Vol. 47 No. 2 Apr. 2025 pp. 247 – 259

引用格式: 赵程程. 中国人工智能政策关联性及区域差异性研究[J]. 世界科技研究与发展,2025,47(2):247-259.

中国人工智能政策关联性及 区域差异性研究 *

赵程程**

(上海工程技术大学管理学院,上海 201620)

摘 要:为了更深入地把握央地人工智能(AI)政策内容,明晰不同区域 AI政策布局特点。对中央层面 11份 AI政策文本内容挖掘和量化分析,构建中国 AI政策"主体(Y)-目标(Z)-工具(X)"框架。在此框架下,对地方层面 84份 AI政策文本内容挖掘和量化分析,比较我国东部、中部、西部、东北地区 AI政策"Y-Z""Y-X""Z-X"关联的差异性。研究发现,从"Y-Z"关联性上,政府、企业、高校及科研机构在各个政策目标实现过程中均有参与,但政府的参与性相对有限。从"Y-X"关联性上,各地区企业与政策工具之间关联结构类似,均以供给型工具为主,兼顾环境型工具;政府与政策工具的关联性普遍较低,地方政府角色逐渐从主导者演变成引导者;各地区高校及科研机构与政策工具之间关联结构类似,均以供给型工具为主,兼顾需求型工具。从"Z-X"关联性上,各地区使用政策工具组合较为单一,运用供给型工具用以实现"技术领先"、促进"产业转型";运用需求型工具用以实现"理论突破";运用环境型工具用以保障"伦理安全"。

关键词:人工智能政策;文本挖掘;文本关联;政策主体;政策目标;政策工具

DOI:10.16507/j. issn. 1006 - 6055. 2024. 09. 001

CSTR: 32308. 14. 1006 - 6055. 2024. 09. 001

Quantitative Research on the Correlation and Regional Differences of China's Artificial Intelligence Policy *

ZHAO Chengcheng * *

(School of Management, Shanghai University of Engineering Science, Shanghai 201620, China)

Abstract: In order to have a deeper grasp of the content of artificial intelligence (AI) policies at the central and local levels, and clarify the characteristics of AI policy layout in different regions, the paper mines and quantitatively analyzes the content of 11 AI policy texts at the central level, and constructs a three-dimensional analysis framework of "subject (Y)-goal (Z)-tool (X)" of China's AI policy. Under this framework, the content of 84 AI policy texts at the local level was mined and quantitatively analyzed, and the differences in the association of "Y-Z", "Y-X" and "Z - X" of AI policies in the eastern, central, western and northeastern regions of China were compared. The results show that in terms of "Y-Z" correlation, the government, enterprises, universities and scientific research institutions are all involved in the realization of various policy goals, but the participation of the government is relatively limited. In terms of "Y-X" relevance, the

www. globesci. com 第247页

^{* 2022} 年度教育部人文社会科学研究青年基金"中国企业参与全球人工智能技术创新的位势提升机理及路径选择研究"(22YJCZH254)

^{* *} E-mail:03140013@ sues. edu. cn; Tel:15000209289

correlation structure between enterprises and policy instruments in each region is similar, and all of them are mainly supply-oriented tools, taking into account environment-oriented tools. The correlation between the government and policy tools is generally low, and the role of local governments has gradually evolved from a leader to a guide. The relationship structure between universities and scientific research institutions and policy instruments in different regions is similar, and all of them are mainly supply-oriented tools, taking into account demand-oriented tools. In terms of "Z-X" relevance, the combination of policy tools used in each region is relatively simple, and supply-oriented tools are used to achieve "technology leadership" and promote "industrial transformation". the use of demand-based tools to achieve "theoretical breakthroughs"; We use environment-based tools to ensure "ethical safety".

Keywords: Artificial Intelligence Policy; Text Mining; Text Relevance; Policy Participants; Policy Objectives; Policy Tool

人工智能(Artificial Intelligence, AI)以其强 大的"头雁"效应呈现多点式、集群性爆炸发展态 势。科技强国纷纷着手发布与本国资源禀赋、发 展阶段和治理体系相适应的 AI 政策, 力求在全 面、准确地识别 AI 深远影响的基础上,尽快形成 富有远见的规划和具体、有效、可操作的措施。 2017年,中国国务院印发《新一代人工智能发展 规划》(简称《规划》)确立了"三步走"的战略目 标,是我国国家层面部署 AI 发展的标志性政策。 地方政府因地制宜、结合资源特征,积极布局 AI 发展,纷纷出台 AI 政策,策动重点各有不同。那 么,我国 AI 政策的参与主体有哪些? 政策目标是 什么? 使用什么政策工具? 在现行的地方 AI 政 策设计中,参与主体如何运用政策工具组合,用 以实现政策目标?为此,本研究在梳理我国 AI 政 策的基础上,探究我国东部、西部、中部和东北地 区 AI 政策的"主体 - 目标""主体 - 工具""目标 -工具"关联性及其差异性,为政府部门从全局 的视角掌握政策区域特征,在此基础上为优化 AI 政策提供支撑。

1 文献回顾

目前 AI 政策相关研究多集中于三个方面: 1)基于不同理论框架的量化研究,融合了政策工 具、政策效应、创新价值链、产业链等理论,定性 梳理或定量挖掘 AI 政策的总体布局、区域差异、 政策效果。例如,单晓红等[1]构建"政策属性 -政策机构"分析框架,比较《规划》发布前后,京津 冀、珠三角及长三角区域 AI 政策差异。李新娥 等[2]通过回归分析,评价我国各省市 AI 政策效 应,尤其是对制造业就业的影响。汤志伟[3]从 "政策工具 - 创新价值链"维度对我国地方政府 AI 政策进行文本内容分析,探索 AI 政策工具使 用与产业创新发展之间的关系。李良成等[4]从 "政策目标、政策工具和产业链"三个维度对我国 各省市出台的 AI 政策进行比较分析。2) 通过文 本分析,比较不同国家 AI 政策差异与战略逻辑区 别。例如,曾坚朋等[5]从"政策主体-政策工具 - 政策目标"三个维度对中美两国国家、地方两 个层面的 AI 政策进行比较分析。贾开等[6] 通过 政策文本梳理,对比分析美国、英国、德国、中国 AI 公共政策的主要特征和施政差异。汤志伟^[7] 对中美7个政策文本进行人工编码,从"政策目 标 - 政策工具 - 政策执行"三个维度比较中美 AI 政策的差异。阿里·冈迪埃斯(Ali A. Guenduez) 和托拜厄斯・梅特勒(Tobias Mettler)[8]基于结构 主题建模和定性分析技术,比较33个国家和的确 的 AI 政策内容差异与政策倾斜。由于 AI 技术或 将重塑地缘政治,因此不少学者从"技术-政治" 的视角,比较分析美国政府不同阶段的 AI 政策演 变[9,10],尤其是对华政策的战略逻辑[11,12]。3)由 于 AI 技术易引发安全伦理问题,不少学者聚焦

第248页 www. globesci. com

AI 社会伦理规范的政策文本内容分析^[13]、治理工具识别^[14]、国际经验借鉴^[15]。

综上,现有研究大多通过文献梳理分析,定性地构建二维或三维 AI 政策分析框架,容易使后续的 AI 政策分析结果存在一定的偏差。其次,现有研究大多构建二维或三维的政策分析框架,但本质上仍是从单一维度对不同地区的 AI 政策进行比较分析,相对忽视了维度之间的映射关系。最后,现有研究多为国家之间 AI 政策比较,或是对我国中央或各省市 AI 政策梳理分析,但对区域层面的 AI 政策缺乏比较分析,导致研究结论缺乏对全局性和区域特殊性的考虑。

因此,本文通过非结构化文本数据挖掘工具和算法,构建我国 AI 政策"主体(Y)-目标(Z)-工具(X)"框架。由于央地两级 AI 政策呈现出一定的协同性,因此本文在此三维分析框架下,对地方层面 AI 政策"主体 - 目标""主体 - 工具""目标 - 工具"交叉关联的进行量化比较。主要包括:1)对我国中央层面颁布的 AI 行政法规、部门规范性文本进行量化分析,构建出我国 AI 政策"Y-Z-X"框架;2)对地方层面 AI 政策量化分析,分别从"Y-Z""Y-X""Z-X"三个维度,分析我国东部地区、中部地区、西部地区、东北地区 AI 政策差异性。

2 中国 AI 政策"主体 - 目标 - 工具" 框架的构建

2.1 数据来源与研究设计

在数据收集上,通过北大法宝,以"人工智能""智能""AI"为主题词,公布日期范围 2007-01至 2023-08,检索时间 2023-08-20,检索到 AI 相关政策文本,其中覆盖中央层级的行政法规 1 项、部门规范性文件 10 项。对政策文本进行词条清晰,

剔除无意义的词条,形成特征性词条,最后形成 有效语句2226条。

在研究方法上,采用使用较为广泛且支持多 语种的非结构化文本分析工具 KH Coder 3 完成 对上述文本数据的分析。在解析对象上, KH Coder 3 实现全文本覆盖,并可剔除无实际意义的 词条,同时兼容特定词条的设定。在词频分析 时,KH Coder 3 通过对词条出现频次进行统计,识 别出文本的高频词。在共现网络分析时, KH Coder 3 通过对高频词条的关联性进行图谱绘制, 显示出文本相关主题及其关联性[16]。结合本次 研究具体流程如下,首先运用高频词统计识别出 AI 政策参与主体。其次,结合《规划》中"三步 走"战略目标,融合 AI 技术的高创新性、高赋能 性、高风险性的特征,梳理中央 AI 政策文本进行 共现网络聚类词条,凝练出 AI 政策目的。最后, 基于 Rothwell 和 Zegveld^[17]对政策工具的划分,梳 理中央 AI 政策文本进行共现网络聚类词条,识别 出AI政策工具。

2.2 政策文本内容挖掘

2.2.1 高频词统计

词频出现频率的高低通常能表达词义在文中重要性的大小,常用于文本的主题分析^[18]。为了保证数据分析的有效性,对政策本文数据进行两项初处理:1)剔除中英文数据中例如"了""的"等没有实际意义的词,形成"stopwords"停用词表;2)构建了"AI""基础理论""科技强国"等专业词条,形成"pickwords"分词词表。

借助 KH Coder 3 软件,运用高频词统计,识别出中央层级的 AI 政策中高频词(TOP 150)的名词词条^[19]。其中,企业类词条("企业""产业")出现 253 次,占比 2%;政府类词条("政府""政策""治理")出现145次,占比1%;科研机构

www. globesci. com 第249页

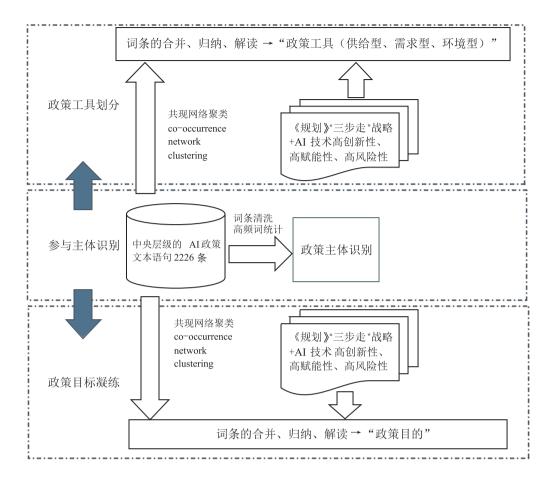


图 1 中国 AI 政策"主体-目标-工具"框架的研究流程

Fig. 1 Research process of the three-dimensional analysis framework of "participants-objectives-tool" in Chinese AI policy

& 高校类词条("高校""教育""学科""知识""理论""科学""基础理论")出现472次,占比4%。

2.2.2 共现网络聚类

KH Coder 3 的主题词共现网络图中,以图与 线的形式展现各词条之间的关联,圆的面积越大 表明该词条在源文本中出现的频次越高,连接两 个圆之间的线越粗表面两个词条之间的关系越 紧密^[20]。通过 KH Coder 3 中共现网络功能(选 择 Jaccard 算法,重要连线数 Top 值设置为 240), 以最小生成树进行聚类,对中央层级的 AI 政策文 本中名词、特征性词条、动词,进行共现网络分 析,绘制出 AI 政策主题词共现网络聚类图,并对 各个聚类词条进行组合(表1)。

2.3 中国 AI 政策"主体 - 目标 - 工具"框架

2.3.1 Y: 参与主体维度

从参与主体维度对政策进行分析,有助于明晰各参与主体的功能作用^[21]。根据对 AI 政策中高频词统计, AI 政策的参与主体可划分为三类: 1)政府, AI 政策的主导者,以资金扶持、重大项目等方式参与推进 AI 技术; 2)企业, AI 政策的参与者,通过提供 AI 产品或服务、技术支持等方式参与; 3)科研机构 & 高校, AI 政策的参与者,通过人才培育、学科整合、理论研究、技术创新、创新合作等方式参与。

2.3.2 Z:政策目标维度

政策目标是政策制定和与政策执行的预期结

第250页 www. globesci. com

果,规定政策工具的使用目的^[5]。通过对《规划》中 "三步走"政策内容的解读,我国 AI 政策具体目标 与其战略目标保持了切好的切合度,聚焦"技术领 先""理论突破""产业转型""创新体系"(表2、3)。

《规划》的"三步走"的政策目标映射了 AI 的高创新性和高赋能性,却在一定程度上忽略了 AI 的高伦理风险性。但在中央层级的 AI 政策主题

词共现网络聚类中,类如"伦理安全""伦理规范"等词条频繁析出,可见对 AI 伦理风险的防范与控制也是中央 AI 政策的重要组成部分。基于此,将中央层级的 AI 政策主题词聚类图谱词条组合与上述《规划》政策目的进行融合,AI 政策目标可归纳为"技术领先""理论突破""产业转型""创新体系""伦理安全"。

表 1 中央层次 AI 政策主题词共现网络聚类词条组合

Tab. 1 Entry combinations of AI policy theme words co-occurrence network clustering at the central level

聚类	01#	02#	03#	04#	05#	06#
词条组合	基平安标伦伦国基络 平建标系险范平 建极 化伦国基络 现 地 强 基	科技创新 创新场景 场景探别 智慧城略 国家平台开 图新平台 资源共主 共	人才培养 人才育培养 高校培养 基础理市局 关键和融合 高校企业联合创新 鼓励创新	人重应应提加 智知 一個	大数据 大数据 大数据操 大数据决 大数据计 大数据计 理 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第	产业培育 经济发展 社会治理 围绕需求

表 2 《规划》的"三步走"政策目标和简要说明

Tab. 2 "Three step plan" policy objectives and brief explanation of the plan

《规划》相关内容	政策目标	简要说明
①到 2020 年 AI 总体技术和应用与世界先进水平 同步	技术领先	新一代 AI 总体技术达到世界先进水平;尤其是核心 关键技术的突破
②到 2025 年 AI 基础理论实现重大突破,部分技术与应用达到世界领先水平,AI 成为带动我国产业升级和经济转型的主要动力	理论突破	原始创新;大数据智能、跨媒体感知计算理论、人机 混合智能、群体智能、自主协同与决策等基础理论研究;AI 算法、模型发展等基础理论与神经科学、认知 科学、数学、经济学等相关基础学科的交叉融合
产业开级相经价转型的主要切力 -	产业转型 (智能经济)	强化 AI 对科技、经济和社会发展的全面支撑, AI 成为新的经济增长点
③到 2030 年 AI 理论、技术与应用总体达到世界领先水平,成为世界主要 AI 创新中心	创新体系	基于产业基础和发展需求,建立一批 AI 创新平台, 形成特色明显的 AI 产业创新体系

表 3 AI 政策目标及其词条组合

Tab. 3 AI policy objectives and their entry combinations

政策目的	对应的词条组合
技术领先	标准体系、国际水平、重点领域、智能技术、大数据监测、大数据管理
理论突破	高校研究(基础理论研究、基础理论布局)、大数据计算理论、算法模型、大数据决策
产业转型	机器人、技术应用、产品服务、产业培育、创新场景、围绕需求、经济发展
创新体系	平台建设、创新平台开放、资源共享、高校企业联合创新、网络基础设施
伦理安全	伦理安全、伦理规范、社会治理

www. globesci. com 第251页

2.3.3 X:政策工具维度

政策工具是政策制定者为实现政策目标而 采取的政策干预^[16]。基于 Rothwell 和 Zegveld^[17] 的政策工具分类的方法,综合李良成、李莲玉^[4], 杨佳雯等^[22],李明、曹海军等^[23]对 AI 政策工具 及举例,梳理中央层级的 AI 政策主题词共现网络 聚类词条,可将 AI 政策工具分为供给型、需求型、 环境型。

其中,供给型工具表现为对 AI 技术创新和 AI 赋能产业转型的推动力,指政府通过对人才、资金、数据资源、新基建、新平台等各类要素的供给推动技术创新和产业发展。包含"基础设施""人才培引""资金投入""资源共享""平台支撑"等词条。

需求型工具是指政府以国家或地区战略需求为导向,设立重大项目,攻克 AI 关键核心技术;通过试点示范区建设,鼓励企业和高校、科研机构等多元主体协同创新,加速科技成果转化,开辟新市场和新领域;通过政府采购,推进智慧政务建设。包含"试点示范""多元合作""国际竞合""成果转化""重大专项""政府采购"等词条。

环境型工具指政府通过目标规划,对 AI 应用 场景建设进行了全方位部署;建立技术标准,提 升行业话语权,完善法律法规、伦理法规,降低 AI 技术引发的社会风险;加强知识产权保护力度,激发市场主体的创新动力。包含"目标规划""金融支持""标准体系""法规伦理""知识产权"等词条。

综合上述三个维度的文本挖掘,我国 AI 政策 "主体-目标-工具"框架如图 2 所示。

3 中国地方 AI 政策"主体 – 目标 – 工具"关联性分析

3.1 研究方法与数据来源

在数据收集上,同样地通过北大法宝,以"人工智能"或"智能"或"AI"为主题词,公布日期范围 2007-01 至 2023-08,检索时间 2023-08-20,检索 AI 相关政策文本,其中覆盖省市(含直辖市、副省级市和地级市)的地方性法规 2 项、部门规范性文件 82 项,形成有效语句 121117 条。参考《中国统计年鉴》中对我国行政区域进行划分,东部地区、中部地区、西部地区和东北地区的地方性法规

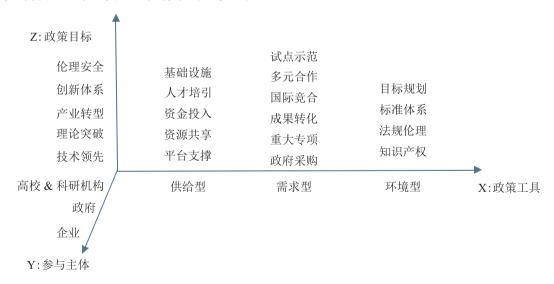


图 2 中国 AI 政策"主体 - 目标 - 工具"框架

Fig. 2 Analysis framework of "participants - objectives -tool" in Chinese AI policy

第252页 www. globesci. com

和部门规范性文件分布见表 4。

表 4 中国地方性 AI 政策的区域分布¹⁾

Tab. 4 Regional distribution of AI local policies in China¹⁾

(A	部地区	中部地区	西部地区	东北地区
	A=2,	(A=0,	(A=0,	(A=0,
	=45)	B=17)	B=14)	B=6)
福江浙山广 区分 下	(0,2) (0,2) (0,4) (0,11)	可南(0,1) 山西(0,1) 胡南(0,3) 胡北(0,4) 安徽(0,8)	甘肃(0,1) 宁夏(0,1) 新疆(0,1) 云南(0,1) 广西(0,2) 贵州(0,3) 四川(0,5)	辽 宁(0,1) 内蒙古(0,1) 黑龙江(0,2) 吉 林(0,2)

1)A代表行政法规数量,B代表部门规范性文件数量。

在研究方法上,采用非结构化文本分析工具 KH Coder 3 完成对上述文本数据的分析。首先,进行词条编码形成目标词条。依据各地区 AI 政策文本,对参与主体(Y)、政策目标(Z)、政策工具(X)进行词条编码,用目标词条表述"参与主体""政策目标""政策工具"概念,形成编码文档。然后,通过共现网络分析[19],分别挖掘东部、中部、西部、东北地区 AI 政策文本中目标词条之间关联性。

3.2 政策文本内容挖掘与区域差异性分析

同样借助 KH Coder 3 软件,将文本编码文件 进行加载,在 Coding(编码)下进行 co-occurrence

network (共现网络分析)。编码单位设置为Sentence(语句),使用Jaccard 系数计算文本相似度,形成共现网络分析图谱。受限于篇幅限制,下文将无法展示所有图谱,仅将各个图谱中的Jaccard 系数进行整理,用以分析 Y-Z、Y-X、Z-X 的关联性。

3.2.1 Y-Z 关联性

通过"Y-Z"关联性分析能够阐述各个参与主体在政策目标实现中发挥的功能作用。本文分别从东部、中部、西部、东北地区 AI 政策文本中,将企业、政府、高校及科研机构与政策目标进行共现网络分析,将 Jaccard 系数进行整理(表 5)。

通过上述计量分析可以发现,我国地区 AI 政策"主体-目标"关联性呈现以下突出特点。

1)参与主体与政策目标之间存在结构不均衡。企业和高校及科研机构是东部、中部、西部、东北地区保持 AI"技术领先"、实现"理论突破"、促进"产业转型"、构建"创新体系"、保障"伦理安全"的重要主体。相比之下,政府侧重识别、防范、管控 AI 伦理安全风险,但在实现"理论突破"、促进"产业转型"、建设"创新体系"的直接参与度不高。

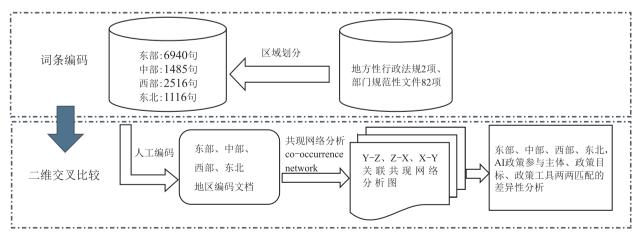


图 3 中国 AI 政策区域差异性分析的研究流程

Fig. 3 Research process of regional differences analysis of AI policies in China

www. globesci. com 第253页

表 5 各地区 AI 政策 Y-Z 关联性1)

Tab. 5 Y-Z correlation of AI policies in different regions¹⁾

		技术 领先	理论 突破	产业 转型	创新 体系	伦理 安全
	东部	0.15	0	0.07	0	0.04
مال ۵	中部	0.14	0	0.02	0	0.03
企业	西部	0.13	0.02	0.06	0	0.05
	东北	0.13	0.02	0.02	0.03	0.03
	东部	0.02	0	0.01	0	0.02
政府	中部	0	0	0	0	0
政府	西部	0.10	0	0	0	0.03
	东北	0.01	0	0.01	0	0.02
	东部	0.10	0.02	0.03	0.02	0.02
高校 & 科研	中部	0.09	0.06	0.02	0	0.04
机构	西部	0.06	0.01	0.01	0	0
	东北	0.08	0.01	0.03	0.03	0.01

¹⁾ Jaccard 系数≥0.01。

2)参与主体与政策目标之间存在区域不均衡。 在东部地区和东北地区 AI 政策中,企业、政府、高校及科研机构是保持"技术领先"、促进"产业转型"、保障"伦理安全"的重要主体。但是,企业和政府在实现"理论突破"、构建"创新体系"方面尚未形成明显的关联。在中部地区,政府的能动性 被低估,未能发挥政府在实现政策目标的功能。 在西部地区,AI 政策设计未能凸显高校及科研机 构在履行科技"伦理安全"管理的主体责任。

3.2.2 Y-X 关联性

通过"Y-X"关联性分析可以明晰各参与主体与参与途径及发挥的功能作用。将Y(参与主体)与X(政策工具)进行共现网络分析,挖掘东部、中部、西部、东北地区企业、高校及科研机构、政府运用供给型工具、需求型工具、环境型工具的关联程度(表6)。

1)企业-X

各地区 AI 政策中企业与政策工具之间关联 结构类似。各地区均以供给型工具为主,兼顾环境型和需求型工具,激励和引导企业参与。在需求型工具使用方面,企业的主体功能部分受限,未能充分释放企业的能动性。例如,在政府采购中企业参与度较低。在科技成果转化中,尚有未明晰的企业参与路径。

各地区 AI 政策中面向企业的政策工具组合 不同。在东部地区,面向企业的政策工具组合较

表 6 各地区 AI 政策中"Y-X"关联性1)

Tab. 6 Y-X correlation of AI policies in different regions¹⁾

				供给型				需求型							环境型				
		基础设施	人才 培引	资金 投入	资源 共享	平台 支撑	试点 示范	多元 合作	国际 竞合	成果 转化	重大 专项	政府 采购	目标 规划	标准 体系	法规 伦理	知识 产权			
	东部	0.02	0.05	0.05	0.08	0.04	0.05	0.11	0.09	0	0.04	0	0.02	0.04	0.04	0.02			
A.II.	中部	0.01	0.08	0.07	0.05	0.02	0.05	0	0.05	0	0.08	0	0	0.04	0.05	0			
企业	西部	0.02	0.07	0.07	0.10	0.04	0.03	0.11	0.05	0	0.04	0.02	0.02	0	0.03	0			
	东北	0.02	0.05	0.07	0.05	0.04	0.08	0.14	0.13	0	0.03	0	0	0.05	0	0.04			
	东部	0.03	0.02	0.01	0.01	0.02	0	0	0.02	0	0.04	0	0.04	0.01	0.02	0.01			
ज <i>ि</i> होत	中部	0	0.01	0	0.12	0	0	0	0	0	0.01	0	0.03	0.02	0	0			
政府	西部	0	0.02	0.05	0.02	0.04	0	0	0.01	0	0	0.03	0.04	0	0.04	0			
	东北	0	0.01	0.03	0	0.02	0.02	0.01	0.02	0	0.04	0	0.17	0.03	0.02	0			
	东部	0.01	0.08	0.02	0.03	0.07	0	0.12	0.1	0.04	0.03	0	0.01	0.01	0.03	0.01			
高校&	中部	0	0.10	0.03	0.08	0.12	0	0	0.08	0.03	0.07	0.03	0	0.02	0.04	0			
科研 机构	西部	0	0.11	0.05	0	0.03	0.02	0.19	0.04	0.03	0.07	0	0	0	0	0			
	东北	0.02	0.09	0.03	0.02	0.03	0.01	0.12	0.11	0	0.01	0	0	0	0.01	0			

¹⁾ Jaccard 系数≥0.01。

第254页 www. globesci. com

为全面。在供给型工具方面,激励企业参与基础 设施和公共平台的建设,数据资源的共享、高端 人才的培引,并对符合条件的企业给予研发费用 奖励、金融支持和政策倾斜。在环境型工具方 面,鼓励企业参与 AI 技术标准、AI 法规伦理、AI 知识产权体系的建立。在需求型工具方面,引导 企业参与试点示范项目的建设、实现企业主导产 学研合作创新、加速企业国际化进程。在中部地 区,面向企业的政策工具组合以"人才培引"(供 给型工具)、"资金投入"(供给型工具)、"重大专 项"(需求型工具)等为主,引导企业参与重大专 项和工程的同时,加大企业在人才培育的参与力 度。在西部地区,面向企业的政策工具组合以供 给型工具为主,通过"人才培引""资金投入""资 源共享""多元合作",激励和引导企业参与多元 协同创新。在东北地区,面向企业的政策工具组 合以"试点示范"(需求型工具)、"资金投入"(供 给型工具)等为主,资助企业参与试点示范项目。

2)政府-X

各地区 AI 政策中政府与政策工具的关联性 普遍较低。地方政府角色逐渐从主导者演变成 引导者。尤其是,东部地区政府在"基础设施" (供给型工具)、"重大专项"(需求型工具)、"目 标规划"(环境型工具)等参与度较高,扮演着"引 航者"。相比之下,中部地区政府着力于"资源共 享"(供给型工具),开放共享政府公共数据资源, 支持 AI 技术赋能于交通、医疗、教育等公共服务 领域。西部地区政府以财政"资金注血"(供给型 工具)为主。东北地区政府着重因地制宜设计区 域 AI"发展规划"(环境型工具)。

3) 高校及科研机构-X

各地区 AI 政策中面向高校及科研机构的政 策工具组合不同。在东部地区和中部地区,面向 高校及科研机构的政策工具组合较为全面。在供给型工具方面,加强高校 & 科研机构进行创新型"AI 人才引和培育"、引导企业与高校及科研机构共同"搭建科研平台"。在需求型工具方面,推进高校及科研院所、企业"协同创新";支持一批重点科研机构作为扩大"国际合作"的试点。在环境型工具,鼓励高校及科研院所参与 AI 伦理规范制定。在西部地区和东北地区,面向高校及科研机构的政策工具组合较为单一,偏重"人才培引"(供给型工具)和"多元合作"(需求型工具)的使用。

3.2.3 Z-X 关联性

通过"Z-X"关联性分析有助于把握政策工具在实现政策目标的导向性作用。将 Z(政策目标)与 X(政策工具)进行共现网络分析,挖掘东部、中部、西部、东北地区在实现的 AI"技术领先"、取得"理论突破"、推进"产业转型"、构建"创新体系"、保护"伦理安全"与供给型工具、需求型工具、环境型工具与之间的关联程度。

1)技术领先-X

对各地区 AI 政策中"技术领先"这一政策目标与政策工具的关联性进行分析发现,为了实现AI"技术领先",各地区使用的政策工具结构类同,均以供给型工具为主,兼顾需求型工具,以环境型工具为辅。东部地区鼓励企业、政府、高校及科研院所等主体将各自的优势资源进行共享("资源共享"),形成资源整合优势。同时,探索企业、政府、高校等主体协同合作模式("多元合作"),打造开放合作的生态系统,保持 AI 技术领先优势。中部地区策重通过建立创新平台("平台支撑"),依托平台实现资源优化配置("资源共享"),实现技术难题逐个攻破。西部地区与东北地区政策组合类似,在采用"多元合作"和"资源

表7 各地区 AI 政策中"Z-X"关联性1)

Tab. 7 Z-X correlation of AI policies in different regions¹⁾

		供给型							需求	 大型	环境型					
		基础 设施	人才 培引	资金 投入	资源 共享	平台 支撑	试点 示范	多元 合作	国际 竞合	成果 转化	重大 专项	政府 采购	目标 规划	标准 体系	法规 伦理	知识 产权
	东部	0.02	0.04	0.03	0.11	0.05	0.05	0.08	0.07	0.02	0.06	0	0.03	0.05	0.06	0.02
++ + >	中部	0	0.03	0.06	0.11	0.12	0.06	0	0.06	0.02	0.07	0.02	0	0	0.01	0.02
技术领先	西部	0.04	0.06	0.04	0.15	0.04	0	0.11	0.03	0.01	0.05	0	0.02	0	0.09	0.01
	东北	0.01	0.07	0	0.18	0.07	0.05	0.14	0.04	0.02	0.08	0	0.01	0.03	0.07	0.03
	东部	0	0.02	0	0.01	0.01	0	0.02	0	0	0.03	0	0	0.03	0.01	0
田込宏砂	中部	0	0	0	0.02	0.05	0.03	0	0	0	0.04	0.20	0	0	0.04	0
理论突破	西部	0	0.04	0.03	0	0	0	0.03	0.04	0	0.04	0	0	0.07	0	0
	东北	0	0	0.01	0.05	0.02	0.04	0.04	0.04	0	0.12	0	0	0.02	0.02	0.02
	东部	0.03	0.04	0.02	0.09	0.02	0.06	0.1	0.04	0	0.02	0	0.05	0.03	0.03	0
立 川井 東川	中部	0	0.02	0	0.02	0.02	0	0	0.02	0	0.01	0	0.03	0	0.03	0
产业转型	西部	0.03	0.03	0	0.16	0.10	0.04	0.08	0.04	0	0.01	0	0.02	0	0.03	0
	东北	0.03	0.09	0	0.04	0.03	0.06	0.03	0.01	0	0.03	0	0.03	0.01	0.03	0
	东部	0.03	0	0	0	0.01	0	0.02	0	0	0	0	0	0	0	0.01
加並从五	中部	0.07	0	0	0.02	0	0	0	0	0	0.02	0	0	0	0	0
创新体系	西部	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	东北	0.08	0.03	0	0.06	0.02	0	0.06	0	0	0.02	0	0	0	0.02	0
	东部	0.01	0	0.01	0.09	0.01	0.03	0.02	0	0	0.02	0	0.02	0.05	0.73	0
从 理定人	中部	0.03	0	0	0.05	0.06	0	0	0.05	0	0.03	0.1	0	0	0.68	0.04
伦理安全	西部	0.13	0.05	0	0.13	0.02	0.01	0.03	0.01	0	0	0.02	0.02	0.02	0.71	0
	东北	0.12	0	0	0.07	0.01	0.02	0.01	0	0.06	0	0	0.03	0.04	0.72	0.04

¹⁾ Jaccard 系数≥0.01。

共享"的同时,强化科技伦理风险防控("法规伦理"),为技术领先保驾护航。

2)理论突破-X

对各地区 AI 政策中"理论突破"这一政策目标与政策工具的关联性进行分析发现,为了实现 AI"理论突破",各地区使用的政策工具结构类同,均以需求型工具为主,供给型工具、环境型工具相对被忽视。在东部地区,以战略需求为牵引,通过设立"重大专项"(需求型工具),实现 AI 基础理论的重大突破。在中部地区,通过"政府采购"(需求型工具),在智能农业、智能制造、智能医疗、智慧城市等领域推进 AI 理论突破和关键技术应用场景开拓。在西部地区,通过"标准体系"(环境型工具)。将数智工程技术专业基础理

论知识和专业技术知识标准化和规程化。在东 北地区,将"重大专项"(需求型工具)与新任务有 机衔接,地方项目与国家项目有机衔接,协同推 进基础理论研究与技术开发。在东部地区,没有 采用直接工具用以实现"理论突破"。

3)产业转型-X

对各地区 AI 政策中"产业转型"这一政策目标与政策工具的关联性进行分析发现,为了实现AI"产业转型",各地区使用的政策工具结构类同,均以供给型工具为主,兼顾需求型工具,以环境型工具为辅。在东部地区,积极探索"多元合作"模式(需求型工具),推动 AI 科研成果市场化产业化;同时,推动多元主体资源共享,提高创新资源的共享和利用效率(供给型工具),实现产业

第256页 www. globesci. com

结构优化升级。在中部地区,主要推动政府与企业之间"资源共享"(供给型工具),开展政府公共数据资源开放共享先行先试,深化 AI 在工业领域的渗透融合、在城市治理领域的融合应用和在民生领域的推广应用。在西部地区,综合运用"资源共享"(供给型工具)和"平台支撑"(供给型工具),通过建设大数据平台,推动多元异构数据与实体经济深度融合发展,推动数字技术与各领域各行业深度。在东北地区,抓住人才这一关键要素,通过"人才培引"(供给型工具),聚焦培育引进 AI 高端人才,组建新一代 AI 重点研发、应用团队,形成产业转型的智力支撑。

4)创新体系-X

对各地区 AI 政策中"创新体系"这一政策目标与政策工具的关联性进行分析发现,总体上"创新体系"这一政策目标,尚未得到各地区政府的广泛关注,使用政策工具组合较为单一。东部、中部和东北地区纷纷将"基础设施"(供给型工具)建设作为实现"创新体系"这一目标的首要政策工具,通过重大科技基础设施的建设,筑巢引凤吸引优质研发资源的集聚,进而形成构建创新体系的基本要素。同时,东北地区通过"资源共享"(供给型工具)和"多元合作"(需求型工具),释放创新要素活力,实现多元主体深度合作,构建高质量区域"创新体系"。

5)伦理安全-X

对各地区 AI 政策中"伦理安全"这一政策目标与政策工具的关联性进行分析发现,为了保障AI"伦理安全",各地区使用的政策工具结构类似,均以环境型工具为主,供给型工具、需求型工具相对被忽视。东部、中部、西部和东北地区均将"法规伦理"(环境型工具)建设作为保障伦理安全的首要政策工具。"法规伦理"环境型政策

通过加强 AI 伦理道德、法制保障和社会问题研究,建立保障 AI 健康发展的制度规范和伦理道德框架等,防范 AI 可能诱发的伦理道德风险,保障 AI 健康发展。

4 结论与建议

4.1 研究结论

本文通过非结构化文本数据挖掘工具和算法,构建我国 AI 政策"主体(Y)-目标(Z)-工具(X)"框架。在此框架下,对东部、中部、西部和东北地区"Y-Z""Y-X""Z-X"交叉关联进行量化分析,得出以下结论。

在"Y-Z"维度上,政府、企业、高校及科研机构共同参与到各项政策目标的实现中,但政府的参与程度有所限制。在东部地区,这三方力量携手推进"技术领先"、"产业转型"和"伦理安全"等政策目标的实现。中部地区和西部地区则主要由企业和学术界来推动政策目标的达成。同时,政府在 AI 领域的伦理治理中扮演着直接的角色。东北地区地方政府则专注于推动"技术领先"和"产业转型"。

在"Y-X"的维度上,首先,各地区企业与政策工具之间关联结构类似,均以供给型工具为主,激励和引导企业参与。在需求型工具使用方面,企业的主体功能受限,未能释放企业的能动性。其中,在东部地区,面向企业的政策工具组合较为全面。在西部地区,面向企业的政策工具组合以供给型工具为主。其次,各地区政府与政策工具的关联性普遍较低。地方政府角色逐渐从主导者演变成引导者。最后,各地区高校及科研机构与政策工具之间关联结构类似,以供给型工具为主。在东部地区和中部地区,面向高校及科研机构的政策工具组合较为全面。在西部地区和机构的政策工具组合较为全面。在西部地区和

东北地区,面向高校及科研机构的政策工具组合较为单一,偏重"人才培引"(供给型工具)和"多元合作"(需求型工具)的使用。

在"Z-X"的维度上,为了实现 AI"技术领先"、促进"产业转型",各地区均以供给型工具为主。为了实现 AI"理论突破",各地区均以需求型工具为主。同样,为了保障 AI"伦理安全",各地区均以环境型工具为主。"创新体系"这一政策目标,尚未得到各地区政府的广泛关注,使用政策工具组合较为单一。

综上,在"主体-工具"和"目标-工具"关联性上,中国东部、西部、中部和东部地区 AI 政策结构类似。这表现出与中央 AI 政策的趋同性,但是未能体现区域特色。地方政府应当根据每个地区的 AI 相关产业基础和资源优势,制定出既符合中央政策导向,又能够充分发挥地方优势的个性化政策方案。

4.2 对策建议

基于前文研究和讨论,本文提出以下 4 点建议,为我国 AI 政策制定和优化提供参考。

第一,加大国家层面的政策制定力度,强化央地政府之间的合作。当前 AI 政策多为各省市以《规划》为蓝图,设计地方性政策。我国 AI 的发展尚处于初级阶段,各地政府处于尝试探索阶段。因而,中央政策应与时俱进,加快制定更为科学的导向性政策。同时,也要加强央地两级 AI 政策有机承接与延续,综合运用供给型、环境型与需求型政策工具,推动政策快速落地。

第二,因地制宜、分阶段多目标持续性推进。 "技术领先"成为各地政府推动 AI 发展的首要目标。东部地区、东北地区在实现 AI"技术领先"的同时,兼顾"理论突破"、"产业转型"、"创新体系"。相对而言,中部地区忽视了"理论突破"和 "伦理安全"。西部地区忽视了"创新体系"的构建。因此,地方政府要因地制宜,结合各省市地区的优势与特征,以《规划》为蓝本,分阶段、多目标的制定政策集,促进地区 AI 的特色发展。

第三,在创新政策制定过程中要充分吸纳利益相关者的参与。在对央地两级 AI 政策量化统计中,企业、高校、科研机构、政府等主体多次析出。各地政策侧重发挥企业在 AI 技术创新、场景开拓中的主体作用;发挥高校、科研机构在理论突破、人才培育中的活力;深入各级政府在伦理安全保障、创新体系构建的引导作用。相对忽视了受众群体和社会群体的能动性。因此,各地政府应以《规划》为蓝本,将 AI 技术和产品受众群体和社会群体纳入政策施力主体,促进社会群体和受众群体全体融入创新循环体系当中,从而加速创新应用。

第四,在创新政策实施中要综合运用多类政策工具,优化三类政策工具的比例结构。当前我国地方层面 AI 政策工具组合较为单一,均以供给型工具为主,以需求型工具为辅,环境型政策工具的应用则明显不足。因此,地方政府应以《规划》为蓝本,因地制宜,优化三类政策工具组合结构。譬如,在强化需求型政策工具的应用时,充分运用政策采购的方式将部分任务交给具有资质和实力的 AI 企业。在强化环境型政策工具的应用时,组织和鼓励多元主体参与国内国际标准化工作,完善行业技术标准体系的同时,增强 AI 国际话语权;同时加强知识产权保护力度,优化创新环境和营商环境,进而激发市场主体的创新动力。

参考文献

[1]单晓红,何强,刘晓燕,等."政策属性—政策结

第258页 www. globesci. com

- 构"框架下人工智能产业政策区域比较研究 [J].情报理论与实践,2021,44(3):194-202.
- [2]李新娥,何勤,李晓宇,等. 基于政策量化的人工智能产业政策对制造业就业的影响研究[J]. 科技管理研究,2020,40(23):197-203.
- [3]汤志伟,雷鸿竹,郭雨晖.政策工具-创新价值链 视角下的我国地方政府人工智能产业政策研究 [J].情报杂志,2019,38(5):49-56.
- [4]李良成,李莲玉.目标一工具一产业链三维框架下人工智能产业政策研究[J].自然辩证法研究,2019,35(10):112-118.
- [5]曾坚朋,张双志,张龙鹏. 中美人工智能产业政策体系的比较研究——基于政策主体、工具与目标的分析框架[J]. 电子政务,2019(6):13-22.
- [6]贾开,郭雨晖,雷鸿竹.人工智能公共政策的国际比较研究:历史、特征与启示[J].电子政务,2018(9):78-86.
- [7]汤志伟,雷鸿竹,周维.中美人工智能产业政策的比较研究——基于目标、工具与执行的内容分析[J].情报杂志,2019,38(10):73-80.
- [8]阿里·冈迪埃斯,托拜厄斯·梅特勒,徐丽梅. 战略性构建人工智能:33 个国家和地区的人工 智能产业政策分析[J]. 国外社会科学前沿, 2023(8):50-64.
- [9]李云鹏,苏崇阳. 拜登政府人工智能产业政策探析[J]. 国防科技,2022,43(5):86-95.
- [10]夏立平,马艳红. 拜登政府与特朗普政府人工智能战略比较研究[J]. 太平洋学报,2022,30 (8):72-83.
- [11]徐金金,朱雯欣. 拜登政府对华数字"脱钩"政策的新进展、影响及中国应对[J]. 科技创新发展战略研究,2023,7(3):54-64.
- [12]朱荣生,陈琪. 美国对华人工智能产业政策:权力博弈还是安全驱动[J]. 和平与发展,2022

- (6):47-70,154-155.
- [13]周庆山,郑霞,黄国彬.人工智能伦理规范核心原则的政策文本内容分析[J].重庆邮电大学学报(社会科学版),2022,34(5):9-20.
- [14] 陈少威, 吴剑霞. 人工智能治理风险和工具的识别与匹配研究——基于政策文本的分析 [J]. 中国行政管理, 2022(9):23-30.
- [15]肖红军,阳镇. 数字科技伦理监管:美国进展与中国借鉴[J]. 财经问题研究,2023(6):73-86.
- [16]程慧荣,黄国彬,郑琳. 非结构化文本分析软件 比较研究——以 KH Coder 和 Wordstat 为例 [J]. 图书与情报,2015,164(4):110-117,122.
- [17] ROTHWELL R, ZEGVELD W. Industrial innovation and public policy; preparing for the 1980s and the 1990s [M]. Santa Barbara; Greenwood Press, 1981.
- [18]张宝建,李鹏利,陈劲等. 国家科技创新政策的 主题分析与演化过程——基于文本挖掘的视 角[J]. 科学学与科学技术管理,2019,40(11): 15-31.
- [19] HIGUCHI K. KH coder 3 reference manual [M].

 Kioto (Japan): Ritsumeikan university, 2017.
- [20]王卓玉,袁磊,张文超. 基于 KH Coder 文本数据挖掘的中日 STEM 教育研究模式对比[J]. 现代远程教育研究,2020,32(2):56-63.
- [21]金燕,杨会娟,毕崇武,等.面向老年人的我国数字包容政策量化分析研究[J].现代情报,2023,43(3):53-63.
- [22] 杨佳雯,赵志耘,高芳,等.基于文本量化分析的中国省级人工智能政策布局研究[J].现代情报,2022,42(7):125-135.
- [23]李明,曹海军. 中国央地政府人工智能政策比较研究——个三维分析框架[J]. 情报杂志, 2020,39(6):96-103,53.

www. globesci. com 第259页