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Abstract

Action recognition directly from compressed video streams (leveraging I-frames, motion vectors,
residuals) promises significant efficiency gains over pixel-based methods, but faces inherent chal-
lenges in achieving deep semantic understanding, especially when integrating rich textual priors
from Vision-Language Models (VLMs). The noisy and sparse nature of motion vectors and
residuals, complicates direct fusion with fine-grained semantics. To bridge this gap efficiently,
this work investigates adapting cross-modal fusion techniques within a parameter-efficient frame-
work tailored for the compressed domain. We introduce TCAR-Net, a text-driven dual-stream
architecture built on largely frozen pre-trained backbones. Its spatial branch processes [-frames
and residuals, while the motion branch encodes motion vectors (via a frozen ViT); both streams
integrate textual guidance using adapted fusion modules. Crucially, only these lightweight cross-
modal fusion components are fine-tuned, minimizing adaptation costs. Experiments on UCF101
and HMDB51 demonstrate TCAR-Net achieves competitive accuracy while operating directly on
compressed data, significantly reducing decoding overhead. Our findings validate that adapting
existing fusion strategies within a parameter-efficient setup is a feasible and effective approach
for enabling semantically rich action recognition directly in the compressed domain, offering a
practical pathway for efficient video understanding.

Keywords: Video Action Recognition; Compression-domain Features; Vision-Language
Models; Multi-modal Learning

1. Introduction

In recent years, video action recognition technology, as the core for understanding massive
video content, has been continuously driving the development of key applications such as intel-
ligent surveillance and autonomous driving[1]. Based on the data domain processing approach,
this task is currently divided into two categories: pixel domain and compressed domain action
recognition. The first group directly extracts spatiotemporal features from the raw RGB frame
sequences[2, 3, 4], offering high potential accuracy but often incurring significant computational
and storage costs due to reliance on fully decoded pixels and complex motion estimation (like
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optical flow), severely limiting real-time performance. To address this efficiency bottleneck, the
second group focuses on action recognition directly from compressed video streams, leverag-
ing readily available components like I-frames, motion vectors (MV), and residuals[5, 6, 7, 8, 9].
This approach promises substantial efficiency gains by avoiding full decoding and motion recom-
putation. However, existing compressed domain methods face significant hurdles in achieving
deep semantic understanding. Firstly, they often focus on single-modal modeling of compressed
features, neglecting the crucial guiding role text modality can play in reasoning across multiple
granularities. Secondly, the inherent nature of compressed data, particularly the noisy and sparse
motion vectors derived from block matching, introduces semantic ambiguity when used directly
for recognition without stronger semantic constraints.

To overcome these limitations and effectively infuse rich semantic understanding into effi-
cient compressed video analysis, this paper introduces TCAR-Net, a framework designed for
efficient text-guided action recognition directly from compressed video streams. Our approach
pioneers a synergistic integration of powerful pre-trained vision-language models (specifically
CLIP) with a parameter-efficient fine-tuning (PEFT) strategy tailored for the compressed domain.
At its core, TCAR-Net leverages frozen, high-capacity backbones: CLIP’s visual encoders (pre-
adapted on Kinetics-400) process the distinct signals from I-frames/residuals and motion vectors,
while a frozen CLIP text encoder provides robust language representations. This strategic freez-
ing preserves invaluable pre-trained knowledge while drastically reducing adaptation costs.

Bridging these potent but frozen priors relies on a minimalist yet effective adaptation strat-
egy: temporal dependencies are captured by a dedicated trainable sequence model, while textual
guidance is efficiently infused using a parameter-free mechanism [10] that leverages CLIP’s in-
trinsic cross-modal alignment to highlight semantic relevance, crucial for navigating compressed
data characteristics. Therefore, TCAR-Net tackles the core challenge by enabling deep seman-
tic reasoning directly on compressed video through a novel PEFT scheme. Instead of costly
full fine-tuning or designing complex new fusion modules from scratch, our innovation lies in
demonstrating how to efficiently orchestrate existing powerful components (frozen CLIP vari-
ants, a standard trainable sequence model, and a parameter-free saliency mechanism). This
specific architecture proves highly effective for adapting large models to the compressed do-
main, achieving strong performance while maintaining the crucial efficiency benefits inherent to
compressed stream processing.

Our main contributions are summarized as follows:

o We demonstrate the application of Parameter-Efficient Fine-Tuning (PEFT) for text-driven
action recognition specifically within the compressed video domain. By leveraging frozen
CLIP-based backbones and training only minimal components, our approach significantly
reduces adaptation costs while enabling the integration of strong semantic priors.

o We propose TCAR-Net, a carefully designed architecture that efficiently adapts power-
ful pre-trained models (CLIP+K400) to compressed video signals. This involves using a
trainable sequence model for temporal modeling followed by a parameter-free mechanism
to inject text guidance, effectively handling noise and sparsity in compressed data.

e We achieve competitive action recognition accuracy on standard benchmarks (UCF101,
HMDB51) while operating directly on compressed data. Our results validate that the pro-
posed PEFT strategy and architecture offer a practical and effective pathway for semanti-
cally rich video understanding without the overhead of full decoding, balancing accuracy
and efficiency.
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2. Related Work

2.1. Pixel Domain Video Action Recognition

Traditional video action recognition methods primarily focus on spatiotemporal modeling in
the pixel domain. Two-Stream Networks [2] pioneered this direction by leveraging RGB frames
for static appearance features and optical flow for motion cues. Subsequent works further im-
proved spatiotemporal representation learning through architectures like 3D convolutions [3] and
spatiotemporal factorized convolutions [4]. However, the reliance on optical flow estimation in-
troduces a massive computational overhead, severely limiting real-time performance and hinder-
ing deployment on resource-constrained edge devices. Moreover, while these methods enhance
semantic reasoning, they still suffer from inefficiencies due to frame-wise decoding and motion
recomputation. The discrete nature of RGB frame sampling also poses challenges in capturing
long-range temporal dependencies, making it difficult to balance accuracy and efficiency in de-
ployment scenarios with limited computational resources. In contrast, our work operates directly
on compressed video streams, avoiding the computationally expensive optical flow estimation
and full frame decoding, leading to significant efficiency gains.

2.2. Compressed Video Representation Learning

To reduce video decoding overhead, compressed domain methods directly model the inher-
ent features of video encoding standards (e.g., H.264/HEVC). Early work, CoViAR[S5], demon-
strated the effectiveness of I-frames, motion vectors (MV), and residuals in action recognition by
independently encoding compressed features using lightweight networks. Subsequent research
optimized compressed domain representations through strategies such as spatiotemporal atten-
tion and multi-scale feature fusion[11, 12, 13, 14], but they are still limited by the following
bottlenecks: 1) I-frames, due to large keyframe intervals, lead to the loss of continuous motion
information, hindering the capture of fine-grained action details; 2) The block-level discretiza-
tion of MVs makes them vulnerable to encoding noise introduced during compression, leading
to inaccurate motion representation; 3) Existing methods often stack single-modal features and
lack cross-modal collaboration mechanisms, failing to effectively leverage the complementary
information from different compressed features.

Consequently, relying solely on these inherently noisy and potentially sparse compressed
features (Points 1-3) makes it challenging to achieve robust fine-grained semantic distinction
between similar actions. This motivates leveraging external high-level semantic information,
such as textual guidance, to disambiguate representations and improve recognition accuracy in
complex scenarios.

These limitations often result in poor performance in complex scenarios with rapid motion or
significant lighting variations. Our work addresses these limitations by introducing a text-driven
dual-stream architecture that effectively integrates information from I-frames, motion vectors,
and residuals, while leveraging textual guidance to mitigate the noise and sparsity inherent in
compressed data.

2.3. Cross-Modal Video Semantic Understanding

Recently, the rise of visual-language models (VLMs), such as CLIP[15] and Florence[16],
has significantly advanced semantic understanding through cross-modal alignment. This paradigm
offers new possibilities for semantic reasoning in video tasks. Pioneering works like ActionCLIP[17]
and E-prompt[18] have successfully leveraged VLMs for video comprehension, achieving im-
pressive results in pixel-domain action recognition. These methods typically employ strategies
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such as adapting pre-trained models through fine-tuning (e.g., ActionCLIP’s "pretrain, prompt
and finetune” framework) or optimizing learnable prompts (e.g., E-prompt’s approach).

The success of these approaches powerfully demonstrates the effectiveness and potential of
using textual semantics to guide video understanding. However, their operation within the pixel
domain inherently necessitates full decoding of RGB frame sequences.

Consequently, while the value of text guidance for action recognition has been clearly val-
idated in the pixel domain, effectively and efficiently harnessing this capability directly within
the compressed domain remains an open challenge. Existing compressed domain research has
largely focused on single-modal feature encoding, lacking mechanisms to deeply integrate tex-
tual semantics with compressed features. This gap limits their ability to achieve the level of
semantic discrimination demonstrated by state-of-the-art pixel-domain VLM approaches, espe-
cially in complex scenarios.

Our framework, TCAR-Net, addresses this gap by pioneering the use of Parameter-Efficient
Fine-Tuning (PEFT) to adapt large Vision-Language Models (like CLIP) for effective text-driven
semantic understanding directly within the compressed video domain. By employing a carefully
designed parameter-efficient fine-tuning (PEFT) strategy, TCAR-Net efficiently adapts powerful
pre-trained VLMs (CLIP) to compressed video data, enabling semantically rich action recog-
nition without the computational overhead of full decoding or extensive fine-tuning, thereby
bridging the gap between the semantic power validated in the pixel domain and the efficiency
required for practical compressed domain applications.

3. The Proposed Approach

3.1. Overview: A PEFT Framework for Compressed Video

Our proposed method, TCAR-Net, introduces text-guided semantic understanding directly
within the compressed video domain through a Parameter-Efficient Fine-Tuning (PEFT) strategy
that adapts large-scale Vision-Language Models while preserving both efficiency and semantic
capabilities.

PEFT Strategy Rationalization. Our approach is grounded in three key principles: (1) Cross-
Modal Alignment Preservation: CLIP’s pre-trained visual-textual alignment remains effective
for compressed features through parameter-free text guidance. (2) Domain-Adaptive Extraction:
The frozen visual encoder maintains representational capacity across compressed modalities,
with I-frames leveraging similarity to natural images while residuals and motion vectors bene-
fit from semantic constraints. (3) Efficient Temporal Adaptation: Separating spatial extraction
(frozen) from temporal modeling (trainable) enables video adaptation without compromising
pre-trained spatial knowledge.

TCAR-Net strategically minimizes adaptation costs through:

e Freezing Backbones: A frozen CLIP visual encoder (V) processes all compressed signals
(I-frames, Residuals, Motion Vectors) and a frozen CLIP text encoder provides semantic
embeddings (E7), preserving cross-modal alignment while reducing trainable parameters.

e Training Minimal Components: Only essential components for temporal modeling:

trainable sequence models (7,) and adaptive fusion weights (B) for spatial and temporal
stream combination.

4 Datalntelligence



TCAR-Net: Text-Driven Compressed Action Recognition with Multimodal Fusion

I-frames
;ﬁ Spatial Embeddings ( Eg) Spatial Feature
i ‘ $ ‘ @ ‘ ‘ ‘ Aggregator FS
S =
Residuals T
Sequence Encoder

(Tseq.s) . .
Spatial Saliency
L

Salienc E SS
Y — 0.3
Generator
! Category Feature
/'\”;/’:“’ : Textual Embeddings (Ez) eory Fusion |—» S
o ° . .

about |
Loa [ [oa s ]
Generator ® S,
M

Motion Saliency

{pplyEve |
Makeup |

e

Sequence Encoder
(Tseq,m)
Motion vectors

Motion Embeddings (E )
OEE .

Motion Feature
# Frozen & Tunable S  Score ® Dot Product & Adaptive Fusion

Figure 1: The overall framework of our proposed method. The framework integrates I-frames, residuals, motion
vectors, and textual descriptions to enhance video understanding. The I-frame Encoder and Residual Encoder extract
spatial features, while the Motion Encoder captures motion dynamics from compressed video representations. The Tex-
tual Encoder encodes semantic information from textual descriptions. The extracted Spatial Embeddings and Motion
Embeddings are processed through a Saliency Generator, which assigns saliency scores to guide feature selection. The
Aggregator refines the spatial and motion features, resulting in Fs and F)s. These features are weighted by their re-
spective saliency scores (Ss and S /) via adaptive fusion, and the final representation S is obtained through the Fusion
module. Encoders marked are frozen during training.

o Employing Parameter-Free Mechanisms: Cross-modal text guidance is integrated via
a parameter-free attention mechanism (Sec 3.3), further enhancing semantics without in-
creasing trainable parameter count.

Built upon this PEFT foundation, TCAR-Net employs a dual-stream architecture (Figure 1)
where the spatial stream processes appearance information (I-frames/Residuals) and the motion
stream handles temporal information (Motion Vectors), both benefiting from shared frozen rep-
resentations and unified text guidance for effective compressed domain processing.

3.2. Dual-Stream Feature Extraction and Temporal Modeling

To effectively process the heterogeneous data within compressed streams, we utilize two
parallel pathways built upon the shared, frozen visual backbone and processed by the trainable
sequence model.

3.2.1. Unified Backbone Feature Extraction
The frozen CLIP visual encoder V is applied to extract features from the key compressed
components:

o I-frames (/) and Residual (R): E; = V({), Ex = V(R) capture spatial appearance and
fine-grained texture changes. E;, Eg € REXTxD,
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e Motion Vectors (MV): Ey = V(MV)) captures motion patterns. Ey € REXTxD,

Using a single V for all inputs ensures parameter efficiency.

3.2.2. Stream-Specific Processing and Adaptive Spatial Fusion
Before temporal modeling, the streams undergo specific processing:

o Spatial Stream: Recognizing the complementarity of I-frames (global context) and Resid-
uals (motion edges/texture), we introduce an adaptive fusion mechanism. Trainable param-
eters B = [B1, 5] generate dynamic weights via softmax:

exp(B;)

=——"r  je{l,2) (D
Z?ﬂexp(ﬁj) l

These weights combine the features, allowing the model to emphasize I-frames in low-
motion and Residuals in high-motion scenarios:

Eg =wiE; + woEp )

This yields the input spatial sequence Eg € RP*T*D,

e Motion Stream: The raw extracted motion features E; € RBXT*D

sequence for temporal modeling.

serve as the input

3.2.3. Trainable Sequence Modeling

To efficiently capture temporal dependencies, Es and Ej, are processed by separate train-
able sequence models. These are multi-layer (e.g., 6-layers) Transformer encoders with position
embeddings, denoted as 7, s for the spatial stream and 7, 5 for the motion stream:

E§ = Tyeqs(Es + Ps) 3)
E;\/I = Tseq,M(EM + PM) (4)

where Pg, Py, are position embeddings. These encoders model long-range temporal dependen-
cies, yielding temporally enriched features Ej, E},, € R¥*7*D,

3.3. Parameter-Free Text-Guided Cross-Modal Refinement

A key aspect of TCAR-Net is the integration of high-level semantic guidance from text to
actions, especially challenging in the potentially noisy compressed domain. Crucially, this is
achieved without introducing additional trainable parameters.

This mechanism operates on the temporally modeled visual features (E%, £/,) from temporal
encoders and the frozen textual embeddings (Ey € RM*P) derived from category descriptions
using the frozen CLIP text encoder, where N, is the number of classes.

3.3.1. Saliency Generation

For each visual stream X € {E}, E),}, we first generate saliency weights through text-visual
similarity:
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1. Cross-Modal Similarity Computation: Calculate similarity between visual features and
text embeddings:

Oy = sim(X, Er) € REXTNe (5)
where X € RBXTxD represents temporal visual features, and sim(:, -) denotes cosine simi-
larity.

2. Saliency Weight Generation: Normalize similarities to obtain saliency weights:

Wy = Softmax(®y /1) € REXTxNe ©

where 7 is a temperature parameter. Wy indicates the relevance of each temporal step for
different action categories.

3.3.2. Feature Enhancement via Saliency
The original visual features are enhanced using the generated saliency weights:

T
Fy = Z Wy © X; € REXND 7)

t=1

where © denotes element-wise multiplication. This yields enhanced features Fs and F) for
spatial and motion streams respectively.

3.4. Final Prediction via Category Matching and Fusion

3.4.1. Category Similarity Scoring
The enhanced features are compared with text embeddings to generate final scores:

Ss =sim(Fs,Er), Sy =sim(Fy, Er) € RPN )]

where S and S, represent the compatibility scores between video and class for spatial and
motion streams respectively.

3.4.2. Weighted Fusion
The final prediction score is obtained by fusing scores from both streams:

S =ASg + (1 — )S y € RBN: )

The class with the highest score in § for a given video is the final prediction. The hyperparameter
A allows balancing the contribution derived from combined spatial structure and fine-grained
changes against the contribution derived from explicit motion fields.

4. Experiments and Analysis

4.1. Datasets and Evaluation Metric

We evaluated our model under supervised learning on two primary datasets: UCF101 and
HMDBS51 . HMDBS1 contains 6,766 videos spanning 51 action categories, while UCF101 com-
prises 13,320 videos from 101 categories. For this typical video understanding task, we selected
action recognition and adopted the top-1 accuracy as the evaluation metric across all experi-
ments. Following [5], we used MPEG-4 encoded videos with an average of 11 P-frames per
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I-frame, uniformly resizing video resolution to 340x256. Sixteen clips were uniformly sampled
from each video, with their spatiotemporal positions determined by the GOP structure: random
GOP indices and intra-clip position sampling were employed during training for data augmenta-
tion, while deterministic center sampling was applied during testing. Spatial processing included
random corner cropping and horizontal flipping during training, and center cropping during test-
ing, with consistent spatial dimension handling across all inputs.

4.2. Implementation Details

For the backbone network, we adopt ViT as the encoder for I-frame/motion vector/residual
streams, pretrained on Kinetics-400 using raw video inputs. The text encoder from CLIP ViT-
B/32 is employed to encode textual information. To preserve prior knowledge from large-scale
datasets, all encoders remain frozen during training, with only the task-specific heads being
fine-tuned. The video recognition model is optimized using AdamW with a base learning rate
of 5e-5 (scheduled via cosine annealing), 81 = 0.9, 8, = 0.999 momentum parameters, and
0.2 weight decay. We implement a batch size of 256 across 20 training epochs, incorporating
a linear warmup strategy for the first 5 epochs to ensure training stability. The temperature
hyperparameter 7 is set to 0.01. All experiments are conducted on two NVIDIA 4090 GPUs.

4.3. Comparison with the State-of-the-art Approaches

Table 1: Comparison of different video action recognition methods. We report the top-1 accuracy (%) on HMDBS51
and UCF101 datasets.

Method Modality Pretrain Frames GFLOPs Tunable Params.[M] HMDB51 UCF101
Two-stream [2] RGB+Flow ImageNet1K 8 1600 31.2 59.4 88.0
TDN ResNet101 [19] RGB Kinetics 8+16 3240 - 76.3 97.4
ARTNet ResNet18 [20] RGB Kinetics 16 5875 - 70.9 94.3
VideoMAE ViT-B [21] RGB Kinetics 16 1080 87.0 733 96.1
MVFNet ResNet50 [22] RGB ImageNetl1K 16 1974 - 75.7 96.6
BIKE ViT/L[10] RGB+text Kinetics/CLIP 16 3728 230 81.7 97.7
Text4Vis ViT/L[23] RGB+text Kinetics/CLIP 16 3829 230.7 81.3 98.2
Refined-MV ResNet152 [24] I-Frame+MV+Res ImageNet1K - 142.5 59.7 89.9
IPTSN ResNet152 [25] I-Frame+MV+Res ImageNet1K 16+16+16 215 130.8 69.1 93.4
SIFT-Net I3D [13] I-Frame+MV+Res Kinetics 3+343 1971 - 723 94
MM-ViT ViT/B [14] I-Frame+MV+Res ImageNet1K 8+8+8 820 158.1 - 93.3
CoViAR ResNet152 [5] I-Frame+MV+Res ILSVRC 2012-CLS 34343 1222.0 142.5 59.1 90.4
CoViAR ResNet152 [5] I-Frame+MV+Res+flow ILSVRC 2012-CLS - 3970 - 70.2 94.9
DMC-Net I3D [6] I-Frame+MV+Res+flow - 34343 401 - 71.8 923
CVPT ViT/B [26] I-Frame+MV+Res Kinetics - 7722 0.5 69.7 95.5
Ours ViT/B I-Frame+MV+Res-+text Kinetics/CLIP 16+16+16  544.85 37.90 743 96.0
Ours ViT/L I-Frame+MV+Res-+text Kinetics/CLIP 16+16+16  3990.65 85.12 824 97.7

Compressed Video-based Methods. We first compare our method with compressed-domain
action recognition models, including CoViAR [5], MM-ViT [14], DMC-Net [6], SIFT-Net [13],
and CVPT [26]. Table 1 presents the top-1 accuracy results on HMDBS51 and UCF101.

Notably, our parameter-efficient tuning framework achieves comparable or even superior
performance to full fine-tuning paradigms while reducing computational demands. When em-
ploying the same ViT-B backbone, TCAR achieves a +2.7% accuracy gain over MM-ViT on
UCF101 while requiring 50% fewer GFLOPs and 3.17 times fewer tunable parameters. Com-
pared to SIFT-Net, our model demonstrates accuracy improvements of +2.0% and +2.0% on
HMDB51 and UCF101 respectively, with computational resources reduced by a factor of 2.6,
thereby demonstrating the efficiency of our approach.
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Besides the full fine-tuning methods, we also compare with representative efficient fine-
tuning models, including CVPT[26]. CVPT leverages Motion Vectors and Residuals to generate
conditional prompts.However, since CVPT solely relies on compressed-domain information and
lacks textual collaboration to enable efficient cross-modal inference, its achieved accuracy re-
mains limited. In contrast, our method leverages textual prior knowledge to align spatial and
temporal branches, outperforming CVPT by significant margins of 4.6% and 0.5% in accuracy
on HMDBS51 and UCF101 datasets, respectively.These results highlight the effectiveness of our
text-augmented dual-branch architecture in enhancing action recognition from compressed video
streams.

Raw Video-based Methods. Raw video-based methods generally achieve strong perfor-
mance due to their reliance on dense RGB frame sampling and large-scale pretraining. However,
our method significantly narrows the performance gap between compressed-domain and pixel-
domain approaches.

For instance, despite using only 36.8% of the tunable parameters of Text4Vis [23], our
method outperforms it by +1.1% on HMDBS51. Compared to BIKE [10], our ViT-L model
achieves a +0.7% absolute gain on HMDBS51, demonstrating the importance of integrating text
for enhanced feature representation.

Furthermore, our method maintains a substantially lower computational footprint compared
to raw video models such as TDN [19], ARTNet [20] and VideoMAE[21], while delivering com-
petitive or superior performance. These results validate our approach’s ability to efficiently utilize
compressed video features while leveraging textual semantics for improved temporal modeling
and action recognition.

4.4. Ablation Study

To evaluate the effectiveness of components in TCAR-Net, we conduct extensive ablation
studies. Without loss of generality, we use a pretrained ViT-B as the backbone and perform
experiments on the HMDBS51 dataset.

Analysis of Frozen Backbone Effectiveness in Compressed Domain. To address potential
concerns about feature extraction bias when applying CLIP’s frozen backbone to compressed
domain data, we first analyze the effectiveness across different compressed modalities. As shown
in Table 2, we evaluate I-frames, residuals, and motion vectors (MV) as individual modalities to
verify their information content and compatibility with frozen CLIP encoders.

Table 2: Ablation study on single-modality inputs.
I-frame Res MV | Top-1(%)
v 71.5

v 53.7
v 25.0

Modality-Specific Performance Analysis: The performance hierarchy aligns with the se-
mantic richness and similarity to CLIP’s training distribution. I-frames, being closest to natural
images, achieve the highest individual performance (71.5%), validating the frozen backbone’s ef-
fectiveness. Residuals, containing texture and boundary information of moving objects, achieve
moderate performance (53.7%) and demonstrate effectiveness for motion localization. Motion
vectors, while encoding temporal information, show lower individual performance (25.0%) due
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to their block-level discretization and encoding noise, making direct utilization challenging with-
out semantic constraints.

Table 3: Comparison between PEFT and Full Fine-tuning Strategies

Method Trainable Parameters | Memory | Accuracy(%)
Video Branch Full Fine-tune 296.49M (82.38%) 13.95GB 74.7
Video+Text Full Fine-tune 359.91M (100.00%) 14.75GB 74.1
PEFT (Frozen Backbones) 37.91M (10.53%) 7.02GB 74.3

Complementary Information Integration: The substantial performance gain from multi-
modal fusion (74.3% vs. individual modalities) demonstrates that our architecture effectively
compensates for single-modality limitations through cross-modal collaboration. This validates
our hypothesis that frozen CLIP encoders maintain sufficient representational capacity when
combined with appropriate fusion mechanisms.

PEFT Strategy Validation: We conduct comprehensive ablation experiments to evaluate the
effectiveness of Parameter-Efficient Fine-Tuning (PEFT) compared to full fine-tuning strategies
under a fixed architecture. As shown in Table 3, our PEFT approach demonstrates significant
advantages in training efficiency while maintaining competitive performance. The experimental
results reveal that our PEFT strategy (frozen backbones + fine-tuned components) requires only
37.91M trainable parameters (10.53% of total), achieving a remarkable 7.8x reduction compared
to video branch full fine-tuning and 9.5x reduction compared to full model fine-tuning. In terms
of GPU memory consumption, PEFT reduces memory usage by 2.1x (from 14.75GB to 7.02GB),
making our approach more accessible for resource-constrained environments. This demonstrates
that our PEFT strategy effectively balances training efficiency and model performance by selec-
tively fine-tuning only the critical components while keeping the pre-trained backbones frozen.

Table 4: Pretrained Model Comparison
Pretrain Top-1 (%)

CLIP 68.8
K400 74.3

Ablation Study on Pretraining Strategies. As shown in Table 4, we systematically compare
the impact of different pretraining approaches on our model’s performance. When initialized with
CLIP, the model achieves 68.8% Top-1 accuracy. Notably, pretraining on Kinetics-400 (K400)
action recognition dataset yields a significant improvement of +5.5%, reaching 74.3% Top-1
accuracy. This demonstrates that video-based pretraining provides stronger temporal modeling
capabilities for our action localization task compared to image-text multimodal pretraining. The
results validate our hypothesis that domain-specific pretraining strategies are critical for video
understanding tasks.

Component Effectiveness and Fusion Strategies. Table 5 systematically evaluates the con-
tribution of key components in our framework. The full configuration with I-frame, motion vec-
tors (MV), spatial-branch residual (S), and feature fusion achieves the best performance (74.3%).
Replacing spatial residuals with temporal ones (T) causes a 0.9% accuracy drop (73.4%), indi-
cating spatial modeling is more critical for our task. Removing residual blocks entirely degrades
performance to 72.8%, validating their necessity in learning hierarchical representations. The
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Table 5: Ablation study on components and fusion strategies

I-frame Residual MYV Fusion Top-1(%)

v (S) v v 74.3
v (T) v v 73.4
v X v v 72.8
v (S) X x 73.2

e : Component is used; x: Component is removed.

e (S): Residual in Spatial branch; (T): Residual in Temporal branch.

configuration without MV and fusion shows a 1.1% performance gap (73.2%), confirming that
explicit motion modeling and multi-modal fusion synergistically enhance action understanding.

Table 6: A Ablation Study
A 02 03 04 05 0.6 0.7 0.8

Top-1 (%) 732 737 743 73.1 742 742 735

Fusion Weight Analysis. As formulated in Eq. 9, the hyperparameter A controls the trade-off
between spatial and temporal branches. Table 6 reveals a clear performance peak at A = 0.4 with
74.3% accuracy. Extreme allocations (4 = 0.2 or 0.8) degrade accuracy by 1.1-1.2%, suggesting
over-reliance on either modality harms representation capability. The symmetrical pattern around
A = 0.4 confirms that temporal information dominates while requiring complementary spatial
cues for optimal effectiveness.

Table 7: Comparison of inference time (ms) per video.

Method Pre-processing | Model Inference | Full Pipeline
ActionCLIP[17] 41.51 11.52 53.03
TCAR-Net (Ours) 6.11 26.32 32.43

Inference Efficiency Analysis. Table 7 presents comprehensive timing analysis comparing
our TCAR-Net with ActionCLIP. Our method achieves 6.8x speedup in pre-processing (6.11ms
vs 41.51ms per video) by eliminating full video decoding overhead. While multi-modal en-
coding introduces modest computational overhead, the substantial preprocessing gains result in
1.6x end-to-end speedup (32.43ms vs 53.03ms per video), validating our core hypothesis that
compressed-domain processing substantially improves overall efficiency.

5. Conclusion and Future Work

In this paper, we propose TCAR-Net, which is, to the best of our knowledge, the first text-
driven multi-modal action recognition framework in the compressed domain. Our method ad-
dresses the gap between semantic reasoning and efficiency in video understanding. Our method
introduces a dual-stream collaborative paradigm, where a spatial enhancement branch leverages
I-frame and residual fusion with text guidance to improve spatial representation, while a motion
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distillation branch refines motion vectors using vision transformers and textual priors to enhance
temporal modeling. By aligning these two branches through a text-informed fusion mechanism,
TCAR-Net achieves superior semantic-spatiotemporal alignment, significantly improving action
recognition in compressed videos.

Extensive experiments on UCF101 and HMDBS51 demonstrate that our approach outper-
forms existing compressed-domain models while achieving competitive performance compared
to pixel-domain methods. These results highlight the effectiveness of leveraging text-driven
multi-modal interactions to enhance action recognition without incurring the overhead of optical
flow computation.

In future work, we aim to explore more fine-grained textual prompts to further enhance cross-
modal alignment and investigate the generalization of TCAR-Net to real-world video scenarios,
including low-latency edge deployment. We believe that our work provides a scalable and effi-
cient pathway toward semantically enriched action recognition in compressed video streams.
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