番茄酒发酵工艺研究

刘殿锋^{1,2},朱学文²,张志轩²,赵杨玲²,吴春昊²,陶令霞²,郭培军² (1.南京师范大学生命科学学院,江苏南京 210046; 2.濮阳职业技术学院生物工程与农业经济系,河南濮阳 457000)

摘 要:为开发出高品质的番茄酒,以番茄汁、葡萄酒酵母、蔗糖为原料,通过单因素试验和正交试验,探索番茄酒的生产工艺。结果表明,当以产品的酒精度为衡量指标时,最佳发酵工艺条件为:主发酵温度 24℃,干酵母接种量 0.2g/L,番茄汁糖度 28%;当以产品的感官品质为衡量指标时,最佳发酵工艺条件为:主发酵温度 22℃,干酵母接种量 0.4g/L,番茄汁糖度 24%。成品酒不但营养丰富、风味优雅,而且还具有保健作用。关键词:番茄酒;发酵工艺;正交试验

Fermentation Production of Tomato Wine

LIU Dian-feng^{1,2}, ZHU Xue-wen², ZHANG Zhi-xuan², ZHAO Yang-ling², WU Chun-hao², TAO Ling-xia², GUO Pei-jun²

(1. College of Life Science, Nanjing Normal University, Nanjing 210046, China;

2. Department of Bioengineering and Agronomics, Puyang Vocational and Technical Institute, Puyang 457000, China)

Abstract: Tomato juice, wine yeast (Angel brand) and sucrose were taken the main materials to develop a wine. The fermentation technology was optimized by orthogonal test design based on single factor test. Under the optimized conditions of main fermentation temperature of 24~%, inoculation quantity of wine yeast of 0.2~g/L, and initial sugar content of 28%, the highest alcohol degree was achieved. When the above parameters were 22~%, 0.4~g/L and 24%, respectively, the sensory evaluation score of wine product obtained was the highest. The wine product had not only high nutritive value and elegant flavor, but also health function.

Key words: tomato wine; fermentation technology; orthogonal test

中图分类号: TS261.4 文献标识码: B

番茄,俗称西红柿,属茄科,为一年生蔬菜,我国各地均普遍栽培。番茄含有丰富的营养,被称为神奇的菜中之果。番茄中丰富的维生素、矿物质及其他营养成分,对防治动脉硬化、高血压和冠心病具有良好的作用。另外,番茄中番茄红素的含量还居各种果蔬之首[1-2]。番茄中的番茄红素具有独特的抗氧化能力,能清除自由基,具有抗衰老以及阻止癌变进程的作用[3-5]。

但番茄含水量高、易腐烂、不易贮藏和长途运输,采后损失严重。另外,由于生产季节的差异造成四季市场供应非常不均衡。因此,以番茄为原料酿造出的果酒不但具有良好的保健作用,而且还是解决上述矛盾和满足市场需求的重要途径。

本实验针对番茄酒生产的关键技术环节进行研究探讨,通过优化生产工艺,以期得到色、香、味俱佳的保健果酒,以期为番茄深加工提供一定的参考。

1 材料与方法

1.1 材料

番茄、白糖 市售;葡萄酒干酵母 湖北安琪酵母 股份有限公司。

文章编号: 1002-6630(2009)12-0293-04

1.2 仪器与设备

恒温培养箱、榨汁机、超净工作台、高压灭菌 锅、电热恒温鼓风干燥箱、手持糖度计、酒精计、温 度计、电子天平、普通天平。

1.3 方法

1.3.1 番茄酒发酵工艺流程

番茄→清洗→浸泡消毒→ 处理→打浆→过滤→澄清 →调配→灭菌→加葡萄酒干酵母→前发酵→后发酵→陈 酿→过滤→澄清→灌装→灭菌→成品

1.3.2 操作要点

收稿日期: 2008-10-09

基金项目: 濮阳市科技攻关重点项目(080504)

作者简介: 刘殿锋(1975-), 男, 讲师, 博士研究生, 研究方向为食品生物技术、分子生物学。E-mail: hn_ldf@126.com

1.3.2.1 原料的选择

选择果肉鲜红、无霉烂的新鲜果实,以确保成品 的风味和色泽。

1.3.2.2 番茄汁的制取、调配

用清水洗去番茄表面吸附的微生物和灰尘,清洗干净后切成小块,用榨汁机压榨取汁。用网筛或布袋过滤,除去果汁中的碎番茄肉、番茄皮和粗纤维等物质。用蔗糖调节糖度,将番茄汁在135℃、8~10s的条件下高温瞬时灭菌,然后冷却至常温备用。

1.3.2.3 加果酒酵母

实验采用安琪葡萄酒干酵母, 先将葡萄酒酵母倒入 10 倍体积的 1% 蔗糖水中, 振摇均匀后在 35℃水浴条件 下静置 30min, 使之充分活化, 然后加入调配好的果汁 中发酵。

1.3.2.4 前发酵

将加酵母菌后的果汁放入18~26℃的生化培养箱中发酵。当发酵约7d、测得发酵醪的糖含量仅为2%~3%时,前发酵结束。发酵时可加入亚硫酸氢钠,以防杂菌感染,加入量为0.01%(m/V)。

1.3.2.5 后发酵

主发酵结束后,在无菌条件下将原酒过滤到经灭菌的密闭容器中,保持28℃发酵15d。

1.3.2.6 陈酿

发酵完毕后,将恒温培养箱调至15℃陈酿1个月。

1.3.2.7 过滤、澄清

将陈酿的酒液除去酒脚,并加入明胶和单宁,静置一段时间,然后过滤,使酒液澄清,得到金黄色的澄清果酒。

1.3.2.8 灌装、灭菌

将过滤、澄清后的果酒分装于玻璃瓶中,密封后在70℃条件下水浴灭菌30min,冷却后在低温条件下贮存。

1.4 试验设计

1.4.1 单因素试验

1.4.1.1 温度的确定

在番茄汁糖度为24%、干酵母接种量为0.2g/L、温度分别为18、20、22、24、26℃的条件下进行主发酵,测定不同温度下发酵的番茄酒的酒精度、酸度、残糖、可溶性固形物等指标。

1.4.1.2 酵母接种量的确定

在番茄汁糖度为 24%、温度为 22℃、干酵母的接种量分别为 0.1、0.2、0.3、0.4、0.5g/L 的条件下进行

主发酵,测定不同接种量下发酵的番茄酒的酒精度、酸度、残糖、可溶性固形物等指标。

1.4.1.3 番茄汁糖度的确定

在温度为22℃、干酵母接种量为0.2g/L、番茄汁糖度分别为20%、22%、24%、26%、28%的条件下进行主发酵,测定不同番茄汁糖度下发酵的番茄酒的酒精度、酸度、残糖、可溶性固形物等指标。

1.4.2 发酵工艺的确定(正交试验)

根据前面单因素试验的结果确定正交试验各个因素 三个较佳的水平。以酒精度和成品感官指标评分为试验 指标,进行 L₂(3³) 正交试验。

1.5 品质鉴定

1.5.1 感官评定

感官评定采用百分制计分,其中色泽 10 分、酒香 35 分、滋味 35 分、澄清度 20 分。按表 1 中的标准由 10 名专业技术人员对产品进行感官评定。

表 1 感官评分标准

Table 1 Sensory evaluation standards of tomato wine product

项目	标准	感官评价(分)
色泽	金黄色	10
澄清度	清澈透明、晶莹、有光泽、光亮、无浑浊现	见象 20
酒香	香气浓郁、番茄味清新、优美、有番茄的特殊等	芳香味 35
滋味	圆润、纯正、丰满、绕有余味、酸味柔和、	爽口 35

1.5.2 酒精度的测定

采用密度计测定[6]。

1.5.3 酸度的测定

采用酸碱滴定法。吸取样品 10ml 于 100ml 容量瓶中定容后,取 20ml 置于 150ml 锥形瓶内加入 2~3 滴酚酞指示剂,用标定的 NaOH 标准溶液(0.01mol/L)滴定至微红色,其总酸度为:

$$X(g/L) = \frac{C \times V_1 \times K \times F}{V_0} \times 1000$$

式中: X 为每升样品中酸的克数; C 为 NaOH 标准 液的摩尔浓度,mol/L; V_1 为消耗 NaOH 标准液体积,ml; K 为换算为适当酸的系数,柠檬酸取值 0.070; F 为样品的稀释倍数; V_0 为滴定时样品的取样体积,ml。

1.5.4 残留还原糖

采用斐林氏法测定[6]。

1.5.5 可溶性固形物含量 采用手持糖度计测定[^{7]}。

1.5.6 甲醇含量

采用品红亚硫酸光度法测定[6]。

2 结果与分析

2.1 单因素试验

2.1.1 温度的确定

表 2 温度对番茄酒发酵的影响 Table 2 Effects of temperature on tomato wine fermentation

番茄酒中各种成分含量			温度(℃)		
世加伯宁 台 件风万百里	18	20	22	24	26
酒精度(%, V/V)	13.0	13.7	14.4	14.2	14.4
酸度(以柠檬酸计, g/L)	4.1	4.3	4.4	4.7	4.4
残留还原糖(g/L)	2.1	0.9	2.6	2.7	1.1
可溶性固形物含量(%)	6.0	6.0	6.0	6.0	6.0

从表 2 中可以看出,温度对番茄酒的酒精度有一定的影响,在 18 ℃和 20 ℃的温度下进行主发酵,酒精度较低;在 22 、24 、26 ℃的温度下发酵,酒精度较高。原因可能是 18 ℃和 20 ℃的温度过低,酵母发酵速度太慢,少量的糖被残存醪液中的杂菌所利用,以致成品酒的酒精量减少,而 22 、24 、26 ℃是酵母菌的适宜温度,酵母发酵速度快,不但可供杂菌生长的还原糖迅速减少,而且较快上升的酒精度对杂菌有抑制作用,因此成品酒的酒精度较高。根据上述结果,较佳的三个温度水平为 22 、24 、26 ℃。

2.1.2 酵母接种量的确定

酵母接种量对番茄酒的发酵具有较大的影响,在不同的接种量条件下,酵母将还原糖转化为酒精的量是不同的。接种量少,酵母的生物量不够,原料转化为酒精速度慢,易污染杂菌;接种量过大,酵母自身生长繁殖会消耗番茄汁中大量的糖分,乙醇产量反而降低^[8]。从表3中可以看出,干酵母接种量在0.1、0.5g/L时番茄酒的酒精度相对较低,而在0.2、0.3、0.4g/L时酒精度相对较高,其中在0.2g/L时最高。根据上述结果,较佳的三个干酵母接种量水平为0.2、0.3、0.4g/L。

表 3 酵母接种量对番茄酒发酵的影响
Table 3 Effects of inoculation quantity of wine yeast on tomato
wine fermentation

番茄酒中各种成分含量		干酵母接种量(g/L)					
田加伯丁廿廿八八百里	0.1	0.2	0.3	0.4	0.5		
酒精度(%, V/V)	13.0	15.0	13.4	13.3	12.7		
酸度(柠檬酸, g/L)	4.4	3.7	4.1	4.0	3.5		
残留还原糖(%)	2.3	1.3	3.4	4.2	1.1		
可溶性固形物含量(%)	6.5	5.0	6.0	6.0	4.5		

2.1.3 番茄汁糖度的确定

从表4可以看出,糖度对番茄酒的酒精度具有较大的影响,番茄汁糖度在20%和22%时,酒精度较低;番茄汁糖度在24%、26%和28%时,酒精度较高。虽然随着糖度的增加酒精度明显上升,但残糖也略有增加,使还原糖的利用率稍有下降。根据以上结果,正交试验选取的三个番茄汁糖度水平为24%、26%和28%。

表 4 糖度对番茄酒发酵的影响

Table 4 Effects of initial sugar content on tomato wine fermenta-

番茄酒中各种成分含量	番茄汁糖度(%)				
田加伯中各种风万百里 	20	22	24	26	28
酒精度(%, V/V)	11.2	13.3	15.4	15.6	16.8
酸度(柠檬酸, g/L)	3.5	3.5	3.8	3.9	4.0
残留还原糖(g/L)	1.0	1.2	1.9	2.8	3.2
可溶性固形物含量(%)	5.0	5.5	6.0	6.5	7.5

2.2 正交试验结果

以主发酵温度、干酵母接种量和番茄汁糖度为因素,进行三因素三水平的L₀(3⁴)正交试验。根据单因素试验的结果所选择每个因素的三个水平如表 5 所示,正交试验结果如表 6 所示。

表 5 发酵条件优化试验方案

Table 5 Factors and levels of orthogonal test for optimizing fermentation conditions of tomato wine with alcohol degree and sensory evaluation score as the indicators

水平		因素	
	A 温度(℃)	B干酵母接种量(g/L)	C番茄汁糖度(%)
1	22	0.2	24
2	24	0.3	26
3	26	0.4	28

表 6 发酵条件优化正交试验结果
Table 6 Results of orthogonal test and range analyses

试验号	A温度	B干酵母接	C番茄汁	酒精度	感官评价
	$(^{\circ}\mathbb{C})$	种量(g/L)	糖度(%)	(%)	(分)
1	1	1	1	12.6	83.6
2	1	2	2	13.7	82.6
3	1	3	3	15.2	84.5
4	2	1	2	14	79.4
5	2	2	3	16	82.0
6	2	3	1	12.9	82.4
7	3	1	3	16.1	81.7
8	3	2	1	12.1	82.8
9	3	3	2	14	81.5
	k1 13.833	14.233	12.533		
酒精度	k_2 14.300	13.933	13.900		
伯相及	k3 14.067	14.033	15.767		
	$R_{\rm j} = 0.467$	0.300	3.234		
	k1 83.567	81.567	82.933		
咸宁須八	k_2 81.267	82.467	81.167		
感官得分	k ₃ 82.000	82.800	82.733		
	R _j 2.300	1.233	1.766		

表 7 酒精度正交试验结果方差分析
Table 7 Analysis of variance for alcohol degree

来源	平方和	自由度	均方和	F值	显著性
A	0.327	2	0.163	0.803	0.555
В	0.140	2	0.070	0.344	0.744
C	15.807	2	7.903	38.869	0.025
误差	0.407	2	0.203		

表 8 番茄酒感官指标正交试验结果方差分析
Table 8 Analysis of variance for sensory evaluation score

来源	平方和	自由度	均方和	F值	显著性
A	8.282	2	4.141	232.938	0.004
В	2.442	2	1.221	68.688	0.014
C	5.616	2	2.808	157.938	0.006
误差	0.036	2	0.018		

根据表 6 的极差分析结果可知,发酵工艺条件中影响产品酒精度的主次因素排序为 C > A > B,即番茄汁糖度 > 主发酵温度 > 干酵母接种量,与表 7 方差分析结果一致。表 7 更深入分析出三个因素对结果影响的程度, C 影响显著, A 、 B 影响不显著, 说明番茄汁糖度是影响产品酒精度的主要因素,而主发酵温度和干酵母接种量则不是影响产品酒精度的主要因素。表 6 结果表明,以酒精度为指标发酵条件的最佳组合为 $A_2B_1C_3$,即主发酵温度为 24 °C,干酵母接种量为 0.2 g/L,番茄汁糖度为 28 %。由于正交试验中没有此发酵条件组合,对此发酵条件进行实验验证,结果产品酒精度为 16.1 %,感官得分为 82。

从表 6 的极差分析结果可以看到,发酵工艺条件中影响产品感官品质的主次因素排序为 A > C > B,即主发酵温度 > 番茄汁糖度 > 干酵母接种量,与表 8 的方差分析结果一致。表 8 方差分析结果表明 A、C 对产品感官品质的影响均极显著,B 对产品感官品质的影响显著,说明主发酵温度、番茄汁糖度和干酵母接种量都是影响感官品质的主要因素。表 6 结果表明,以感官评价为指标发酵条件的最佳组合为 A₁B₃C₁,即主发酵温度

为22℃、干酵母接种量为0.4g/L、番茄汁糖度为24%。由于正交试验中没有此发酵条件组合,对此发酵条件进行实验验证,结果产品酒精度为12%,感官得分为85。 2.3 产品指标

感官指标:外观:金黄色,清亮透明有光泽,无杂质及悬浮物;香气:具有番茄特有的清香;口感:番茄香、酒香协调,酸味柔和,酒体醇厚协调,无异杂味;风格:具有番茄酒的独特风格。

理化指标: 酒精度(20℃, V/V) \geq 12.0%; 总糖(以葡萄糖计) \leq 4.5g/L; 总酸(以柠檬酸计) \geq 3.5 \sim 5.0g/L; 甲醇 \leq 0.2g/L; 固形物含量 \geq 5%。

卫生指标:细菌总数≤50个/ml,大肠杆菌≤3个/ml, 致病菌不得检出。

3 结论

通过研究,获得了一种色、香、味、外观俱佳的番茄酒。从产品的酒精度考虑,发酵条件的最佳组合为:发酵温度 24°、干酵母接种量 0.2g/L,番茄汁糖度 28%。从产品感官品质考虑,发酵条件的最佳组合为:发酵温度 22°、干酵母接种量 0.4g/L,番茄汁糖度 24%。

参考文献:

- [1] 彭玲. 番茄果茶饮料的研制[J]. 食品科学, 2008, 29(8): 714-717.
- [2] 于基成,姜艾玲, 范圣第. 风味番茄饮料加工工艺的研究[J]. 食品研究与开发, 2007, 28(10): 108-110.
- [3] RAO A V, AGARWAL S. Bioavailability and antioxidant properties of lycopene from tomato products[J]. Nutrition Cancer, 1998, 31: 199-203.
- [4] NGUYEN M L, SCHWARTZ S J. Lycopene: Chemical and biological properties[J]. Food Technology, 1999(2): 38-43.
- [5] 孙庆杰. 番茄红素的保健作用与开发[J]. 食品与发酵工业, 1997, 23 (4): 72-75
- [6] 王福荣. 酿酒分析与检测[M]. 北京 化学工业出版社, 2005.
- [7] 詹耀才, 钟细娥, 靳桂敏. 岗稔果酒发酵工艺的研究[J]. 现代食品科技, 2008, 24(1): 39-41.
- [8] 冯志彬,程显好,夏利江. 樱桃果酒发酵工艺研究[J]. 中国酿造,2008(3):90-92.