月 Chinese Rare Earths

稀土 (Eu ,Dy ,Pr)配合物合成、表征及荧光性质

李淑开,颜 莉,赵吉寿*

(云南民族大学民族药资源化学国家民委-教育部重点实验室、云南 昆明 650031)

摘 要:用 2 ,5 - 噻吩二羧酸、2 , 2 - 联吡啶与稀土离子(RE = Eu ,Dy ,Pr) 合成了稀土三元配合物。配合物分别用元素分析、差热分析和红外光谱分析进行了表征,确定了配合物组成为 $RE_2L_3L_2^{1} \cdot 4H_2O(RE = Eu ,Dy ,Pr ,L=2$,5 - 噻吩二羧酸 $L^1=2$,2 - 联吡啶)。 荧光光谱研究表明,Eu 配合物具有良好的荧光性能,最佳激发波长为 394 nm 发射光谱为 Eu^3 + 的特征光谱,发光强度最高的是波长为 614nm 的 $^5D_0 \rightarrow ^7F_2$ 跃迁,峰形尖锐,半峰宽仅 11 nm 荧光光谱数据表明,结配合物具有良好的荧光性能。

关键词:稀土;配合物;荧光性质

中图分类号: 0614 文献标识码: A 文章编号: 1004-0277(2012) 06-0005-04

稀土光致发光配合物是一类具有独特性能的发 光材料 其荧光单色性好 ,发光强度高 ,尤其是稀土 离子与羧酸、吡啶环所形成的三元配合物可发出更 强的荧光[12],使稀土化合物成为高新技术发光材 料的主要研究对象。有机芳香羧酸及含有芳香环的 配体由于其对光能的吸收和转移好,因此是一类发 光性能较好的发光材料[3 4],在稀土芳香羧酸配合 物中 配体一般为芳香羧酸 是由于芳香环具有较大 的共轭刚性平面,以及通过羧基氧与稀土离子配位, 因而形成的稀土配合物具有较好的发光性及稳定 性[5]。以25-噻吩二羧酸为配体合成稀土发光配 合物已有文献报道^[6] 但以 2 , 2´- 联吡啶为第二配 体的稀土配合物少有报道。本文以2,5-噻吩二羧 酸作为第一配体 ,2 ,2′- 联吡啶为第二配体 ,合成 Eu ,Dy 和 Pr 稀土三元配合物 ,研究了其组成及 Eu3+配合物的荧光发光机理。

1 实验部分

1.1 试剂

稀土氧化物的纯度为 99.99% 2,2′- 联吡啶、2,5- 噻吩二羧酸及其他试剂均为分析纯。

1.2 仪器

Elementar vario EL 元素分析仪; STA 449F3 型 热重分析仪; WGH – 30/6 型双光束红外分光光度计; TU – 1800PC 紫外 – 可见分光光度计; F – 4500 型荧光分光光度计。

1.3 配合物的合成

3 mmol2 , 5 噻吩二羧酸溶于 40 mL 无水乙醇中 在加热搅拌下 ,滴加到 20 mL 含有 3 mmol 稀土氯化物的无水乙醇的三口烧瓶中 ,再加 20 mL 含有 2 mmol 2 2^{2} — 联吡啶无水乙醇溶液 ,用 1 mol • 1L^{-1} 氢氧化钠调至 1L^{-1} 约为 6 ,有沉淀产生 ,继续回馏 1L^{-1} 次却 过滤 洗涤 1L^{-1} 次却 过滤 洗涤 1L^{-1}

2 结果与讨论

2.1 配合物的元素分析

化合物中 C,H,N 元素分析由德国 Elementar vario EL 有机元素分析仪测定,稀土(RE)用 EDTA

基金项目: 国家自然科学基金项目资助(21001092); 民族药资源化学国家民委 - 教育部重点实验室项目资助(2007); 云南民族大学研究生创新项目资助(11HXJS10)

作者简介: 李淑开(1985-) ,女, 白族, 云南剑川人, 硕士研究生, 研究方向: 有机化合物合成及性质研究。

^{*} 收稿日期: 2012-02-14

^{*} 通讯联系人

法滴定,各化合物的测定值与计算值列于表 1。结 果表明,化合物的组成与推测的产物组成是一致的。 表 1 配合物的元素分析(括号内为计算值)

Table 1 Elemental analysis of the complexes (cacl. values)

化合物	状态及颜色	C/%	H/%	N/%	RE/%
$\operatorname{Eu_2L_3L_1^1} \bullet 4\operatorname{H_2O}$	白色粉末	46.06(46.12)	1.83(1.55)	4.67(4.69)	25.35(25.30)
$Dy_2L_3L_2^1 \cdot 4H_2O$	白色粉末	45.26(45.21)	1.80(1.86)	4.59(4.64)	26.65(26.56)
$Pr_2L_3L_2^1 \cdot 4H_2O$	淡绿色粉末	46. 93 (46. 82)	1.87(1.85)	4.76(4.71)	23.96(23.96)

2.2 热分解性质

以 10° • min $^{-1}$ 的升温速度 在 40° ~ 600° 范围内测定了配合物(以 $Eu_2L_3L_2^{1}$ • $4H_2O$ 为例)的 TG – DTG 曲线见图 1。该配合物热分解过程主要分为两步,每步分解最大失重率的温度分别为 121° 0、466 $^{\circ}$ 0。第一步分解 100° ~ 157° 2之间,失重的百分率为 8.61%(理论失重 8.24%),与其配合物含水分子的相符合;第二步分解温度以 434° 飞表明配合物开始分解是 434° 0。

2.3 红外光谱

化合物的红外光谱由国产 WGH - 30/6 型双光束红外分光光度计测定(KBr 压片) 其红外光谱特

征吸收见表2。

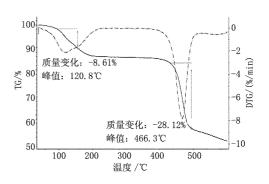


图 1 $Eu_2L_3L_2^1 \cdot 4H_2O$ 的 TG - DTG 图谱 Fig. 1 TG - DTG curves of $Eu_2L_3L_2^1 \cdot 4H_2O$

表 2 配体及配合物的主要红外光谱/cm⁻¹

Table 2 Major IR spectra data of ligand and coordination compounds

			•		0		-		
化合物	ν _{0 - H}	ν _{as (COO -)}	ν _{s (COO -)}	Δν	$\nu_{C=0}$	ν _{C-0}	$\nu_{ m RE-O}$	δ _{С-Н}	ν _{C - N}
L	3437	/	1	/	1667	1272	/	/	1
$\mathrm{Na_2}\mathrm{L}$	/	1571	1830	191	/	/	/	/	1
\mathbf{L}^1	/	/	/	/	/	/	/	757	1579
$Eu_2L_3L_2^1 \cdot 4H_2O$	3385	1538	1389	147	/	/	473	730	1640
$Dy_2L_3L_2^1 \cdot 4H_2O$	3412	1535	1392	143	/	/	474	730	1630
$Pr_2L_3L_2^1 \cdot 4H_2O$	3435	1540	1386	154	/	/	478	729	1644

由表 2 数据看出 ,三种配合物的红外光谱基本相似 表明它们具有相似的结构形式。在配体及配合物的红外光谱图有很大的差异。在形成的配合物中其(${
m COO}^-$)基团的 ${
m ν_{0-H}}(2500~{
m cm}^{-1}~{
m $\sim 3010~{
m cm}^{-1}$}$ 处的宽峰) , ${
m $\nu_{\rm C=0}$}(1650~{
m cm}^{-1})$ 和 ${
m $\nu_{\rm C=0}$}(1250~{
m cm}^{-1})$ 特征吸收峰均消失 ,产生了(${
m COO}^-$)基团的反对称伸缩振动 ${
m $\nu_{\rm as}$}$ 和 ${
m $\nu_{\rm s}$}$ 两个新峰 ,表明稀土离子与羧酸根的氧发生了配位作用 ${
m [77]}$ 。2 ,5 – 噻吩二羧酸的钠盐反对称伸缩振动 ${
m $\nu_{\rm as}$}({
m coo}^-)$ 出现在 ${
m 1571}~{
m cm}^{-1}$ 处,对称伸缩振动 ${
m $\nu_{\rm s}$}({
m coo}^-)$ 出现在 ${
m 1380}~{
m cm}^{-1}$ 处, ${
m $\sim \nu_{\rm s}$})$ = 191 ${
m cm}^{-1}$; 而各配合物的这 2 个吸收峰则分别出现在 ${
m 1538}~{
m cm}^{-1}$ ~ 1540 ${
m cm}^{-1}$ 及 ${
m 1386}~{
m cm}^{-1}$ ~ 1392

 ${\rm cm}^{-1}$ 处 其配合物 $\triangle \nu$ 均小于钠盐 $\triangle \nu$ 表明 2 , 5 - 噻吩二羧酸羧基与稀土离子以螯合双齿配位 ${}^{[8]}$ 。配合物在 $473~{\rm cm}^{-1}\sim 478{\rm cm}^{-1}$ 均有一较强的吸收峰 ,为 RE -0 的伸缩振动峰; 配合物在 $3420~{\rm cm}^{-1}$ 左右出现羟基的伸缩振动吸收峰 ,同时结合元素分析及热重分析 ,确定为水分子中羟基的振动吸收带 ,表明配合物中含有水分子。 2 , 2 ' — 联吡啶参与反应后 2 , 2 ' — 联吡啶的 C=N 伸缩振动峰由原来的 $1578~{\rm cm}^{-1}$ 均发生红移。同时苯环上的面外弯曲振动 δ_{C-H} 也都发生红移 表明 2 , 2 ' — 联吡啶中氮原子参与配位 ${}^{[9]}$ 。

2.4 配合物可能结构

根据实验结论推断,配合物可能结构式之一如图 2 所示。

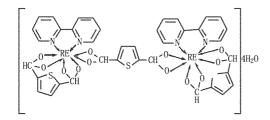


图 2 $Eu_2L_3L_2^1 \cdot 4H_2O$ 的配位结构图

Fig. 2 Molecular configuration of $Eu_2L_3L_2^1 \cdot 4H_2O$

2.5 紫外吸收光谱

将配体与配合物(以 $Eu_2L_3L_2^1 \cdot 4H_2O$ 为例) 均配成 DMSO 溶液 "测其紫外吸收光谱见图 3。从配体 $L \setminus L^1$ 和配合物的紫外吸收图谱说明 ,RE - O 成键后对配体的紫外吸收有明显的影响。配合物与配体的吸收峰位置相比 ,发生不同程度的位移 ,配体 L 的最大吸收峰形成配合物后的紫外最大吸收峰从 $\lambda_{max} = 275\, nm$ 红移至 $\lambda_{max} = 294\, nm$,而配体 L^1 则从 $\lambda_{max} = 282\, nm$ 蓝移到 $\lambda_{max} = 271\, nm$ 。

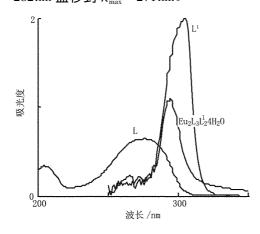


图 3 配体及配合物的紫外吸收光谱

Fig. 3 UV absorption spectra of ligands and complex

2.6 荧光光谱

在室温下激发、发射狭缝宽度均为 3 nm 条件下用 F-4500 型荧光分光光度计测定配合物(以 $Eu_2L_3L_2^1 \cdot 4H_2O$ 为例) 固体粉末的激发、发射光谱。 从图 4 可得最佳激发波长为 394 nm。以激发波长为 394 nm 测定发射光谱见图 5 相关跃迁见表 3。

在 $Eu_2L_3L_2^1 \cdot 4H_2O$ 的发射光谱中 ,发射波长最强为 $614 \text{ nm } \text{的}^5D_0 \rightarrow^7F_2$ 跃迁是 Eu^{3+} 的电偶极跃迁 , 峰形尖锐 ,半峰宽 11 nm 单色性好。根据文献 [10]

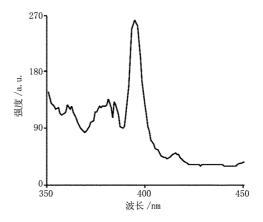


图 4 Eu₂L₃L₂ • 4H₂O 荧光激发光谱图

Fig. 4 Excitation spectra of $Eu_2L_3L_2^1 \cdot 4H_2O$

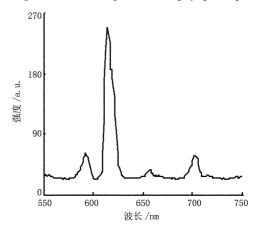


图 5 Eu₂L₃L₁ • 4H₂O 荧光发射光谱图

Fig. 5 Emission Spectra of $Eu_2L_3L_2^1 \cdot 4H_2O$

表 3 配合物 $Eu_2L_3L_2^1 \cdot 4H_2O$ 的荧光光谱数据 Table 3 Fluorescence spectral data of compound $Eu_1L_1L_2^1 \cdot 4H_2O$

化合物		激发波长	发射波长	发射强度	能级跃迁	
		/nm	/nm	/a. u.	BE SX EX LL	
		394	592	58	$^{5}\mathrm{D}_{0} \longrightarrow ^{7}\mathrm{F}_{1}$	
$\operatorname{Eu}_2\operatorname{L}_3\operatorname{L}_2^1$ • 41			614	250	$^{5}\mathrm{D}_{0} \longrightarrow ^{7}\mathrm{F}_{2}$	
	$Lu_2L_3L_2 \cdot 4H_2O$		656	30	$^{5}\mathrm{D}_{0} \rightarrow ^{7}\mathrm{F}_{3}$	
			702	56	$^{5}\mathrm{D}_{0} \longrightarrow ^{7}\mathrm{F}_{4}$	

当 Eu^{3+} 处于偏离反演中心的格位时,将出现 5D_0 \rightarrow 7F_2 的电偶极跃迁且以发射红光(614 nm) 为 \pm $_{\circ}$ 5D_0 \rightarrow 7F_2 跃迁和 5D_0 \rightarrow 7F_1 跃迁的发光强度之比说明中心离子配位环境的对称性高低,铕配合物电偶极跃迁的强度与磁偶极跃迁的比值约为 3.4 ,表明配合物中 Eu^{3+} 位置的对称性较低, Eu^{3+} 不处在晶格的对称中心位置 [11,12]。

3 结论

合成了三种稀土配合物,化学组成为 $Eu_2L_3L_2^1$ • $4H_2O$ (RE = Eu ,Dy ,Pr ,L = 2 ,5 - 噻吩二羧酸, $L^1 = 2$, 2^r - 联吡啶) 。 铕配合物荧光光谱表明 ,其 配体有效地将能量传递给 Eu^{3+} ; Eu^{3+} 的电偶极跃迁 $^5D_0 \rightarrow ^7F_2$ 与 $^5D_0 \rightarrow ^7F_1$ 磁偶极跃迁之比为 3.4 ,说 明结构上为低对称性配合物。

参考文献:

- [1] Hnatejko Z ,Embanowski M. Complexation ,luminescence and energy transfer of Ln (Ⅲ) ions with phenylphos– phonic acid [J]. Journal of Alloys and Compounds , 2004 380:181-483.
- [2] 张丽霞 梁利芳. 铽、镝 -3 噻吩乙酸二元、三元配合 物的合成及表征 [J]. 中国稀土学报 2011 29(2):129-134.
- [3] 张梅,赵永亮,赵艳芳,等. 铕及其掺杂稀土噻吩乙酸、邻菲啰啉配合物的合成、表征及荧光性能[J]. 发光学报 2008 29(5):827-832.
- [4] 高赛生态 刘兴旺 汪丽 筹. 新型钐、镝三元配合物的合成、发光性能及理论研究[J]. 稀土 2011 31(6):17-21.

- [5] 马瑞霞,王瑞芬,王淑萍,等. 芳香羧酸铕 含氮杂环配体三元配合物的合成及性质研究[J]. 中国稀土学报 2006 24(3):274-278.
- [6] Huang X H ,Huang C C ,Wang J G ,et al. Syntheses structures two new layered lanthanide coordination polymers thiophenedicarboxylic acid and 1 ,10 phenanthroline [J]. Chinese J Struct Chem 2009 28(11):1367-1372.
- [7] 王少亭,杨永丽,朱惠菊,等.稀土、2,2°-联吡啶、邻 氨基苯基苯甲酸配合物合成、光谱表征及荧光性质 [J].光谱学与光谱分析 2006 26(5):933-935.
- [8] 张勇 廖莉玲 ,邹文静 ,等. 含硫杂环稀土配合物的合成、表征及光学性质 [J]. 化学研究与应用 ,2010 ,22 (7):868-873.
- [9] 丁林娅. 铕(Ⅲ) 与 2 , 2′- 联吡啶配合物的合成与谱 学研究[J]. 稀土 2003 , 24(1): 10-13.
- [10] 江祖成,蔡汝秀,张华山.稀土元素分析化学(第二版) [M].北京:科学出版社 2000.224-230.
- [11] 李维芬,郑倩,崔元靖. 铕与5-氨基间苯二甲酸配合物的合成及发光性能[J]. 稀有金属材料与工程,2010,39(6):1002-1004.
- [12] 宝金荣 朱晓伟 张浩峰 ,等. 稀土 2 噻吩甲酸系列配合物的合成及其 Eu^{3+} 的发光 [J]. 稀土 ,2008 ,29 (2):11-14.

Synthesis ,Characterization and Fluorescence Properties of Rare Earth (Eu , Dy , Pr) Complexes

LI Shu-kai ,YAN Li ,ZHAO Ji-shou

(Key Laboratory of Ethnic Medicine Resource Chemistry, State Ethnic Affairs Commission & Ministry of Education University of Yunnan Nationalities, Kunming 650031, China)

Abstract: Ternary complexes of rare earths (Eu , Dy , Pr) with 2 ,5 – thiophenedicarboxylic acid (L) and 2 ,2′ – bi-pyridine (L1) were synthesized and characterized by elemental analysis , TG – DTG and FTIR spectra. The compositions of the complexes were confirmed to be $RE_2L_3L_2^1 \cdot 4H_2O$ (RE = Eu , Dy , Pr). The fluorescence property of Eu complex was studied with the fluorescence spectrum. Optimal excitation wavelength is 395 nm , and the emission spectrum is the characteristic spectrum of Eu^{3+} ; there is a sharp and strong red peak with 11 nm mid – width at 614 nm , which is attributed to $^5D_0 \rightarrow ^7F_2$ transition from Eu^{3+} ions; Fluorescence spectra show that the fluorescence intensity of Eu^{3+} complex is strong.

Key words: rare earth; coordination compounds; luminescence property