.
• ImageNet [150]:
− Number of images: Over 14 million labeled images, covering over 20,000 categories.
−Data division: 12 million training images, 150,000 validation images, and 150,000 test images.
− Category Distribution: The categories are rich and diverse, which are highly complex.

In addition, there are small datasets containing images of certain specific categories that
can be used to assess the generalizability of the model. Examples include MNIST [151], The
Comprehensive Cars (CompCars) dataset [152], FoodX-251 [153], and so on.

5.2. Natural Language Processing

With the development of large language modeling, NLP becomes another hot direction in com-
pression research. Different from image categorization, NLP involves multiple task types and
thus has richer evaluation dimensions. In addition to task accuracy metrics (e.g., accuracy, F1
value, BLEU score, etc.), the inference cost and generalization ability of the model should also
be paid attention to. Commonly used benchmark datasets and tasks include:
• Language Modeling: Using WikiText [104], OpenWebText [154], BooksCorpus [155], The
Pile [156] and other large-scale corpora for pre-training and perplexity evaluation.
• Text categorization and natural language inference (NLI): e.g. GLUE [157] (including sub-
tasks such as MNLI, QQP, QNLI, etc.), SuperGLUE [158](including BoolQ, RTE, WSC, etc.)
are important benchmarks for evaluating the compression effect of language understanding.
• Question Answering: SQuAD v2.0 [159], TriviaQA [160], Natural Questions [161] etc. are
widely used to evaluate the ability in information extraction and comprehension tasks.
• Common Sense and Multi-Step Reasoning: PIQA [162], SIQA [163], and OBQA [164] are
used to assess the model’s reasoning and real-world knowledge; MMLU [165, 166] provides
categorization and quiz questions in 57 domains, and is an important benchmark for the cur-
rent assessment of general cognitive ability after the compression of large models; ARC [167],
GSM8K [168], HellaSwag [169], etc. are also used in complex logic and math skills.
• Code Generation & Instruction Following: HumanEval [170], MBPP [171], InstructEval
[172], AlpacaEval [173], etc. are used to evaluate the compression model’s multi-round interac-
tion and instruction comprehension.

5.3. Generalized Metrics for Model Compression

Whether the model is applied to image classification, NLP or other tasks, the core goals of model
compression is to reduce resource consumption while preserving model performance as much as
possible. Therefore, despite task-related metrics, many studies have introduced task-independent
generic metrics to measure the efficiency, cost, and deployability of compression effects.
• Compression Rate Metrics
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− Number of Parameter: The total number of trainable weights and biases in the model. Param-
eter Compression Ratio (the ratio of the number of compressed model parameters to the number
of original model parameters) is commonly used to evaluate the degree of compression.
− FLOPs: Number of floating point operations. FLOPs Ratio (the ratio of FLOPs of the com-
pressed model to FLOPs of the original model) is also a common evaluation metric.
• Deployment Metrics
− Latency: The single-sample inference time on actual hardware. However, since latency varies
among different hardware devices, comparing latency needs to be in the same environment.
− Throughput: The number of samples that can be processed per unit of time. As with latency,
it also needs to be compared in the same environment.

6. Future Directions

As model compression techniques continue to mature, it has made significant progress in recent
years and has shown great potential in practical applications. Meanwhile, along with the develop-
ment of large models and multimodal systems, model compression also faces new opportunities.
In this section, we will discuss the prospective research directions.
• Automated compression. A promising direction in model compression is the development
of automated compression techniques. Automated compression aims to reduce the reliance on
manual tuning and expertise by using automated methods to determine the best compression
strategy for a given model. This can involve selecting the optimal compression techniques and
tuning their hyperparameters to maximize performance while minimizing computational costs.
Approaches such as Neural Architecture Search (NAS) and reinforcement learning are being ex-
plored to automate the compression process. As these techniques evolve, they have the potential
to significantly improve the scalability and efficiency of model compression.
•Multi-method fusion and co-optimization. Future compression research will pay more atten-
tion to the fusion and co-optimization of different compression methods. By combining different
compression techniques, the model can be co-optimized in different dimensions. For example,
the combination of pruning and quantization can reduce computational complexity while ensur-
ing model sparsity, while distillation can help maintain model performance. Research will focus
on how to design compression frameworks that can be adaptive, automatically selecting and fus-
ing different methods to cope with the requirements of specific tasks and hardware [174, 175].
• Hardware-aware compression techniques. With the diversification of hardware architec-
tures, especially the wide application of dedicated gas pedals (e.g., TPUs, GPUs, edge computing
devices, etc.), how to optimize the model compression in tandem with the hardware has become
an important direction. Future research will focus on designing hardware-aware compression
methods so that compression techniques can fully utilize the computational advantages of dif-
ferent hardware platforms. For example, by analyzing the parallel computing capabilities and
storage limitations of hardware, compression strategies are adjusted to achieve optimal compu-
tational efficiency and storage utilization on different platforms [176].
• Cross-domain adaptive model compression. Different domains (e.g., image classification,
NLP, etc.) have different needs for model compression, while most of the current researches fo-
cus on a single domain. Future research will explore cross-domain compression techniques that
enable the same compression framework to adaptively adjust to multiple tasks, which not only
helps to improve performance on different tasks, but also makes compression techniques more
universal and extends their adaptability in various tasks [177].
• End-to-end optimization and automated compression frameworks. Future research will
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further promote the development of end-to-end optimization methods, integrating all aspects of
model training, compression and deployment, making the compression process more automated
and efficient. With an automated model compression framework, the optimal compression strat-
egy can be automatically selected based on the needs of a specific task. The research will explore
how to design an intelligent system that automatically adjusts the strategies and parameters of
model compression based on the target platform and application scenarios.

7. Conclusion

Model compression technology, as an important bridge connecting large-scale modeling capa-
bilities and practical landing requirements, has gradually become a research hotspot. Through
various methods such as pruning, quantization, distillation, etc., researchers have successfully
reduced the model size and computational complexity without significant degradation of the per-
formance. Although model compression techniques have made progress in theory and practice,
optimization in specific application scenarios still faces many challenges. Future research needs
to make more efforts in improving the compression rate, maintaining the model performance,
and adapting to the hardware platform. Through cross-disciplinary research, the proposal of
innovative algorithms, and the deep combination of compression algorithms and hardware, the
model compression technology will continue to develop in the direction of being more efficient,
flexible, and generalizable, and will promote the widespread implementation of deep learning
technology in practical applications. With the continuous innovation and optimization of com-
pression technology, we have reason to believe that future AI models will be more efficient and
intelligent, and will be able to exert their great potential in a wider range of application scenarios.
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