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Abstract  
The transcriptional heterogeneity and cellular ecosystem diversity of HCC await further exploration. Single-cell and 
bulk RNA sequencing data from HCC cells are analyzed to generate a LASSO model for HCC prognostication. CCK-8, 
scratch assay, flow cytometry, and ROS assays are used to validate how TREM1 may affect HCC cell biological 
behaviors in vitro. qPCR, western blot analysis, immunohistochemistry, and flow cytometry are applied in a xe
nograft model to test the effects of TREM1 knockdown on carcinogenesis and the tumor microenvironment. A 
single-cell atlas of the multicellular ecosystem comprising 13 cell types in HCC is constructed. On the basis of ligand- 
receptor marker genes specifically extracted from the cell populations, a prognostic model is defined and subse
quently validated in additional clinical cohorts. For the first time, a heterogeneous immune microenvironment is 
observed between low- and high-risk patients, primarily involving macrophages, CD4+ T cells, M1 macrophages, 
and regulatory T (Treg) cells. Sufficient evidence validates the positive effects of TREM1 on HCC cell proliferation, 
migration, and apoptosis. Additionally, TREM1 positively modulates the levels of the proinflammatory cytokines IL- 
1β, TNF-α, and MCP-1. TREM1 downregulation alters the proportions of M1 macrophages and Tregs in the tumor 
tissue from our HCC xenograft model. Eventually, the Nrf2/Keap1 signaling pathway, which is related to oxidative 
stress, is shown to be a key pathway downstream of TREM1 downregulation. In summary, we construct a novel 
prognostic model for HCC on the basis of ligand-receptor marker genes and investigate the role of TREM1 in HCC 
progression and its impact on the TME. 
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Introduction 
Hepatocellular carcinoma (HCC) is a highly aggressive malignancy 
with a rising incidence globally. The prognosis is still dismal, with 
an overall five-year survival rate of 12%–15% [1]. In the past few 
years, remarkable progress has been made in treatment regimens: 

antiangiogenic multikinase agents (sorafenib [2] and lenvatinib [3]) 
have gained approval as first-line systemic therapeutic options for 
unresectable HCCs; other multikinase inhibitors as well as immune 
checkpoint blockade agents against PD-1/PD-L1 have been 
approved as second-line treatments [4]. Nevertheless, unresectable 
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HCC patients still face increased unmet medical needs and 
unsatisfactory survival outcomes. A tumor is an extremely complex 
ecosystem, defined by spatiotemporal relationships between 
heterogeneous cell populations composed of malignant, immune, 
and stromal cell types [5]. Hence, characterizing the landscape of 
the HCC multicellular ecosystem and critical components linked to 
tumor progression and immunotherapy is essential. 

Using bulk transcriptome approaches, prior research has revealed 
that each HCC tumor has its own personalized expression profile 
containing diverse transcriptional programs [6]. Despite the 
progress in bioinformatics, deconvolution algorithms are unable 
to analyze rare cell populations and cell-to-cell interplay, among 
other methods. Single-cell RNA sequencing (scRNA-seq) has been 
proven to be an efficient tool for characterizing expression data 
across numerous cells simultaneously, which enables the genera
tion of integrated profiles of diverse cell types in tumors under 
different biological states or conditions [7]. Recently, scRNA-seq 
research has provided unique insights into many aspects of HCC 
biology. For example, scRNA-seq reveals the immunosuppressive 
landscape and tumor heterogeneity of HBV-related HCC [8]. Single- 
cell analysis has revealed that proliferative Prom1+ tumor- 
propagating cells, as well as their dynamic cellular transitions, are 
involved in HCC development [9]. Through single-cell transcrip
tomic profiling, the landscape of intratumoral heterogeneity and 
stemness-associated subpopulations has been revealed in HCC [10]. 

In the present study, we integrated single-cell and bulk 
transcriptome analyses to reveal a novel ligand-receptor-based 
prognostic model for HCC and revealed the role of TREM1 in 
controlling the malignant behaviors of HCC cells both in vitro and in 
vivo. With these insights, our findings revealed that transcriptional 
heterogeneity and cellular ecosystem diversity are associated with 
HCC prognosis. 

Materials and Methods 
Single-cell and bulk RNA-seq data acquisition 
From the Gene Expression Omnibus, scRNA-seq data from 10 HCC 
samples were gathered from the GSE149614 dataset (https://www. 
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE149614) [11]. This 
study also acquired bulk transcriptome data and data on the clinical 
traits of 365 HCC patients from The Cancer Genome Atlas-Liver 
Hepatocellular Carcinoma (TCGA-LIHC) (https://portal.gdc.cancer. 
gov/repository). Two additional clinical cohorts (GSE14520 and 
GSE76427) were used to validate the stability of the predictive 
model in HCC. 

Quality control and preprocessing 
The BarcodeRank function of the DropletUtils package was adopted 
for detecting the expression of single cells, and empty droplets 
without any gene expression were filtered out via the emptyDrops 
function [12]. Cells with a number of unique molecular identifiers 
(UMIs) < 100 were then removed. Through the calculation of the 
QCMetrics function of the Scater package [13], gene expression in 
single cells was quantified. Following the criteria of the proportions 
of mitochondrial genes > 10% and ribosomal genes > 10%, the cells 
were further filtered out. 

Data normalization 
After filtering, the expression matrix was normalized via the 
normalizeData function of the Seurat package [14]. The first 2000 

genes that were highly variable from cell to cell were selected via the 
FindVariableFeatures function. After linear scaling of the scRNA- 
seq data with the ScaleData function, principal component analysis 
(PCA) was carried out on the data for dimensionality reduction 
analysis with the RunPCA function. Principal components (PCs) 
with larger standard deviations (SDs) were screened for subsequent 
analysis. 

Cell clustering, annotation, and marker gene 
identification 
Single cells were clustered using the ‘FindVariableFeatures’ and 
‘FindClusters’ functions in the Seurat package. The ‘RunUMAP’ 
function was implemented to perform dimensionality reduction 
through uniform manifold approximation and projection (UMAP) 
[15]. In accordance with the known cell markers from CellMarker 
2.0 (http://biobigdata.hrbmu.edu.cn/CellMarker) [16], the cell 
clusters were annotated. Marker genes were identified using the 
‘FindAllMarkers’ function of the Seurat package, adhering to the 
criteria of log (fold change) ≥ 0.1, expression proportion in cell 
clusters > 0.25, and p < 0.05. 

Trajectory analysis 
The Monocle tool [17] was employed for trajectory analysis of each 
cell cluster. Genes expressed in more than 5% of the cells were 
selected. Using the ‘reduceDimension’ function, dimensionality 
reduction analysis was implemented, and the cells were clustered 
via the ‘clusterCells’ function. Afterwards, DEGs (p value < 0.05) 
between clusters were determined through the ‘differentialGeneT
est’ function. On this basis, dimensionality reduction analysis was 
conducted using the DDRTree method. The cells were then ordered 
along the trajectory by the ‘orderCells’ function. 

Cell cycle analysis 
Following the marker genes of the cell cycle [18], the cell clusters 
were scored and classified into G1, G2/M and S phases by using the 
‘CellCycleScoring’ function in the Seurat package. 

Ligand-receptor network analysis 
In accordance with known ligand-receptor relationships [19], 
known ligand-receptor pairs were downloaded from the DLRP27 
(http://dip.doe-mbi.ucla.edu/dip/dlrp/dlrp.txt), IUPHAR28 (http:// 
www.guidetopharmacology.org/DATA/interactions.csv) and 
HPMR29 (http://receptome.stanford.edu/) databases. After map
ping to the current HGNC symbols, we obtained 469, 371 and 855 
ligand-receptor pairs from DLRP, IUPHAR and HPMR, respectively. 
An additional 128 orphan ligands and 479 orphan receptors were 
also downloaded from HPMR (26 June 2014). The relationship pairs 
between receptors and ligands in marker genes of cell types were 
determined. Next, a ligand-receptor network was visualized via 
Cytoscape software [20]. 

Least absolute shrinkage and selection operator 
(LASSO) analysis 
Patients from the TCGA-LIHC dataset were randomized into the 
discovery set or test set at a 7:3 ratio. On the basis of the marker 
genes obtained from the ligand-receptor network, as well as bulk 
transcriptome profiling and clinical information, feature genes were 
selected from the discovery set using the ‘glmnet’ approach [21]. 
The risk score was computed using the transcript levels and 
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coefficients of the feature genes. Univariate Cox regression analysis 
of the feature genes associated with patient survival was conducted. 
The patients were classified into low- or high-risk subgroups on the 
basis of the median risk score. Kaplan-Meier curves for overall 
survival (OS) or disease-free survival (DFS) were plotted using the 
‘survival’ package, with the log-rank test used to estimate survival 
differences. Receiver operating characteristic (ROC) curves were 
also constructed. The repeatability of the LASSO model was verified 
in both the test set and the total set. In addition, the risk score was 
compared across diverse clinical traits. 

Gene set enrichment analysis (GSEA) or single-sample 
GSEA (ssGSEA) 
With the hallmark gene sets obtained from the Molecular Signatures 
Database as the reference [22], the hallmark enrichment score was 
computed using GSEA [23] or ssGSEA [24]. The infiltration scores of 
28 immune cells were estimated using ssGSEA. 

Cell culture and transfection 
HuH-7 and Hep3b HCC cells were purchased from Procell Life 
Science & Technology Co., Ltd. (Wuhan, China). The cells were 
cultivated in Dulbecco’s modified Eagle’s medium (DMEM; cat. no. 
21969035; Gibco, Grand Island, USA) supplemented with 10% fetal 
bovine serum (FBS; Gibco) and penicillin-streptomycin (100 μg/mL, 
P078; Sigma-Aldrich, St Louis, USA) in a humidified environment 
with 5% CO2 at 37°C. 

Small interfering RNAs (siRNAs) targeting TREM1 (si-TREM1) 
and scrambled siRNAs (normal control, NC) were acquired from 
Sangon Biotech (Shanghai, China). The sequences of the siRNAs 
that generated efficient knockdown were as follows: si-TREM1-1: 
5′-GGAUCAUACUAGAAGACUATT-3′; si-TREM1-2: 5′-GGUCAUUU 
GUACCCUAGGCTT-3′; and si-Control: 5′-UUCUCCGAACGUGUCA 
CGUTT-3′. The cDNA encoding TREM1 was amplified and 
subcloned and inserted into the pcDNA3.1 plasmid (Invitrogen, 
Carlsbad, USA), with the empty plasmid pcDNA3.1 serving as 
a control. The plasmids were transfected into cells via Lipofecta
mine 2000 (Invitrogen) in accordance with the manufacturer’s 
protocols. 

Real-time reverse transcription polymerase chain 
reaction (qRT-PCR) 
Total RNA was extracted with an RNAiso Plus kit (Takara, Dalian, 
China). cDNA was synthesized via the PrimeScript RT reagent kit 
(Takara). The primers were shown as follows: TREM1, 5′- 
GAACTCCGAGCTGCAACTAAA-3′ (forward), 5′-TCTAGCGTG 
TAGTCACATTTCAC-3′ (reverse); IL-1β, 5′-ATGATGGCTTATTA 
CAGTGGCAA-3′ (forward), 5′-GTCGGAGATTCGTAGCTGGA-3′ (re
verse); TNF-α, 5′-CCTCTCTCTAATCAGCCCTCTG-3′ (forward), 5′- 
GAGGACCTGGGAGTAGATGAG-3′ (reverse); MCP-1, 5′-CAGCCA 
GATGCAATCAATGCC-3′ (forward), 5′-TGGAATCCTGAACCCA 
CTTCT-3′ (reverse); and GAPDH, 5′-ACAACTTTGGTATCGTGGA 
AGG-3′ (forward), 5′-GCCATCACGCCACAGTTTC-3′ (reverse). The 
transcript levels were detected using the ABI 7500 Fast Real-Time 
PCR system (Foster City, USA). Relative gene expression was 
measured using the 2–ΔΔCt method. 

Scratch assay 
The cells were inoculated in a 6-well plate and grown to confluence. 
The cell monolayer was scraped with a sterile 10-μL pipette tip, 

washed twice with PBS, and then cultured in serum-free DMEM. 
Images of the scratches were recorded at 0 h and 24 h under a light 
microscope (Nikon, Tokyo, Japan). 

Reactive oxygen species (ROS) measurement 
Intracellular ROS were measured using the fluorescent dye 2,7- 
dichlorofluorescence diacetate (DCFH-DA; Sigma-Aldrich). Fluor
escence images were acquired under a confocal laser scanning 
microscope (Nikon). 

Immunoblotting 
The cells were lysed with radioimmunoprecipitation assay buffer 
plus 1% protease inhibitors for half an hour on ice. The extracted 
proteins were subjected to sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis, followed by transfer to a PVDF membrane 
(Millipore, Billerica, USA). After being blocked, the membrane was 
incubated with primary antibodies against Nrf2 (1:500; ab137550; 
Abcam, Cambridge, UK), Keap1 (1:2000; ab227828; Abcam), or 
GAPDH (1:10,000; ab181603; Abcam), as well as a horseradish 
peroxidase-conjugated anti-rabbit secondary antibody. Proteins 
were detected using Pierce™ ECL Western blotting substrate 
(Sigma-Aldrich ). The images were processed and analyzed using 
ImageJ software. 

Xenograft assay 
BALB/c-Nude mice (6–8 weeks old, female, weighing approximately 
20–25 g, SPF grade) were purchased from Changzhou Cavins 
Laboratory Animal Co. Ltd. [SCXK(SU)2021-0013; Changzhou, 
China]. HuH-7 cells with stable knockdown of TREM1 were 
cultured in DMEM supplemented with 20% FBS, 100 U/mL 
penicillin, and 100 μg/mL streptomycin in a cell culture incubator 
with 5% CO2 at 37°C. The cells were digested with trypsin when 
they reached 80%–90% confluence in the culture dish. After 
centrifugation at 200 g, the supernatant was discarded. The cells 
were washed with PBS and resuspended in PBS, and the cell 
concentration was adjusted to 2 × 106 cells/mL. A xenograft model 
was then established. Six mice were allocated to each experimental 
group. Following disinfection with iodophor, a 1-mL syringe was 
used to aspirate 0.2 mL of the mixed cell suspension (NC/si-TREM1- 
1/si-TREM1-2) at a density of 2 × 106 cells/mL. The needle of the 
syringe was inserted through the animal’s skin and moved to the 
injection site to slowly inject the cell suspension. Thirty days after 
the operation, all the mice were euthanized, and the tumor tissues 
from each group were excised by autopsy for subsequent experi
mental tests. 

Establishment of an orthotopic liver cancer mouse 
model 
A total of 25 μL and 1 × 107 HuH-7-luc cells were directly injected 
into the livers of BALB/c-Nude mice through an incision in the skin, 
and the wounds were sutured promptly, followed by anti- 
inflammatory treatment. Six mice were assigned to each experi
mental group. 

Flow cytometry 
The cells were collected by centrifugation at 300 g for 5 min, and the 
supernatant was discarded. The cells were resuspended twice with 
pre-cooled PBS and centrifuged again at 300 g for 5 min. Then, 
300 μL of binding buffer was added to re-suspend the cells. For 
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Annexin V-FITC labelling, 5 μL of Annexin V-FITC was added and 
mixed gently, after which the cells were incubated for 15 min at 
room temperature in the dark. For PI labelling, 10 μL of PI stain was 
added, the mixture was mixed gently, and the cells were incubated 
for 10 min at room temperature, ensuring that light exposure was 
avoided. Antibodies against CD68-PE (566386; BD Biosciences, 
Franklin Lakes, USA), F4/80-PE (ab105156; Abcam), CD11c-APC 
(ab210306; Abcam), CD4-FITC (ab269349; Abcam) and Foxp3-PE 
(ab210231; Abcam) were used to label different cell types. Finally, 
the cells were analyzed by flow cytometry with a FACScan flow 
cytometer (BD Biosciences). 

CCK-8 assay 
We adhered to the instructions provided in the CCK-8 kit manual 
(C0038; Beyotime Biotechnology, Shanghai, China) as follows. 
First, 10 μL of the CCK8 solution was added to each well. The plate 
was subsequently incubated in the incubator for 1 h. Afterwards, 
the absorbance at 450 nm was measured using an enzyme-linked 
immunosorbent assay (ELISA) plate reader (Tecan Group Ltd., 
Männedorf, Switzerland,). 

Immunohistochemistry 
The frozen sections were washed 3 times with PBS, heated to 
boiling at high heat, and then reduced to low heat for 20 min. The 
sections were naturally cooled, washed 3 more times with PBS, 
placed in a 3% H2O2 solution, and incubated at room temperature 
for 10 min to block endogenous peroxidase. The sections were 
subsequently washed 3 times with TBS for 5 min each time, shaken 
dry, and then blocked with 5% BSA for 20 min. After being washed 
3 times with PBS, 50 μL of the diluted anti-Ki-67 antibody (1:100; 
MCE, Monmouth Junction, USA) was added to each section to cover 
the tissues, and the sections were incubated at room temperature 
overnight at 4 °C. The sections were then washed 3 times with PBS 
and incubated in a 3% H2O2 solution for 10 min. The PBS solution 
was removed, and 50 μL of secondary antibody from the corre
sponding species was added to each section and incubated at room 
temperature for 50 min. After washing with PBS, 50 μL of freshly 
prepared DAB solution was added to each section, and the sections 
were rinsed with distilled water. The sections were stained with 
hematoxylin for 25 s, rinsed with running water for 5 min, and 
washed with distilled water for 1 min. Finally, the sections were 
immersed in xylene for a few minutes, air-dried, and sealed with 
drops of neutral gum before being photographed with a microscope 
(IX71; Olympus, Tokyo, Japan). 

Transwell assay 
The cell migration assay was carried out using 8-μm polycarbonate 
transwell filters (Corning). Matrigel (BD Biosciences) was thawed 
overnight at 4°C. On the following day, 150 μL of the Matrigel 
solution was added to each well of a 24-well plate. Subsequently, 
the plates were incubated at 37 °C for 30 min. After that, the cells 
were treated with clotrimazole for 24 h. Then, HCC cells were 
seeded into the upper chamber, and DMEM medium supplemented 
with 10% FBS was added to the lower chamber. The plate was 
incubated for another 24 h. After incubation, noninvading cells 
were carefully wiped off. The invading cells were fixed with 
paraformaldehyde for 15 min, stained with crystal violet for 15 min, 
and counted under a microscope at 200× magnification. The number 
of invading cells in six randomly selected fields was determined. 

Statistical analysis 
Data were evaluated using R packages (version 3.5.1) or GraphPad 
Prism software (version 9.0.1). Comparisons between two groups 
were performed using Student’s t test, the Wilcoxon test, or the chi- 
square test. Comparisons between ≥ 3 groups were conducted via 
one- or two-way analysis of variance (ANOVA). Pearson’s or 
Spearman’s test was used for correlation analysis. P < 0.05 was 
considered statistically significant. 

Results 
A single-cell atlas of the multicellular ecosystem in HCC 
We initially collected single-cell RNA sequencing (scRNA-seq) data 
from hepatocellular carcinoma (HCC) for further evaluation. After 
quality control and preprocessing (Supplementary Figure S1A–E), 
as well as data normalization (Supplementary Figure S2A–E), single 
cells were clustered into 19 distinct cell clusters (Figure 1A). 
Following cell annotation, 13 cell populations were identified, 
comprising cancer stem cells (n = 2256), liver stem cells (n = 1149), 
progenitor cells (n = 1976), mucosal cells (n = 1544), CD4+ T cells (n 
= 6137), CD8+ cytotoxic T cells (n = 3187), regulatory T (Treg) cells 
(n = 2540), plasma cells (n = 1910), naive B cells (n = 1253), 
regulatory B cells (n = 1557), natural killer cells (n = 1678), 
macrophages (n = 7555), and M1 macrophages (n = 779) (Figure 
1B). Figure 1C illustrates the top 10 marker genes of each cell 
population. Additionally, the top marker for each population is 
presented (Figure 1D). Among the cell populations, macrophages 
and CD4+ T cells, along with their major subgroups, M1 macro
phages and regulatory T (Treg) cells, respectively, were selected as 
the key cell subgroups for subsequent analysis. 

Cell cycle distribution and trajectory analysis of key cell 
populations 
The cell cycle phase of each cell population was scored on the basis 
of the expression of marker genes (Figure 1E). The distribution of 
cells in the G1, G2/M, and S phases revealed remarkable 
heterogeneity across each cell population (Figure 1F). Most of the 
key cell populations predominantly remain in the G1 phase, 
followed by the S and G2/M phases. Notably, G1-phase macro
phages presented the highest cell count among all the phases. 

To further investigate cell differentiation, we then determined the 
pseudotime of various cell populations. Using the Monocle tool, we 
conducted differential gene testing and branched expression 
analysis modelling, the results of which are presented in Supple
mentary Tables S2 and S3. As shown in Figure 2, both macrophages 
and CD4+ T cells, as well as their major subgroups, exhibited clearly 
distinct patterns of pseudotime trajectories and gene expression. 
The pseudotime trajectories for each cell population are included in 
Supplementary Figure S3. 

Establishment of a novel HCC prognostic model based 
on ligand-receptor-mediated multicellular network 
By taking advantage of the known ligand-receptor relationships 
involving the marker genes of each cell type, we constructed a 
ligand-receptor-mediated multicellular network (Figure 3A). It was 
found that cancer stem cells occupied the center of the network. 
Consequently, we identified five cancer stem cell-based interactions 
with macrophages, CD8+ cytotoxic T cells, natural killer cells, and 
plasma cells and matched 33 ligand-receptor marker genes, 
including ANPEP, BAAT, CD14, CD163, CD24, CD33, CD40, 
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Figure 1. A single-cell atlas of the multicellular ecosystem of HCC (A) UMAP of the cell clusters based on the scRNA-seq data. (B) Cell 
annotation in accordance with the known marker genes. (C) Heatmap depicting the top 10 marker genes in each cell population. (D) UMAP plot 
illustrating the top marker gene in each cell population. (E) Heatmap depicting the cell cycle of each cell population. (F) Counts of cells with 
different cell cycle phases in each cell population. (G) UMAP of the cell clusters annotated with cell cycle information on the basis of the scRNA-seq 
data.  
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Figure 2. Trajectory analysis of the key cell populations Clustering trajectories and pseudotime trajectories of (A) macrophages, (B) M1 mac
rophages, (C) CD4+ T cells, and (D) Treg cells. Each dot denotes one cell.  
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CD63, CD68, CD69, CD81, CD86, CD9, CSF1R, CXCL10, CXCL2, 
CXCL9, FCGR1A, FCGR2A, FCGR2B, FCGR3A, GPC3, GPNMB, 

IL7R, ITGAM, ITGAX, KLRB1, LAMP2, LGALS3, PECAM1, TLR2, 
TNFSF10, and TREM1 (Figure 3B). 

Figure 3. The depiction of a ligand-receptor-mediated multicellular network and generation a ligand-receptor-based prognostic model for HCC 
(A) Cell-cell interaction network based upon ligand-receptor pairs. (B) The cancer stem cell-based ligand-receptor network. (C,D) Determination of 
the appropriate lambda value and coefficients of the ligand‒receptor genes by LASSO analysis. (E) Distribution of the risk score across the TCGA- 
LIHC cohort. (F) Univariate Cox regression results for the feature genes associated with HCC survival. (G) Alive or dead status according to the risk 
score. (H) Disease-free status or recurrence/progression status according to the risk score. (I) OS probability of low- or high-risk patients in the 
discovery set. (J) DFS probability of low- or high-risk patients in the discovery set.  
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We then defined a ligand-receptor-based signature for HCC 
prognostication. All of the ligand-receptor marker genes were 
included in the LASSO analysis. We randomized the TCGA-LIHC 
cohort into discovery and test sets at a ratio of 7:3 (Supplementary 
Table S1). With a minimum lambda value of 0.0469, eight feature 
genes (BAAT, CD24, CD33, CD40, CD68, ITGAX, KLRB1, and 
TREM1) were identified in the discovery set (Figure 3C,D). The  
risk score was calculated using the following formula: risk score = 
(–9.34 × 10–5) × BAAT + 0.000283442 × CD24 + 0.070615579 × 
CD33 + 0.000299925 × CD40 + 0.024149562 × CD68 + 0.001050096 × 
ITGAX + (–0.049868764) × KLRB1 + 0.015595402 × TREM1 (Figure 
3E). Patients were classified into low- or high-risk subgroups on the 

basis of the median risk score. Among the feature genes, BAAT, 
CD24, CD33, CD68, KLRB1, and TREM1 exhibited notable associa
tions with patient survival (Figure 3F). More deceased and 
recurrent/progressive patients were observed in the high-risk 
subgroup (Figure 3G,H). Additionally, high-risk individuals had 
shorter overall survival (OS) and disease-free survival (DFS) 
durations (Figure 3I,J), and ROC curves confirmed the favorable 
predictive performance (Supplementary Figure S4A,B). 

The stability of our prediction model was then validated. As 
expected, high-risk individuals exhibited poorer OS, with relatively 
high area under the curve (AUC) values in both the test set and the 
entire TCGA-LIHC cohort (Figure 4A,B and Supplementary Figure 

Figure 4. Verification of the repeatability of the risk score and its connections with clinicopathologic traits (A,B) OS probability of low- or high- 
risk patients in the test set and the total TCGA-LIHC cohort. (C,D) OS probability of low- or high-risk patients in two additional clinical cohorts 
(GSE14520 and GSE76427). (E–I) Differences in the risk score according to diverse clinicopathologic parameters. Significant differences between 
different groups were evaluated using one-way ANOVA.  
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S4C,D). Two additional clinical cohorts (GSE14520 and GSE76427), 
which compared tumor and adjacent non-tumor tissues from HCC 
patients, were also utilized for validation. The significantly higher 
OS rates and meaningful AUCs confirmed the reliability and 
repeatability of the LASSO model (Figure 4C,D and Supplementary 
Figure S4E,F). 

Functional assessments of the ligand-receptor-based 
model of HCC 
We therefore compared the following clinicopathologic traits 
between the high-risk and low-risk groups. Pathologic staging 
determines the extent of cancer in patients following surgery. The 
cancer grade is very helpful in assessing the speed of cancer growth 
and the likelihood of cancer spreading. The TNM staging system is 
also widely used in clinics to measure the size and extent of the 
primary tumor, the number of nearby lymph nodes that have 
cancer, and whether the cancer has metastasized. Advanced 
pathologic stage, grade, and T, N, or M status were associated with 
a higher risk score (Figure 4E–I), partly explaining the shorter 
survival duration for high-risk patients. 

Next, we identified the differences in functional gene expression 
between the two risk groups. Gene set enrichment analysis (GSEA) 
and single-sample GSEA (ssGSEA) demonstrated that E2F targets, 
the G2M checkpoint, and MYC targets v1 were markedly activated 
in high-risk samples, with prominent activation of xenobiotic 
metabolism and bile acid metabolism in low-risk samples (Figure 
5A–C). Additionally, BAAT, CD24, CD33, CD40, CD68, ITGAX, 
KLRB1, and TREM1 were strongly associated with hallmark 
pathways (Figure 5D). Positive interactions included the inflam
matory response, IL-2-STAT5 signaling, and TNF-α signaling via 
NFκB. The negative interactions included oxidative phosphoryla
tion, bile acid metabolism, and others. 

We also compared the heterogeneous immune microenviron
ments between low- and high-risk patients. Activated CD4+ T cells, 
immature and activated dendritic cells, central memory CD4+ and 
CD8+ T cells, effector memory CD8+ T cells, immature B cells, 
myeloid-derived suppressor cells, natural killer T cells, regulatory T 
cells, T follicular helper cells, and type 2 T helper cells displayed 
increased activity in the high-risk subgroup, with decreased activity 
of eosinophils and type 17 T helper cells (Figure 6A,B), revealing 
the heterogeneous immune microenvironment between subgroups. 
In addition, BAAT was negatively associated with most immune cell 
types, whereas CD24, CD33, CD40, CD68, ITGAX, KLRB1, and 
TREM1 exhibited positive interactions with most of the immune 
components mentioned above (Figure 7C). Compared with that of 
other genes, the role of TREM1 in the progression of HCC remains 
less explored. Hence, we further selected TREM1 to investigate its 
role in HCC both in vitro and in vivo. 

TREM1 controls malignant behaviors and affects the 
TME of HCC 
The biological significance of TREM1 was further experimentally 
verified. TREM1 expression was notably downregulated by specific 
siRNAs or upregulated by their overexpression plasmids in HuH-7 
and Hep3b cells (Figure 5E,F). The scratch assay results demon
strated the impaired migration capacity of TREM1-silenced HCC 
cells (Figure 5G,H). Conversely, TREM1 upregulation increased 
migration. These data indicate that TREM1 might be responsible for 
HCC cell migration. The proliferation ability was then analyzed 

using the CCK8 assay. As shown in Figure 7A, the viability of HuH-7 
and Hep3b cells transfected with TREM1 siRNA was significantly 
lower than that of the NC (negative control) group. Conversely, the 
viability of Huh-7 and Hep3b cells transfected with the TREM1 
overexpression plasmid was significantly greater than that of the 
empty vector group. The impact of TREM1 on cell apoptosis was 
also tested. Flow cytometry revealed that TREM1 silencing clearly 
increased the rate of apoptosis in HuH-7 and Hep3b cells, whereas 
TREM1 overexpression had the opposite effect (Figure 7B,C). 

We then explored the anticarcinogenic effects of TREM1 down
regulation in a xenograft model. HuH-7 cells stably transfected with 
NC or si-TREM1 were subcutaneously injected into BALB/c-Nude 
mice on the left or right side of the body. Both the tumor weight and 
volume were significantly decreased in the si-TREM1 group (Figure 
7D–F). qPCR and western blot analysis results revealed that, 
compared with those in the NC group, both the mRNA and protein 
expression levels of TREM1 were significantly lower in the tumor 
tissues of mice in which TREM1 was stably knocked down (Figure 
7G,H). The results of immunohistochemistry also revealed a 
significant reduction in Ki-67 expression in the tumor tissues of 
TREM1-knockdown mice compared with those of the NC group, 
indicating that the knockdown of TREM1 can drastically reduce the 
proliferation of hepatocellular carcinoma cells (Figure 7I). 

We further investigated whether the TME could be affected by 
TREM1, as shown in the bioinformatics results (Figure 6A–C). 
Inflammation has long been proven to affect the immune micro
environment in tumorigenesis. In terms of inflammatory responses, 
the levels of the proinflammatory cytokines IL-1β, TNF-α, and MCP- 
1 were markedly decreased by the suppression of TREM1 in HuH-7 
and Hep3b cells (Figure 6D–I). Conversely, in TREM1-overexpres
sing cells, the levels of these proinflammatory cytokines were 
elevated. To assess the impacts on the immune microenvironment, 
we selectively measured the changes in key cell populations in the 
tumor tissue from our xenograft model via flow cytometry. 
Compared with those in the NC group, the proportions of M0 
macrophages and CD4+ T cells in tumor tissues changed slightly 
after the knockdown of TREM1, while the proportion of M1 
macrophages increased significantly (Figure 8A–F). Instead, the 
proportion of Treg cells in tumor tissues in which TREM1 was 
downregulated was significantly lower (Figure 8G,H). This finding 
was not completely consistent with the results of the bioinformatics 
analysis (Figure 6C). Considering the complexity of the TME, more 
sophisticated experiments and advanced techniques are needed to 
elucidate how the changes in inflammatory responses caused by 
TREM1 are responsible for alterations in the immune microenvir
onment. 

Finally, we explored the key downstream pathways affected by 
TREM1 knockdown. Most previous efforts have focused on 
inhibiting the NF-κB signaling pathway, which mitigates inflam
matory responses [25,26]. However, the pathways associated with 
oxidative stress have been much less investigated in HCC, not to 
mention their correlation with TREM1. Therefore, we measured the 
intracellular ROS levels via DCFH-DA. Consequently, significantly 
increased ROS generation was observed in TREM1-silenced HuH-7 
and Hep3b cells (siRNA group) compared with that in the NC group 
(****P < 0.0001; Figure 9A–C). In contrast, compared with empty 
vector treatment, TREM1 overexpression attenuated the production 
of intracellular ROS (****P < 0.0001; Figure 9A–C). Nrf2 and Keap1 
act as key mediators of oxidative stress [27]. Nrf2 activity was 
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significantly lower, whereas Keap1 activity was clearly greater in 
TREM1-knockdown HuH-7 and Hep3b cells than in control cells 

(**P < 0.01 and ****P < 0.0001, siRNA group vs si-NC group; 
Figure 9D–I). The opposite results for Nrf2 and Keap1 activity were 

Figure 5. Associations of the risk score with hallmark pathways and the effect of TREM1 on HCC cell migration (A) GSEA of the diversity of 
hallmark pathways in the low- and high-risk TCGA-LIHC subgroups. (B,C) Comparison of the ssGSEA scores of hallmark pathways between 
subgroups. (D) Heatmap of the interactions of BAAT, CD24, CD33, CD40, CD68, ITGAX, KLRB1, and TREM1 with hallmark pathways. Blue, negative 
connection; red, positive connection. (E) TREM1 mRNA levels in HuH-7 and Hep3b cells transfected with siRNAs targeting TREM1. (F) UMAP plot 
showing the expression of TREM1 in all the cell clusters identified. (G) TREM1 mRNA levels in two HCC cell lines transfected with a TREM1 
overexpression plasmid. (H,I) Evaluation of the migration ability of TREM1-silenced or TREM1-overexpressing HCC cells. Statistical results of the 
invasive ratio after the corresponding treatment for 24 h in the Transwell assay. Scale bar: 20 μm. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 
0.0001 vs si-NC; ##P <.01 vs empty vector, ###P < 0.001 vs empty vector.  
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Figure 6. Heterogeneity in the tumor immune microenvironment between low- and high-risk patients and experimental verification of the 
significance of TREM1 in tumor immunity (A,B) Comparison of the infiltration of diverse immune components in the low- and high-risk TCGA- 
LIHC subgroups. (C) Heatmap of the connections of BAAT, CD24, CD33, CD40, CD68, ITGAX, KLRB1, and TREM1 with immune infiltration. Blue, 
negative connection; red, positive connection. (D–F) The levels of IL-1β, TNF-α, and MCP-1 in HuH-7 cells transfected with specific siRNAs or TREM1 
overexpression plasmids. (G–I) The levels of IL-1β, TNF-α, and MCP-1 in Hep3b cells transfected with specific siRNA or TREM1 overexpression 
plasmids. *P < 0.05, **P < 0.01 vs si-NC; ***P < 0.001, ****P < 0.0001 vs empty vector.  
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Figure 7. The carcinogenic effects of TREM1 in vitro and in vivo (A) Viability of Hub-7 and Hep3b cells with TREM1 knockdown or over
expression. (B) Flow cytometry showing the rate of apoptosis in TREM1-silenced or TREM1-overexpressing HCC cells. (C) Histogram summarizing 
the apoptosis rate under the circumstances mentioned in (B). (D) Representative tumor tissues isolated from xenograft mice injected with HuH-7 
cells stably transfected with normal control (NC) or TREM1 siRNA (si-TREM1) are shown. (E,F) The tumor weights (E) and volumes (F) are 
summarized. (G,H) Relative mRNA expression (G) and protein expression (H) of TREM1 in the tumor tissues of the mice described in (D) onday 30. 
(I) Representative immunohistochemistry images of Ki-67 expression under the same circumstances as in (D,E). A histogram summarizing the 
positive staining of Ki-67 is also presented. Six mice were included in each experimental group. **P < 0.01 vs NC; #P < 0.05, ##P < 0.01 vs vector.  
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Figure 8. TREM1 controls malignant behaviors and affects the TME of HCC (A) Representative bioluminescent photographs of orthotopic liver 
cancer-bearing mice in different groups on day 20 after different treatments. The bioluminescence intensity reflects the tumor volume. (B), Digital 
photographs of liver tissues. (C,D) Relative mRNA expression (C) and protein expression (D) of TREM1 in the tumor tissues of the mice described in 
(A). (E) Representative immunohistochemistry images of Ki-67 expression under the same conditions described in (A,B). A histogram summarizing 
the positive staining of Ki-67 is also presented. (F-I) Flow cytometry showing the proportions of M0 macrophages (F), M1 macrophages (G), CD4+ T 
cells (H) and Treg cells (I) in the tumor tissues of mice in which TREM1 was stably knocked down (si-TREM1-1/si-TREM1-2) or not (NC). ***P < 0.001 
vs model; ###P < 0.001 vs NC.  

Ligand-receptor prognostic signature and TREM1-driven HCC malignancy via single-cell/bulk analysis                                            13  

Zhang et al. Acta Biochim Biophys Sin 2025 



Figure 9. TREM1 protects HCC cells against oxidative stress (A–C) The production of intracellular ROS in HuH-7 and Hep3b cells transfected 
with specific siRNAs or TREM1 overexpression plasmids. Scale bar: 20 μm. (D–F) Nrf2 and Keap1 expressions in HuH-7 cells transfected with a 
specific siRNA or TREM1 overexpression plasmid. (G–I) Nrf2 and Keap1 expressions in Hep3b cells transfected with specific siRNAs or TREM1 
overexpression plasmids. *P < 0.05, **P < 0.01, ****P < 0.0001 vs si-NC; #P < 0.05, ####P < 0.0001 vs empty vector.  
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observed in TREM1-overexpressing cells (*P < 0.05 and ****P < 
0.0001, TREM1 group vs empty vector group; Figure 9D–I). Taken 
together, these findings indicate that TREM1 has a protective role in 
HCC cells against oxidative stress. 

Discussion 
In this study, we combined single-cell and bulk transcriptome 
analysis to establish a ligand‒receptor-based signature for HCC 
prognostication and validated the impact of TREM1 on HCC 
progression. A single-cell landscape of the multicellular ecosystem 
in HCC, comprising cancer stem cells, liver stem cells, progenitor 
cells, mucosal cells, CD4+ T cells, CD8+ cytotoxic T cells, Treg cells, 
plasma cells, naive B cells, regulatory B cells, natural killer cells, 
macrophages, and M1 macrophages, was first described, thus 
revealing the diversity of the cellular ecosystem in HCC. 

These cell populations closely interact via ligand-receptor pairs. 
This work defined a ligand‒receptor-based signature for HCC 
prognostication composed of BAAT, CD24, CD33, CD40, CD68, 
ITGAX, KLRB1, and TREM1. HCC often presents high levels of 
histological, transcriptomic, and other variations among individual 
patients, leading to clinical behaviors and therapeutic responses. 
For the prolongation of HCC patient survival, it is highly necessary 
to consider such heterogeneity in clinical management as well as to 
discover the molecular pathways that determine the differentiation 
of major HCC variations. In this study, cell proliferation pathways 
(E2F targets, the G2M checkpoint, and MYC targets v1) were found 
to exhibit notable activation in high-risk individuals, indicating 
increased proliferation levels in this population. The liver is an 
extremely dynamic metabolic organ that plays a critical role in bile 
acid synthesis, xenobiotic metabolism, etc. [28]. Remarkable 
activation of xenobiotic metabolism and bile acid metabolism was 
observed in low-risk individuals. 

In addition to TREM1, there is ample evidence that other genes 
with a ligand-receptor-based signature for HCC prognostication 
participate in the development of HCC. For example, BAAT, which 
mediates primary bile acid synthesis and bile acid conjugation, has 
been proven to be overexpressed in glutamine synthetase-positive 
Tsumura-Suzuki obese diabetic-derived HCC tumors [29]. CD24 has 
been shown to be involved in multiple aspects of HCC [30]. On the 
one hand, CD24 may result in sorafenib resistance through the 
activation of autophagy in HCC [31]. On the other hand, CD24 
upregulation is correlated with undesirable survival after surgical 
resection [32] or adjuvant trans-arterial chemoembolization treat
ment [33]. Moreover, CD33 is associated with an increased risk of 
HCC among chronic hepatitis B-infected individuals [34]. Myeloid- 
derived suppressor cells are important for immunosuppression, and 
their surrogate biomarker, CD33, is related to aggressive tumor 
phenotypes and short survival durations [35]. Studies have also 
shown that activated CD40 can improve the immunomodulatory 
ability of dendritic cells toward gastrointestinal tumors [36]. CD40 
ligand-overexpressing dendritic cells are capable of inducing HCC 
suppression via the activation of innate and acquired immunity 
[37]. Another signature, CD38, has also been proven to participate 
in immunosuppressive adenosinergic signaling, and an increased 
proportion of CD38+ cells within the immune microenvironment is 
predictive of the anti-PD-1/PD-L1 therapeutic response in HCC [38]. 
Furthermore, crosstalk between CD68 and GAS6 in fibroblasts may 
trigger the recruitment and polarization of macrophages in HCC 
[39]. Compared with those in primary tumors, CD8+ T cells in 

recurrent HCC tumors appear to overexpress KLRB1 and exhibit an 
innate-like low cytotoxic status [40]. 

The present work also provides rich evidence for how TREM1 
affects HCC cells. Bioinformatics analysis revealed that high 
expression of TREM1 is related to poor prognosis in patients with 
HCC [41]. Previous research has reported that pharmacological 
inhibition or silencing of TREM1 restrains HCC cell metastasis [42] 
and that silencing of TREM1 in macrophages can mitigate the 
migratory capacity of HCC cells [43,44]. We further observed that 
TREM1 actively modulated HCC migration and proliferation, 
accompanied by a decreased level of apoptosis. Similar to previous 
studies, TREM1 upregulated the proinflammatory cytokines IL-1β, 
TNF-α, and MCP-1 and resulted in an inflammatory response in 
HCC cells [45]. TREM1 upregulated the proinflammatory cytokines 
IL-1β, TNF-α, and MCP-1 and resulted in an inflammatory response 
in HCC cells. There also appear to be different kinds of possible 
downstream pathways of TREM1, including the positively interact
ing inflammatory response, IL-2-STAT5 signaling, and TNF-α 
signaling via NF-κB, and negatively interacting pathways such as 
oxidative phosphorylation and bile acid metabolism. Studies have 
shown that TREM1 knockdown inhibits the NF-κB signaling 
pathway to attenuate inflammatory responses [25,26]. We focused 
on the less investigated pathways related to oxidative stress. We 
discovered that upregulation of TREM1 helps HCC cells fight against 
oxidative stress by lowering intracellular ROS generation and 
mediating Nrf2/Keap1 signaling. Therefore, HCC cells with high 
levels of TREM1 may continue to thrive and become a serious threat 
to neighboring healthy tissues. 

Currently, increasing attention is being given to changes in the 
tumor microenvironment (TME) for cancer treatment. The TME 
comprises mainly tumor cells, their surrounding immune and 
inflammatory cells, and other cellular and non-cellular components. 
Immune infiltration is essential for the heterogeneity of the TME, 
which may lead to the formation of well-known tumor-infiltrating 
lymphocytes (TILs) that play a critical role in antitumor immunity 
[46]. However, long-term inflammation can also give rise to tertiary 
lymphoid structures (TLSs), a double-edged sword in tumorigenesis 
and metastasis [47]. Therefore, unravelling how these components, 
especially the immune microenvironment, may react in cancers, 
including HCC, is highly important. Previous research has reported 
the enrichment of central memory T cells (TCMs) in early tertiary 
lymphoid structures (E-TLSs) in HCC and assessed the relationships 
between chronic HBV/HCV infection and T-cell infiltration and 
exhaustion [11]. In addition to bioinformatics analysis of the 
heterogeneity of the immune microenvironment between patients 
in two risk groups, our present work also investigated the impact of 
TREM1 on key cell populations in the tumor tissue of a xenograft 
model. Traditionally, a significant increase in the proportion of M1 
macrophages may represent increased proinflammatory responses 
[48]. However, we cannot exclude the possibility that the M2 type 
would also increase, thus breaking the M1/M2 balance to induce 
anti-inflammatory responses as a result. Moreover, the number of 
Treg cells dramatically decreased in tumor tissue with TREM1 
knockdown. According to previous studies [49], this may thus 
enhance antitumor immune responses. Considering the complexity 
and dynamicity of the immune microenvironment, many more 
explorations are worth performing in the future, from the bench to 
the bedside. 

Despite the breadth of our findings, there are certain limitations in 
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this work. For example, there are currently many models for HCC 
with much higher AUC values. However, few studies have 
combined single-cell and bulk RNA sequencing data. Additionally, 
the marker genes in those studies appear to share more narrowly 
defined functions, such as autophagy [50], cuproptosis [51] and T- 
cell depletion [52]. Our present research screened out marker genes 
by establishing a rather general network, although the AUC values 
were relatively unsatisfactory. In addition, in-depth experiments are 
still needed to further prove the importance of TREM1 in HCC 
pathogenesis. Finally, real-world validation of the prognostic value 
of TREM1 expression is relatively lacking, although a previous 
study revealed that high TREM1 expression is significantly 
correlated with increased recurrence and poorer survival in HCC 
patients [45]. We also plan to test both the prognostic and treatment 
value of TREM1 in our clinical cohorts in the future. 

Overall, this work depicted the single-cell landscape of the HCC 
ecosystem and proposed a ligand-receptor-based signature for HCC 
prognostication on the basis of single-cell and bulk expression 
analysis. Through experimental verification, we demonstrated that 
TREM1 may play a crucial role in controlling the malignant 
behaviors of HCC cells and may be a potential therapeutic target. 
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