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ABSTRACT

Large Language Models (LLMs) exhibit impressive performance across  various Natural Language Processing 
(NLP) tasks due to their robust contextual understanding, content generation and few/zero-shot learning 
abilities. However, LLMs still show significant limitations while handling with mathematical problems that 
require complex reasoning skills and interpretable solving processes. Consequently, a series of research efforts 
have been made in solving mathematical problems using Large Language Models (SMP-LLM). This survey 
provides a comprehensive review of such endeavors. First, we introduce a two-layer classification system 
for SMP-LLM: at the primary layer, we categorize extant researches into four classes of solution methods, 
including: fine-tuning, prompt engineering, collaboration with symbolic solvers, and collaboration with 
evaluators/validators. At the second layer, we classify mathematical problems into four categories: math word 
problem, geometry problem, theorem proving, and combinatorial optimization problem. This classification 
system finds the correlation between solution methods and the categories of mathematical problems. Second, 
we analyzed typical research works under of each method, and summarized their strengths and weaknesses. 
Third, we elucidate current mainstream datasets for solving mathematical problems and analyzed how 
these datasets promote SMP-LLM research from different perspectives. Finally, summarize the challenges 
that SMP-LLM are facing and highlighted four research directions: geometric analysis, comprehension, and 
generation of mathematical expressions, indirect reasoning and benchmarks for evaluating mathematical 
ability. We hope that this survey can provide useful references for researchers interested in SMP-LLM.
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1.  INTRODUCTION

Large Language Models (LLMs) refer to deep learning models trained on massive text datasets using 
self-supervised learning, with parameter sizes typically reaching billions or higher. LLMs possess strong 
capabilities in contextual understanding, content generation, and few/zero-shot learning, they can adapt 
to various natural language understanding and generation tasks with minimal or no fine-tuning. They have 
achieved state-of-the-art performance in tasks such as machine translation, text summarization, sentiment 
analysis, and even reached human-level performance. However, LLMs usually employ autoregressive 
methods for training and next-token prediction methods for content generation, which leads to weaker 
performance in tasks requiring numerical reasoning, symbolic reasoning, and logical reasoning. At the 
same time, increasing the number of parameters of the model can not significantly improve its reasoning 
performance [1] and may arise inverse scaling phenomena in tasks such as modus tollens inference [2].

Utilizing LLMs directly during mathematical problem solving is challenging because various types 
of reasoning tasks are involved. Therefore, the ability to solve mathematical problems is an important 
indicator in evaluating intelligent systems. A series of evaluations on LLMs have also confirmed this 
conclusion [1, 3-9].

For this purpose, a series of researches have been made on mathematical problem solving with open-
source or closed-source LLMs. These research efforts target various types of mathematical problems, 
including math word problem, geometry problem, theorem proving and combinatorial optimization 
problem. They employed diverse technical approaches such as fine-tuning, prompt engineering, 
collaboration with symbolic solvers and collaboration with evaluators/validators to enhance LLMs’ ablility 
on solving complex mathematical problems. This survey will provide a review over such endeavors. 
Currently, we have only find one relevant survey [10] which conducts a review of researches on 
mathematical language models from two perspectives: mathematical problem types and solution methods. 
The former mainly encompasses arithmetic operations and mathematical reasoning, while the latter is 
divided into two major categories: based on pre-trained language models and based on LLMs. While this 
survey provides valuable reference and guide for researchers engaged in solving mathematical problems 
with LLMs, it still has two shortcomings. First, its classification system is relatively ambiguous. In a good 
classification system, each category should be mutually exclusive, unambiguous [11]. However, in the 
classification system of [10], the boundary between pre-trained language models and LLMs is blurred, 
and the boundary between math word problems and mathematical question-answering problems is 
also unclear. Thus, it fails to demonstrate the essential characteristics of different types of research work 
effectively. Second, it fails to reflect that different types of mathematical problems have varying levels 
of difficulty, they rely on different mathematical knowledge, and require different solution strategies. 
Therefore, there is strong relevance between mathematical problem types and solution methods, informing 
readers about this correlation is helpful in deepening their understanding of this field. However [10], 
introduces relevant research work from the perspectives of mathematical problem types and solution 
methods independently, which fails in demonstrate their correlation clearly.
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Unlike the previous survey, our survey further focuses on the research efforts in solving mathematical 
problems using LLM, SMP-LLM, and proposes future research directions. The main contributions are 
reflected in four aspects:

(1) We propose a two-layer classification system for SMP-LLM. At the first layer, existing research is 
classified into four categories based on the approach to problem-solving, including fine-tuning, prompt 
engineering, collaboration with symbolic solvers, and collaboration with evaluators/validators. At the 
second layer, mathematical problems addressed by existing researches are classified into four categories, 
including math word problem, geometric problem, theorem proving, and combinatorial optimization 
problem. We present the classification system in a grid format, demonstrating the relationship between 
solution methods and types of mathematical problems.

(2) We analyze typical research works for each category and summarize the advantages and 
disadvantages of each type of work based on the proposed classification system.

(3) We exposit current mainstream mathematical problem-solving datasets, and analyze how these 
datasets promote research in SMP-LLM from various perspectives.

(4) We summarize the challenges SMP-LLM is facing and identify four future research directions: 
geometric analysis, mathematical expression comprehension and generation, indirect reasoning and the 
benchmark for mathematical proficiency.

The organization of the remaining sections of the survey is as follows: Section 2 introduces the 
classification system of SMP-LLM. Sections 3 to 6 respectively review typical research works in the four 
categories of fine-tuning, prompt engineering, collaboration with symbolic solvers, and collaboration 
with evaluators/validators. Section 7 analyzes datasets related to mathematical problem solving. Section 8  
summarizes the challenges faced and future research directions. Finally, Section 9 presents the 
conclusions.

2.  CLASSIFICATION SYSTEM

2.1  Solution Methods

From the perspective of solution methods, existing researches on SMP-LLM mainly adopts two strategies: 
one is to enhance or activate the mathematical reasoning ability of LLMs themselves, and the other is to 
enable LLMs to collaborate with other modules while solving mathematical problems.

The former includes two methods: fine-tuning and prompt engineering. The fine-tuning methods 
usually adjust small numbers of paramters in pre-trained language models using instruction-formatted 
instances in supervised learning ways to adapt them to specific tasks. Instruction-formatted instances 
typically consist of task descriptions (referred to as instructions), input-output pairs, and a small number 
of optional demonstrations [12]. Prompt engineering usually use well-designed prompts to assist LLMs 
to better adapt to their tasks, further comprising two subclasses: (1) In-context learning (ICL), which adds 
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natural language-formatted examples in prefix form for queries [13] to enable LLMs to solve specific 
types of mathematical problems through analogical reasoning. (2) Chain-of-Thought (CoT) instructs the 
model to generate a series of interrelated intermediate reasoning steps [13]. CoT significantly improves the 
multi-step reasoning ability of LLMs, which is a common requirement for solving complex mathematical 
problems. Unlike fine-tuning methods, prompt engineering will not modify the parameters of LLMs.

The latter also includes two methods: collaboration with symbolic solvers and collaboration with 
evaluators/validators. The methods of collaborating with symbolic solvers synthesize LLMs’ advantages in 
contextual understanding and symbolic systems’ advantages in composability, interpretability and complex 
reasoning. In the methods of collaboration with evaluators/validators, LLMs usually serve as the generator, 
executor or enhancer of the solution. In which, evaluators are usually used to assess the correctness of 
solutions generated by the LLM and select the optimal solution based on the evaluation results, while 
validators are mainly used to provide feedback to the LLM to help improve its solutions. They enable the 
LLMs to improve the solution iteratively.

2.2  Mathematical Problem Types

From the perspective of mathematical problem types, the existing researches on SMP-LLMs mainly 
focuses on four types of mathematical problems:

First, Math Word Problems, which require solving specific real-life problems using mathematical 
methods. Solving these problems usually involves understanding the problem scenario, extracting key 
information, establishing mathematical models, and conducting multi-step reasoning to ultimately provide 
interpretable solutions. An example of math word problems is shown as example 1.

Example 1. If Sally has 5 pencils and her friend gives her 3 more pencils, how many pencils 
does Sally have in total?

Second, Geometry Problems, which involve mathematical problems related to geometric shapes, spatial 
relationships and properties. Solving these types of problems requires accurately identifying geometric 
figures, understanding their spatial relationships, applying various geometric theorems, adding necessary 
auxiliary lines, and performing logical reasoning and numerical calculations. An example of geometry 
problems is shown as example 2.

Example 2. As shown in the figure, in ⊙O, AB is the chord,  
OC ⊥ AB, if the radius of OO is 5 and CE=2 , then the length of AB is ().
A. 2 B. 4 C. 6 D. 8

Third, Theorem Proving, which requires finding a direct or indirect method to prove mathematical 
theorems. Solving these types of problems involves executing logical reasoning and symbolic computation 
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based on pre-constructed theorem library, and effectively controlling the reasoning path and search space 
to find the optimal proof path. An example of theorem proving is shown as example 3.

Example 3. Prove the theorem that there are infinitely many prime numbers.

Forth, Combinatorial Optimization Problems, which requires finding the optimal combination within 
a set of constraints to maximize or minimize a certain objective function. Combinatorial optimization 
problems face the challenge of combinatorial explosion. On one hand, efficient search algorithms are 
needed to find the optimal solution in a vast search space. On the other hand, need to maintain diversity 
in the search to avoid falling into a local optima. An example of combinatorial optimization problems is 
shown as example 4.

Example 4. Online Bin Packing Problem: [14]
Input: Bins with limited capacity and arriving items with varying sizes.
Constraints: (1) Each item must be assigned to a bin upon arrival. (2) Once an item is 
assigned to a bin, it cannot be moved to a different bin. (3) The total size of items in a bin 
cannot exceed the bin’s capacity.
Objective: Minimize the number of bins used to pack all items.

Solving the above four types of problems requires various abilities shown in Table 1. Compared to ✓, 
✓✓ indicates a higher demand for that ability. But because LLMs possess only language understanding 
abilities and relatively weaker logical reasoning and numerical computation abilities, researchers need to 
make more efforts to help LLMs gain the abilities mentioned above.

Table 1.  Different Abilities Required by Different Types of Mathematical Problems.

Capacity
Math Word 

Problem
Geometry Problem Theorem Proving

Combinatorial 
Optimization

Text Understanding ✓ ✓ ✓ ✓

Diagram Parsing ✓

Logical Reasoning ✓ ✓✓ ✓✓ ✓

Numerical Calculation ✓ ✓ ✓

Symbolic Manipulation ✓ ✓✓ ✓✓

Spatial Search ✓✓ ✓✓ ✓✓
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2.3  A Two-layer Classification System of SMP-LLM

Combining the above analysis, we propose a two-layer classification system of Solution Method-
Problem Type, as shown in Figure 1, which demonstrates the correlation between solution methods and 
mathematical problem types of SMP-LLM. Fine-tuning is suitable only for simple math word problems 
and geometry problems, as it is limited by the quality of training data and the capability of LLM itself. 
Though prompt engineering can guide LLMs to generate expected outputs through methods such as 
Chain-of-Thought, it is still limited by LLM’s reasoning abilities and cannot solve mathematical problems 
involving complex reasoning, so it is mainly used in solving math word problems. Compared to the first 
two methods, combining LLMs with external modules such as symbolic solvers, evaluators or validators, 
can better develop the potential of LLMs and enhance their abilities to solve more complex problems such 
as combinatorial optimization problems.

We employed the chi-square test to verify the correlation between the solution methods and 
mathematical problem types. The analysis was based on the citation counts of various mathematical 
problems under different solution methods, as presented in Figure 1. The null hypothesis proposed is that 
the solution methods and mathematical problem types are independent, with a significance level set at α = 
0.05. The results of the test indicated a significant correlation between the two. (Pearson’s chi-square 
statistic χ2 = 22.8 exceeded the critical value ( )χ 2

0.95 9 = 16.92 )

3.  FINE-TUNING

The fine-tuning method assumes that adjusting model parameters based on relevant datasets alone can 
enable LLMs to solve simple mathematical problems. These mathematical problems mainly include math 
word problems and simple geometry problems with few reasoning steps.

Figure 1.  Classification System of SMP-LLM.
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optimization
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problems

Math 
word 

problems
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SymbolicLLM: [28]
Symbolic; LLM: [55, 56]
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engineering
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Collaborating with 
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Self-verification: [71, 72]
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[50, 52, 53, 54]

CoT prompt: [42, 43]
Self-consistency prompt: 
[44, 46, 47]
Least-to-most prompt: [48]
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3.1  Math Word Problems

Existing researches mainly focus on increasing the scale and diversity of datasets to improve the 
performance of the fine-tuned LLMs. According to whether the data used for fine-tuning are outcome data 
or process data, existing researches can be subdivided into outcome supervision and process supervision. 
Outcome supervision provides feedback on the final results, process supervision provides feedback for 
each intermediate reasoning step [15]. Works on outcome supervision include:

Yu et al. employed three methods to rephrase math word problems and constructed the MetaMathQA 
dataset for fine-tuning LLMs [16]. The first method involves reformulating math word problems using LLMs. 
The second is reverse reasoning, where known numerical terms in the problem will be replaced with 
variables, and the problem is rewrite to deduce the variables based on the answer. The third method 
supplements the second method by appending the statement If we know the answer to the above problem 
is *

ia , what is the value of the unknown variable x? directly behind the math word problem after replacing 

the variables. Yu et al. fine-tuned LLaMA-2 on MetaMathQA, creating the MetaMath language model for 
mathematical reasoning.

Xu et al. proposed a two-stage fine-tuning method for injecting diverse symbolic knowledge into 
LLMs [17], believing that the inherent correlations among various symbolic knowledge can enhance the 
performance of LLMs on symbolic tasks, including math word problem. In the injection stage, the authors 
emphasize using the intrinsic connections between different symbols in tasks such as mathematical 
reasoning, code generation, and knowledge graph construction to comprehensively learn various symbolic 
knowledge. In the infusion stage, both symbolic data and general instruction fine-tuning were utilized to 
balance the model’s symbolic and language-related abilities. Specifically, symbolic knowledge related to 
mathematical reasoning mainly comes from math word problem datasets such as GSM8k [18], MATH [1], 
and AQUA [19].

Inspired by the way students learn to correct their mistakes, An et al. proposed a method called 
LEMA that uses a new type of data pairs called error-correction to fine-tune LLMs [20]. In the data pair 
generation phase, LEMA uses multiple LLMs like LLaMA and GPT series to collect correct reasoning paths. 
Then, using GPT-4 [21] as the corrector, LEMA generates error-correction  data pairs through four steps: 
identifying errors, explaining the reasons for errors, correcting errors, and generating the final answers. In 
the LLMs fine-tuning phase, LEMA utilizes QLoRA [22] to fine-tune LLMs used for solving mathematical 
problems on reasoning paths and error-correction data pairs. The bottleneck of LEMA’s performance lies in 
the ability of the corrector, for GPT-4 finds it difficult to correct challenging problems.

Due to process supervision is usually superior to outcome supervision [15], certain research endeavors 
utilize data from the reasoning process for fine-tuning. Yuan et al. enhanced the fine-tuning dataset [23] by 
generating reasoning paths. Specifically, they utilized the zero-shot Chain-of-Thought (CoT) capability of 
LLMs to generate reasoning paths and filtered out erroneous paths and other reasoning paths with identical 
equation lists.
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Luo et al. proposed an evolutionary instruction feedback reinforcement learning method 
WizardMath [24] to enhance the mathematical problem-solving ability of LLaMA-2. WizardMath first 
generates diversified mathematical instruction data automaticlly using the math-specific Evol-Instruct. 
Then, trains the Instruction Reward Models (IRM) and Process supervision Reward Models (PRM), where 
the IRM assesses the quality of evolutionary instructions and the PRM evaluates each solution step. Finally, 
it conducts Proximal Policy Optimization (PPO) training based on the evolutionary instructions obtained 
from GSM8k [18] and MATH [1] and the instruction rewards and answer rewards obtained from IRM  
and PRM.

Few research works focus on the computational cost of fine-tuning. Full-model fine-tuning (FFT) requires 
significant computational resources. An approach called parameter efficient fine-tuning (PEFT) involves 
fine-tuning only a small portion of the external parameters, rather than the entire backbone network 
model, which has shown success on pre-trained models. Hu et al. further investigated the optimal settings 
and effects of PEFT on open-source LLMs [25], focusing on math word problems and common sense 
reasoning as downstream tasks. The conclusions are as follows. (1) The optimal positions for series adapter, 
parallel adapter, and Low-Rank Adaptation (LoRA) [25] are respectively: after the MLP layer, parallel 
to the MLP layer and both after the attention layer and MLP layer. (2) The open-source language model 
LLaMA-13B [26] using the PEFT approach outperforms GPT-3.5 in solving math word problems.

Since math word problems are targeted at elementary school students, solving such problems mainly 
relies on text comprehension ability, demanding lower logical reasoning and numerical calculation skills 
compared to other types of math problems. Therefore, most math word problems can be addressed by fine-
tuning LLMs.

3.2  Geometry Problems

LLMs cannot directly process geometric figures, and current Multimodal Large Language Models 
(MLLMs) also struggle to accurately understand basic geometric elements and their relationships, these 
models have limitations in solving mathematical problems with geometric figures. Therefore, researchers 
combine LLMs with image encoders to solve geometry problems. Typical works include:

Gao et al. constructed a multimodal geometry dataset, Geo170 K [27], based on the Geometry3k [28] 
dataset. The process involved: first, convert manually annotated logical forms into detailed information 
items and geometric summaries, then generate QA pairs based on the information items and summaries. 
Using Geo170 K, four strategies were employed to construct the instruction fine-tuning dataset: Equation 
Solving (ES), Value Scaling (VS), Re-Formulating Condition as Unknown (RCU), Sentence Paraphrase (SP). 
G-LLaVA 7B and 13B models were obtained by fine-tuning on LLaVA [29], which consists of LLaMA-2 and 
a pretrained vision transformer.

Liang et al. proposed a multimodal mathematical reasoning model called UniMath [30]. To tackle 
geometry problems, math word problems, and table-based mathematical reasoning problems, UniMath 
fine-tuned a T5  model [31] and added a Vector Quantized Variational Autoencoders (VQ-VAE) [32-33] 
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as an image encoder that’s specifically designed for geometry problems. VQ-VAE transforms geometry 
image patches into new tokens, and concatenates them with textual tokens to make the input. Through 
joint training across tasks on datasets SVAMP [34], GeoQA [35], and TableMWP [36], and fine-tuning 
on MathQA [37] and UniGeo-Proving [38] datasets, UniMath enhances mathematical reasoning abilities 
including geometry problem solving.

The above methods work well for geometry problems with simple shapes and few reasoning steps 
(usually no more than 5  steps). However, for complex geometry problems such as those in Olympic 
competitions, it is still challenging to address them effectively through fine-tuning LLMs.

3.3  Other Fine-tuning Based Research Work

There are also a few works that do not target specific types of mathematical problems. For example, 
building upon previous work [39], Zhao et al. further proposed JiuZhang 2.0 [40], a unified Chinese 
language model specifically designed for multitask mathematical problem-solving. First, the authors 
devised an architecture based on Mixture-of-Experts (MoE) to transfer and share mathematical knowledge 
across different tasks, thereby enhancing the performance of each task. Second, they designed a multitask 
continual pretraining and fine-tuning strategy, including masked token prediction, mathematical logic 
recovering, and solution checking, where masked token prediction serves as a common objective for 
LLMs and PLMs. The aim of mathematical logic recovering is to improve the model’s understanding of 
mathematical logic, and solution checking aims to enhance the model’s ability to identify and correct 
errors in the output. Third, to further enhance the model’s general ability to solve various complex tasks, 
the authors utilized LLMs as a complementary model to refine the generated solutions.

Summary: Fine-tuning methods can improve the performance of LLMs in solving math word problems 
and simple geometry problems. However, there are two main limitations: first, it requires sufficient 
annotated data for effective training, leading to a high dependency on data. Second, the inherent weakness 
in reasoning ability of autoregressive LLMs cannot be significantly improved through fine-tuning alone, 
making this method inadequate for addressing mathematical problems involving complex reasoning.

4.  PROMPT ENGINEERING

By providing specific inputs, prompt engineering can assist models to better understand the 
requirements of downstream tasks, reduce the gap between the model and the tasks, and enhance the 
model’s performance and generalization ability on specific tasks.

This method is mainly used to solve math word problems. Typical works can be summarized into three 
categories: Chain-of-Thought prompting (CoT), self-consistency prompting and least-to-most prompting.

First, the primary technique employed is the CoT prompting method [41]. The CoT prompting technique 
induces models to mimic the logical chains of human thoughts to solve reasoning tasks that require 
multiple steps. Typical works include:
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Using the Let's think step by step prompt, LLMs can generate reasoning chains step by step for the 
examples provided, but the generated chains often contain errors. To mitigate the impact of erroneous 
reasoning chains, Zhang et al. proposed an automatic CoT prompt method called Auto-CoT [42], which 
clusters problems into multiple clusters and implements diverse sampling based on these clusters to 
automatically generate examples for CoT.

Huang et al. proposed a method called CoT-Influx [43] to enhance the mathematical reasoning 
capability of LLMs using CoT. This method employs a coarse-to-fine pruner, which first identifies as many 
key CoT examples as possible and then prunes out unimportant tokens within the context window, so as to 
address the challenge of example selection caused by the limited context window length.

Second, self-consistency prompting. In this method, the LLMs will first generate several prompts, then 
select the optimal prompt by voting. Typical works include:

Fu et al. indicate that prompts with higher reasoning complexity, which means CoTs with more 
reasoning steps, perform significantly better in multi-step reasoning than simple prompts [44]. In light of 
this, the authors propose complexity-based prompts, a simple and effective method for selecting multi-step 
reasoning examples. This method selects the top 8 training samples with the most reasoning steps from 
datasets such as GSM8K [18] and MathQA [37] as CoT prompts. These prompts are then used to generate 
multiple reasoning chains with GPT-3 175B [45], then simple reasoning chains are excluded, and answers 
are generated from the remaining complex reasoning chains using a majority vote approach.

Students may validate their problem-solving processes using different methods when solving math 
problems. Inspired by this, Imani et al. proposed the Math-Prompter method to enhance the reasoning 
ability of LLMs in solving math word problems [46]. First, replace the numerical terms in the problem with 
variables. Then, use Zero-shot CoT to generate different solutions in the form of algebraic expressions or 
Python functions. Third, evaluate the solutions by replacing input variables with random values to assess if 
there is a consensus among different solutions. If there is no clear consensus, repeat the process.

Also inspired by the idea mentioned above, Wang et al. propose a self-consistency strategy to replace 
the greedy strategy in CoT [47]. This strategy samples different reasoning paths and then selects the most 
consistent answer by marginalizing the sampled paths.

Last, least-to-most prompting. CoT prompts often perform poorly when meeting problems that are 
harder than the examples provided by the prompts. To overcome this generalization challenge from easy 
tasks to hard tasks, Zhou et al. proposed a least-to-most prompting strategy [48]. This strategy decomposes 
complex problems into two steps: initially querying the LLM to decompose the problem into sub-
problems; then query the LLM to solve the sub-problems sequentially, in this step, the answers previously 
solved from the sub-problems contribute to solving each subsequent sub-problem.

Summary: Prompt engineering can guide LLMs to generate desired outputs without updating model 
parameters. However, it also has two limitations: firstly, manually designed prompts introduces human 
labor costs and biases, leading to incorrect outputs. Secondly, relying on CoT alone cannot significantly 
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enhance reasoning abilities. Similar to fine-tuning methods, prompt engineering cannot address 
mathematical problems involving complex reasoning.

5.  COLLABORATING WITH SYMBOLIC SOLVERS

LLMs have rich prior knowledge, strong generalization and high flexibility, but weak reasoning ability 
and poor interpretability. Symbolic systems exhibit properties like composability, interpretability, and 
support for higher-order reasoning and multi-step inference, but also suffer from issues like combinatorial 
explosion and sensitivity to noise. Combining the two of them can provide a best-of-both-worlds situation, 
and has become a promising direction for solving mathematical reasoning problems. Referencing the 
neuro-symbolic architectures classification system proposed in [49], we categorize the paradigms of the 
collaboration between LLMs and symbolic solvers into two types:

(1) SymbolicLLM. In this paradigm, LLMs do not perform the reasoning process, but only convert the 
problem into symbolic data, and then process the data by a symbolic solver.

(2) Symbolic; LLM. In this paradigm, LLMs and symbolic solvers iteratively interact as independent 
modules, each accomplishing the subtasks they are skilled at.

5.1  Math Word Problems

Solving math word problems primarily adopts the SymbolicLLM paradigm. Specifically, it involves using 
LLMs to translate natural language formatted mathematical problems into formal languages that symbolic 
solvers can process, such as code. Typical works include:

Chen proposed Program-of-Thoughts (PoT) to solve math word problems [50]. PoT utilizes LLMs such as 
Codex [51] to generate Python programs where Codex is a descendant of GPT-3, its training data contains 
both natural language and billions of lines of source code from publicly available sources. The generated 
programs are then executed by a Python interpreter to produce answers, thus separating complex 
computations from reasoning and language understanding.

Gao et al. proposed the Program-Assisted Language model (PAL) [52], which employs Codex [51] to 
parse natural language problems and generate programs as intermediate reasoning steps, while the solving 
process is delegated to interpreters like Python.

Yamauchi et al. proposed a mathematical reasoning framework called LPML [53] which combines 
CoT with Python REPL (Read-Eval-Print Loop). REPL is a standard library in Python, it provides a basic 
interactive environment for inputting and executing Python code line by line and displays results instantly. 
Unlike directly generating Python code to solve problems, LPML establishes an interaction between LLM 
and REPL, allowing LLM to simultaneously generate CoT and Python code. The code execution results are 
then fed back to LLM to induce corrections to the errors in CoT. LPML uses the consistency between CoT 
and Python code execution to enhance mathematical reasoning performance.
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The above methods are limited by LLMs’ ability of code generation. When facing problems with 
multiple processes, it is very difficult to ensure that LLM generates the correct code for each step.

Though programs can directly represent the solving process, some more complex math word problems 
require more abstract mathematical statements. To address this, He et al. proposed a method that 
combines LLM with an external symbolic solver [54]. LLM can translate math word problems into a set of 
mathematical statements composed of variables and equations (e.g., Let b be how many apples she had 
in the morning after eating 2 apples [var b]. We have [eq b = a − 2]), while the external symbolic solver is 
used to solve the equations in the mathematical statements.

5.2  Geometry Problems

Researches on solving geometry problems by combining LLMs with symbolic solvers is currently less, 
but it still encompasses the two paradigms mentioned above.

Lu et al. adopted the SymbolicLLM paradigm. Specifically, the authors defined a geometric formal 
language consisting of predicate, literal, and primitives and proposed a geometric solving method based 
on geometric formal language and symbolic reasoning, called the Interpretable Geometry Problem Solver 
(InterGPS) [28]. InterGPS automatically parses the problem text and diagrams into formal language using 
rule-based text parsing and object detection. Then, it applies theorems as conditional rules, and performs 
symbolic reasoning step by step. To achieve more efficient and rational search paths, the authors designed 
a theorem predictor to provide theorem usage sequences for the symbolic solver.

Wu et al. [55] also adopted the SymbolicLLM paradigm. The authors considered two limitations in 
existing methods: first, poor interpretability; second, the small scale and incomplete annotations of 
existing datasets make it hard for LLMs to comprehend geometric knowledge. To address these issues, 
the authors proposed the method called Explainable Geometry Problem Solving (E-GPS) [55]. E-GPS first 
parses geometric graphs and problem text into a unified formal language representation. Then, it uses a 
Top-Down Problem Solver (TD-PS) to obtain the answers the interpretable reasoning steps. To mitigate the 
data issues, the authors designed a Bottom-Up Problem Generator (BU-PG) to expand the dataset with 
various well-annotated constructed geometry problems.

For complex geometry problems, the cost of converting human proofs into machine-verifiable formats 
is very high, which leads to a severe scarcity of training data, current machine learning methods are not 
suitable for solving complex geometry problems. In response, Trinh et al. adopted the Symbolic; LLM 
paradigm and developed a Euclidean plane geometry tailored theorem-proving program: AlphaGeometry 
[56], in which LLM is responsible for generating auxiliary lines, and the symbolic system handles 
reasoning and computation. Specifically, the authors iteratively invoke three modules: deductive database 
(DD) [57], algebraic rules (AR) [56], and random auxiliary point addition, to automatically generate 
synthetic data in the form of <premises> <conclusion> <proof> triplets, thus avoiding manual annotation. 
Then use the generated one hundred million synthetic data to train an LLM capable of adding auxiliary 
points for geometric problems. In this process, DD and AR respectively performed symbolic reasoning and 
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operations, the former applies in inference rules on given premises repeatedly to derive new conclusions, 
while the latter handles addition and proportion relationships between the angles and edges. In geometric 
problem-solving, AlphaGeometry alternately called DD + AR + LLM to iteratively execute geometric 
reasoning and auxiliary point construction.

Using LLMs to solve or generate geometric problems is a potential research direction. Currently, a 
limitation of such methods is their relatively poor understanding of geometric figures. For example, 
InterGPS [28] can only parse relatively simple geometric shapes. existing methods still struggle to apply 
complex geometric figures, such as those in the International Mathematical Olympiad level problems. For 
instance, AlphaGeometry [56] directly conducts reasoning using formal representations, bypassing the 
process of converting figures into formal representations.

5.3  Theorom Proving

Currently, there have been some studies that combine LLMs with symbolic systems for theorem proving, 
mainly adopting the Symbolic; LLM paradigm. In these approaches, LLMs are mainly used to address 
bottleneck issues in theorem proving, namely, how to select appropriate premises from a large premise 
pool [58]. Typical works include:

Yang et al. developed an open-source Lean experimentation environment called LeanDojo [59], 
consisting of toolkits, data, models, and benchmarks. The data extracted from Lean in LeanDojo includes 
fine-grained annotation of the premises in the proofs. Utilizing the data, Yang et al. developed an LLM 
based retrieval-augmented prover: ReProver, using the retrieval-enhancement ability one can retrieve small 
sets of premises from mathlib [60], the mathematical library of Lean. To enhance the retrieval performance, 
hard negative instances need to be provided during training, which are negative instances difficult to 
distinguish. To address this, the authors proposed a simple strategy, which is to select negated premises 
from the same Lean source file that the true premises are defined in as negative instances.

Thakur and colleagues proposed a formal theorem proving method based on LLMs called COPRA [61].  
COPRA employs a black-box LLM (GPT-4 [21]) as part of the stateful backtracking search strategy. During 
the search process, the strategy can select proof tactics and retrieve lemmas and definitions from an 
external database. Each selected proof tactic is executed within the theorem proving environment Coq [62]  
or Lean [63], and the execution feedback is used to establish prompts for the next strategy invocation.

Automatic formalization is the process of automatically converting natural language mathematical 
expressions into formal specifications and proofs, which is a crucial step in theorem proving. Research by 
Wu et al. [64] shows that using different scales of LLMs such as PaLM [65] and Codex [51], with a simple 
prompt Translate the natural language version to an Isabelle version, can correctly translate a considerable 
portion (25.3%) of mathematical competition problems into formal specifications in Isabelle/HOL [66]. 
Furthermore, experiments also demonstrate that automatic formalization can provide useful training data 
for neural theorem provers.
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Welleck and Saha developed a proof step recommendation tool, LLMSTEP [67], which integrates LLM 
and Lean [63]. LLMSTEP sends the user’s proof state to Pythia 2.8B [68], the LLM is fine-tuned on samples 
from Lean Mathlib [60]. Pythia then generates suggestions for proof steps. LLMSTEP employs Lean to verify 
the validity and completion of each suggestion.

The performance of the aforementioned work in theorem proving still has significant limitations, 
primarily due to the deficiency of LLMs in selecting premises. This not only requires LLMs to possess 
sufficient mathematical knowledge but also demands LLMs to search for suitable premises from a vast 
candidate space.

Summary: LLMs are skilled at understanding natural language mathematical descriptions, identifying 
problem types, and generating problem-solving strategies, they are capable of transforming complex 
textual expressions into mathematical concepts and relationships. Symbolic solvers, on the other hand, 
demonstrate excellence in precise calculations, logical reasoning, and formal verification, ensuring the 
accuracy of computations and the rigor of reasoning. The collaboration between LLMs and symbolic 
solvers can effectively solve complex mathematical problems described in natural language and involving 
symbolic operations and exact calculations.

However, they still show significant limitations on the following types of mathematical problems: First, 
cross-media problems involving abstract graphics. Neither symbolic solvers nor current multimodal LLMs 
can achieve precise parsing and spatial relationship reasoning of abstract geometric images. Second, 
problems that are highly abstract and lack clear patterns. Such problems often lack recognizable standard 
patterns or require extremely strong creative reasoning, such problems include: certain pure mathematical 
proving and frontier theoretical mathematical issues. Third, problems relying on large-scale numerical 
simulations. For Monte Carlo simulation problems, the collaborative advantage of symbolic solvers and 
LLMs is not evident; these problems rely more on specialized numerical computation tools.

6.  COLLABORATING WITH EVALUATORS/VALIDATORS

Many mathematical problems possess the characteristic of hard to solve, easy to evaluate, these 
problems can be solved by collaborating LLMs with evaluators/validators, essentially exploration-
exploitation approaches. During the exploration phase, LLMs generate candidate complete solutions or 
individual solution steps. In the exploitation phase, evaluators/validators discriminate or select among the 
candidate solutions or steps. This process is usually executed iteratively to generate the optimal solution.

6.1  Math Word Problems

For math word problems, some research works directly utilize LLMs to generate solutions, corresponding 
verification methods include external-verification and self-verification. In external-verification, independent 
modules are used to evaluate the generated solutions of the LLM, and in self-verification, the same LLM acts 
as the verifier to provide feedback on the generated solutions. Works on external-verification include:
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Cobbe et al. constructed a dataset of 8.5K high-quality math word problems, GSM8K [18], which has 
become an important benchmark for evaluating the mathematical reasoning abilities of LLMs. None of the 
GPT-3 6B/175B was able to achieve satisfactory performance on this dataset. To address this, the authors 
trained an evaluator to estimate the correctness of the model-generated solutions, the correctness of the 
solution is determined solely by whether it produces the correct answer. When testing, the evaluator will 
select the highest scored solution from the candidate solutions as the final solution.

Li et al. proposed a reasoning step diversification validator, DIVERSE, to further enhance the reasoning 
ability of LLMs [69]. The formal validator first generates diverse prompts to explore different reasoning 
paths for the same problem. Second, composite voting and verification strategies to filter out incorrect 
answers through weighted voting. Third, it verifies each reasoning step individually rather than the entire 
reasoning chain, taking full advantage of the correct steps within incorrect reasoning. DIVERSE is fine-
tuned on deberta-v3-large [70] and uses OpenAI’s davinci series models for reasoning, it achieved state-of-
the-art results on tasks such as math word problems.

Some research works take advantage of code verification to generate solution schemes in the form of 
code and use self-verification to evaluate the outcomes. Typical works include:

Madaan et al. proposed Self-Refine [71] method uses LLMs to generate initial outputs, the same LLM 
is then employed as a validator to provide feedback to iteratively refine the generated outputs. In this 
process, the LLM simultaneously acts as the generator, validator, and improver, thus eliminating the 
need for any supervised training data, additional training, or reinforcement learning. For math word 
problems, Madaan et al. used PAL [52] to generate solutions in Python. By utilizing Self-Refine, the model 
can identify errors in the code and improve the solutions through an iterative process of introspection  
and feedback.

Building on the work [52], Zhou et al. further proposed the explicit code-based self-verification  
(CSV) [72]. CSV employs the zero-shot prompt with GPT4-Code, encouraging GPT-4 [21] to generate code 
to self-verify its answers. If the verification status is incorrect, the model will automatically correct the 
solution, this is similar to how humans rectify errors during a math exam.

The above methods draw inspiration from how humans self-correct errors during math exams, thereby 
enhancing LLMs’ ability in solving math word problems. But they also introduce certain drawbacks, 
such as the increase of model complexity and higher training costs. Self-verification is more efficient and 
convenient compared to external-verification because it uses the same LLM as the verifier so it can gain 
feedbacks quickly. However, it may be limited by the LLM’s own reasoning ability and fail to provide a 
completely objective evaluation result. At the same time, though external-verification may provide a more 
objective and accurate evaluation result, it increases the model’s complexity and computational expenses 
because of the need to introduce additional modules.
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6.2  Theorem Proving

In the field of automated theorem proving, some research efforts combine validators such as Metamath [16]  
and Isabelle [66] with LLMs to enhance theorem proving performance. Typical works include:

Polu and Sutskever applied transformer-based LLMs to automated theorem proving and proposed an 
automatic theorem prover and proof assistant for Metamath formal language: GPT-f [73]. GPT-f uses a 
trained decode-only transformer architecture LLM to generate the proving process, and uses a Metamath 
verifier to verify it. To enhance the proof search efficiency of LLMs, the authors annotated the LLM 
generation process using the verifier, and iteratively trained the value function using the annotated data 
to improve the performance of GPT-f. GPT-f also discovers several new short proofs, 23 short proofs have 
been included to the Metamath library.

Different from existing methods that predict one proof step at a time, First et al. proposed the theorem 
proving approach Baldur [74], which is a theorem proving method based on LLMs trained on natural 
language texts and codes and fine-tuned on proofs. It generates the entire proof of the theorem at one 
time rather than predicting one step at a time. Specifically, Baldur consists of three modules: the proof 
generation module, which is an LLM that generates candidate proofs based on the input theorem 
statement; Isabelle, a higher-order logic (HOL) theorem prover [66], it is used to verify the candidate 
proofs, if the verification fails, it will return an error message; the proof correction module, also an LLM, it 
corrects the proof process based on the error message returned, then passes it to Isabelle to verify, iterates 
this process until Isabelle passes the verification.

Collaboration between LLMs and evaluators/validators can effectively demonstrate strong theorem proving 
capabilities, but it relies on the scoring signals generated by the evaluators/validators. For multi-step proof 
processes, it is difficult to provide rich scoring signals for each inference step for proof process correction.

6.3  Combinatorial Optimization Problems

Combinatorial optimization problems involve finding the optimal solution from a finite solution space. 
In addition to the objective function that needs to be maximized or minimized, combinatorial optimization 
problems are also accompanied by a series of constraints that solutions must satisfy. The solution space 
of combinatorial optimization problems is typically large and discrete; thus, researchers proposed the 
Algorithm Evolution framework [75] shown in Figure 2 to manage these problems. It involves prompting 
the LLM to generate initial solution algorithms in code form, and continuously evolving these algorithms 
by maintaining an algorithm pool. The basic process is: prompt LLM to execute operations such as 
crossover, mutation, and creation on algorithms selected from the algorithm pool, and use the evaluator to 
select algorithms to add to the algorithm pool, iterate this process until an optimized solution is found.
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 Typical works under the framework include: 

 Liu et al. proposed the AEL method [ 75 ] that can automatically generate optimization algorithms using 
LLMs under the evolutionary framework. AEL achieves algorithm construction and evolution by prompting 
LLMs to execute operations such as initialization, crossover, and mutation. This process eliminates the 
need for model training, significantly reducing human workload and domain knowledge requirements. 
Furthermore, Liu et al. utilized the AEL framework to design the Guided Local Search (GLS) algorithm [ 76 ]. 
GLS employs a utility function to guide lower-level local search algorithms, which can effectively explore 
the search space and prevent the algorithm from falling into a local optimal state. GLS was applied to solve 
the Traveling Salesman Problem (TSP). AEL can automatically evolve excellent GLS algorithms within two 
days with minimal human intervention and no need for model training. 

 Romera-Paredes et al. proposed a combinatorial optimization problem solving method that combines 
LLMs with evaluators named FunSearch [ 14 ]. Though FunSearch and the research by Liu et al. [ 75 - 76 ] 
are independent of each other, they share similar ideas, so it can still be classified under the category of 
algorithm evolution. In each iteration, FunSearch selects the highest scoring program from the program 
library to generate prompts and inputs them into the LLM to generate new programs. If the new program 
passes evaluation of the evaluator, it will be stored in the program library, the solution to the problem is 
obtained by retrieving the highest scored program of the program library. 

 Liu et al. utilized LLMs to solve combinatorial optimization problems and proposed the LLM-driven 
Evolutionary algorithm(LMEA) method [ 77 ]. In each generation of evolutionary search, LMEA constructs 
prompts to guide the LLM in selecting parent solutions from the current population and performs crossover 
and mutation to generate offspring solutions. LMEA evaluates and selects new solutions to be included in 
the next generation population. LMEA employs a simple self-adaptive mechanism, it balances exploration 
and exploitation by controlling the temperature of the LLM to prevent the search from falling into a 
locally optimal solution. LMEA can quickly adapt to different optimization problems due to the fact that 
optimization problems can be described in natural language descriptions and LLMs can be guided by the 
desired solution properties. 

 Figure 2.  Algorithm Evolution Framework. 
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With the algorithmic evolution framework, LLMs and evaluators/validators can collaborate to solve 
some complex combinatorial optimization problems, but they have a high dependency on scoring signals. 
For certain combinatorial optimization problems, it is challenging to generate rich scoring signals for 
algorithmic evolution.

6.4  Reinforcement Learning-Driven Mathematical Problem Solving

The LLMs used in the aforementioned studies are usually autoregressive models formed through self-
supervised learning or supervised fine-tuning. Recently, a series of LLMs that incorporate reinforcement 
learning, also known as reasoning models, have emerged, such as OpenAI’s o1/o3 and DeepSeek-R1 [78], 
they show significant improvement in complex reasoning tasks, including mathematical problem-solving. 
The main reason for this improvement is that, compared to supervised learning, reinforcement learning 
can better address the two key characters of complex mathematical problem-solving. First is delayed 
rewards, the effect of each reasoning step may only become apparent after numerous subsequent steps, 
and intermediate rewards may be sparse or even zero. Reinforcement learning can effectively handle 
the delayed reward issue through value functions/networks and policy optimization. Second is balancing 
exploration and exploitation, Supervised learning can only leverage existing labeled data, and lacks 
exploration mechanisms, but reinforcement learning can explore new strategies to discover potentially 
better solutions, avoiding local optima or ineffective reasoning paths.

Such works can also be classified under the “Generator-Evaluator” paradigm, where the generator is 
represented by the policy, responsible for generating steps or strategies for problem-solving; the evaluator 
is represented by the value function or reward model, it provides feedback by assessing the quality of the 
generated action a. Among these works, the models primarily focused on mathematical problem-solving 
tasks include: WizardMath [24], DeepSeekMath [79], and R3 [80].

Luo et al. proposed WizardMath [24], which enhances the mathematical reasoning ability of LLMs 
through Reinforcement Learning from Evol-Instruct Feedback (RLEIF). This approach combines Math 
Evol-Instruct and process supervision. It generates diverse mathematical instruction data through both 
downward and upward evolution.It introduces Instruction Quality Scoring and Process Supervision to 
optimize the model.

Shao et al. proposed DeepSeekMath [79], an LLM which focuses on mathematical reasoning. The 
training process of the model is: First, pre-train DeepSeek-Coder-Base-v1.5 7B on 120 billion high-quality 
math-related data. Second, proceed reinforcement learning optimization by Group Relative Policy 
Optimization (GRPO), GRPO significantly reduces the need for training resources by using the average 
reward of multiple sampled outputs as baseline, and significantly reduces the need for training resources, 
avoiding the need for value networks as required in Proximal Policy Optimization (PPO).

Xi et al. proposed a method named R3 [80], it can enhance the reasoning ability of LLMs through 
Reverse Curriculum Reinforcement Learning. R3 employs the outcome supervision as the evaluator, 
achieving an effect similar to Process Supervision while avoiding the high cost of manual annotation. 
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Specifically, R3  starts from the intermediate states of the correct demonstrations and gradually moves 
backward to provide approximated Process Supervision signal.

Research on reinforcement learning-based reasoning models is still in its early stages. Employing 
reasoning models for mathematical problem-solving still faces two major challenges: First, the issue of 
delayed rewards leads to the temporal credit assignment problem, which refers to how to properly allocate 
delayed rewards to reasoning steps. Second, in the tradeoff of exploration and exploitation, excessive 
exploration or exploitation may result in underthinking and overthinking. The former refers to the model’s 
tendency to frequently switch between reasoning strategies without processing deep inference on any 
single strategy. The latter refers to the model’s lack of exploration, meaning that the model may process 
excessive reasoning steps within a particular strategy, leading to either failure in problem-solving or the 
generation of redundant reasoning paths.

Summary: In mathematical problem solving, the introduction of evaluators/validators to LLMs 
demonstrates significant advantages. The system can detect errors in real time at each reasoning step 
and trigger correction mechanisms, effectively preventing error accumulation and amplification. This 
approach can further enhance the exploratory capabilities in reasoning after integrating with reinforcement 
learning frameworks, achieving or even surpassing human-level performance on challenging mathematical 
problems such as theorem proving and combinatorial optimization.

However, this collaborative mechanism also faces three core limitations. First is the sparse reward 
problem: during long-chain reasoning processes (e.g., the average proof length for olympiad theorems is 
50 steps [56]), the evaluator often fails to provide dense and timely scoring signals, impacting reasoning 
efficiency. Second is the exploration suppression issue: due to the inherently conservative tendency of 
evaluators to identify and penalize errors, it may restrict the model’s exploration of novel reasoning paths, 
even leading to overthinking. Last is the computational burden problem: each reasoning step requires 
additional evaluation, significantly increasing computational costs and response latency, which could 
become a critical bottleneck in practical deployments.

7.  DATASETS

Currently, several mathematical problem datasets have been constructed specifically for performance 
testing or model training. Figure 3 categorizes different datasets according to three problem types, the 
arrows indicate that the subsequent dataset introduced some or all of the mathematical problems from 
previous datasets.

The experimental results on the main benchmarks from the key references are provided in Appendix A.

Table 2(a) ~ 5 provide some brief descriptions of these datasets, along with typical examples of the 
problems.
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Figure 3.  Mathematical Problem Datasets.

Table 2(a).  Math Word Problem Datasets.

Dataset Brief Descriptions Problem Examples

AQUA [19] 
(2017)

AQUA contains 100,000 problems  
constructed through crowdsourcing,  
the problems are based on 34,202  
seed problems from GMAT and 
GRE exams. Each problem is 
decomposed into four parts: the 
problem description, options, the 
rationale, and the correct option.

MathQA [37] 
(2019)

MathQA contains 37,200 problems  
from AQUA [19], along with 
corresponding multiple-choice 
options and solution processes. The 
authors developed a specialized  
annotation platform and used 
crowdsourcing to accurately 
annotate the solution processes. In 
addition to mathematical reasoning  
performance evaluation, this 
dataset can also be used to fine-
tune or prompt LLMs to improve 
reasoning performance and 
interpretability.
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Table 2(b).  Math Word Problem Datasets.

Dataset Brief Descriptions Problem Examples

ASDiv [81] 
(2021)

ASDiv (Academia Sinica Diverse) contains 2,305 math word problems, covering a wider range 
of text patterns and most problem types found in elementary school curricula. Each math word 
problem is labeled with the problem type and grade level (indicating difficulty). To assess the 
diversity of the problems, the authors proposed the lexicon usage diversity (LD) index based on 
BLEU [81] to evaluate the diversity of the dataset.

SVAM [34] 
(2021)

SVAMP includes 2,305 math word problems, covering a broader range of text patterns and 
most problem types in elementary school mathematics. The problems are sourced from the 
arithmetic subset ASDiv-A of ASDiv [81] and have undergone three types of modifications. 
These modifications are aimed to evaluate the model’s capabilities in three aspects: whether 
the answers depend on the problems themselves, whether slight changes in problem text affect 
the reasoning steps, and whether changes in the surface structure of the problem text affect the 
answers or reasoning steps.

GSM8K [18] 
(2021)

GSM8K contains 8.5K high-quality, 
human-constructed elementary math  
problems, with 7.5K problems for 
training and 1K problems for testing. 
The solution processes primarily use 
basic arithmetic operations such as 
+, –, ×, ÷, and the steps to solve the 
problems range from 2 to 8. The 
solution processes are described in  
natural language rather than purely 
mathematical expressions to better 
evaluate the language model’s ability  
to solve math word problems.
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Table 3(a).  Geometry Problem Datasets.

Dataset Brief Descriptions Problem Examples

GeoQA [35] 
(2021)

GeoQA contains 4,998 real 
geometry problems from Chinese 
middle school exams. Each 
problem can be represented 
as (t, d, c, i, e, t, k, p). t is the 
problem text; d is the geometric 
figure; c = {c1, c2, c3, c4} are the 
answer options; i is the answer 
index, where ci ∈ c; e is the 
natural language-based problem-
solving explanation; t is the 
problem type, including Angle 
Calculation, Length Calculation, 
and other types; k is the related 
knowledge point, such as the 
Pythagorean Theorem; p is the 
Annotated Programs, represented 
in the language form consisting 
of operations (e.g., Add, Sin), 
constants (e.g., π, 30), problem 
variables, and process variables.

Geometry-3K 
[28] (2021)

Geometry3K contains 3,002  
geometry problems. Annotators 
labeled the problem text, 
geometric figures, options, and 
correct answers. The problem 
text and geometric figures are 
described using literals, each 
literal consists of a predicate and 
a set of arguments (constants, 
variables, or literals). For example,  
AreaOf (Triangle (A, B, C)) 
represents the area of ΔABC. 
This geometry formal language 
bridges the semantic gap between 
text and geometric figures, 
facilitating symbolic problem 
solving.
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Table 3(b).  Geometry Problem Datasets.

Dataset Brief Descriptions Problem Examples

GeoQA+ [82] 
(2022)

GeoQA+ annotates an additional 2,518 geometry problems on the basis of GeoQA [35],  
including 636 area-type problems, which are not presented in GeoQA. Compared to 
the average solving steps of 1.96 in GeoQA, the newly annotated problems are more 
challenging, with an average solving steps of 2.61.

UniGeo [38] 
(2022)

UniGeo contains 4,998 geometric computation problems from GeoQA [35], as well as 
geometric proof problems from the IXL2 website (https://www.ixl.com/math/geometry). 
Each proofs problem is annotated with multi-step proofs including reasoning and mathematical 
expressions. The proof can be easily reformulated as a proving sequences that shares the same 
formats with the annotated program sequence for calculation problems.

PGPS9K [83] 
(2023)

PGPS9K contains 9,022 geometry 
problems, with 2,891 problems 
selected from Geometry3K [28], 
and the rest from mathematics 
course websites. The problems in  
PGPS9K are categorized into 30 
types, such as Line Segment, Angle, 
and Circumference and Area of 
Circle. Each problem’s derivation 
steps are finely annotated, with  
each step consisting of an operator  
and several operands. PGPS9K 
defines 34 operators (such as 
geometric theorems) and 55 
operands (including problem 
variables, process variables, 
unknown variables, and constants).

GeoEval [84] 
(2024)

GeoEval’s geometry problems come from datasets such as Geometry3K [28], PGPS9K [83], 
UniGeo [38], and GeoQA+ [82], and are divided into four subsets. (1) The GeoEval-2000 
dataset contains 2,000 problems. (2) The GeoEval-backward dataset is created by the 
corresponding backward problems of 750 selected problems of the GeoEval-2000 subset, 
by providing answers o reverse-engineering the masked numbers. (3) The GeoEval-aug 
subset is formed by rephrasing 2,000 problems from the GeoEval-2000 subset using GPT-
3.5, this can address the problem of data leakage. (4) The GeoEval-hard subset contains 
300 geometry problems, it focuses particularly on solid geometry and analytic geometry, it 
can help enhance problem type diversity.



Solving Mathematical Problems using Large Language Models: A Survey

Data Intelligence24

Table 5.  Theorem Proving Datasets.

Dataset Brief Descriptions and Problem Examples (portion)

MATH [1] (2021)

Hendrycks et al. constructed the MATH dataset [1], which contains 12,500 mathematics 
competition problems sourced from AMC 10, AMC 12, AIME and other mathematics 
competitions. Unlike previous datasets, most problems in MATH cannot be solved 
directly using the K-12 mathematic tools but require skills and heuristic methods. The 
problems in the MATH dataset span different subjects and difficulty levels. The seven 
subjects are Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry, 
Intermediate Algebra, and Precalculus. Each problem includes a multi-step solution and 
a final answer, and is assigned a difficulty rating from 1 to 5.

Table 4.  Theorem Proving Datasets.

Dataset Brief Descriptions and Problem Examples (portion)

Wiedijk’s list of 100 theorems [85] 
(1999)

In July 1999, at a mathematics conference, mathematicians Jack Abad 
and Paul Abad unveiled the list of The Hundred Greatest Theorems. Their 
ranking was based on the theorem’s status in the literature, the quality of 
the proof, and the unexpectedness of the result. The top three theorems 
were: The Irrationality of the Square Root of 2, the Fundamental Theorem 
of Algebra, and the Denumerability of the Rational Numbers. In [85], the 
formalization of these theorems in systems such as Isabelle [66], Coq [62],  
and Lean [63] was documented.

miniF2F [86] (2021)

miniF2F is a dataset of manually formalized statements of Olympiad-
type problems, aligned in Lean [63], Metamath [87], and Isabelle [66],  
providing a cross-platform benchmark for formal mathematical 
reasoning. The formalized statements in miniF2F come from multiple 
sources, covering exercises from high school and undergraduate levels 
to Olympiad problems, mainly from AIME (American Invitational 
Mathematics Examination), AMC (American Mathematics Competition), 
IMO problems, and informal datasets from MATH [1], allowing miniF2F 
to encompass a broader range of difficulties. MiniF2F also covers various 
subfields and proof strategies in mathematics, with a primary focus on 
algebra, number theory, and inequalities.

LeanDojo Benchmark [59] (2022)

LeanDojo is a benchmark for premise selection and theorem proving, 
including 98,734 theorems and proofs extracted from the Lean 
mathematics library [60], covering topics such as analysis, algebra, and 
geometry. Unlike the existing Lean dataset, the LeanDojo Benchmark also 
includes definitions of 130,262 premises, comprising not only theorems 
but other definitions usable as premises. Additionally, the dataset contains 
217,776 tactics, with 129,243 tactics involving at least one premise. 
Among the tactics with premises, the average number of premises is 2.13.

Fimo [88] (2023)

Fimo is a dataset of human-verified auto-formalized statements of IMO-
level mathematical problems aligned in Lean language. It comprises 149 
formal problem statements, accompanied by both informal problem 
descriptions and their corresponding LATEX-based informal proofs.
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8.  FUTURE RESEARCH DIRECTIONS

8.1  Geometric Figure Analysis

In courses such as plane geometry, solid geometry, and analytic geometry, there are numerous 
geometric figures composed of lines, rectangles, circles, etc. Parsing these geometric shapes to identify 
their elements and topological relationships, and representing them formally, is a prerequisite for 
collaborative reasoning with LLMs. Although AlphaGeometry [56] can solve IMO-level geometric 
problems, it directly uses the formal language of geometric figures as input.

In practice, parsing geometric figures into formal language is not easy for two main reasons: first, unlike 
natural images in the field of computer vision, geometric figures have sparse visual features, their color, 
texture, and background information are much less than those of natural images. Second, geometric 
figures exhibit a phenomenon different from natural images known as isomorphism but different shapes, 
meaning that geometrically different figures (as shown in Figure 4) may express the same topology.

This makes it difficult to apply object detection models that perform well on natural images to geometric 
figure parsing. Our test results indicate that object detection models like classic Faster R-CNN [89] and popular 
models like DETR [90], CenterNet [91], etc., achieve an average accuracy of 85.3% on MSCOCO [92], but 
only 13.3% on GeoQA [35]. Additionally, we also employed GPT-4V to describe 50 randomly selected 
geometric figures from GeoQA [35], using the prompt Please list out the known information that is directly 
reflected in the given geometric diagram. Only 6  descriptions were completely correct, Figure 5 lists 4 
typical failure cases.

8.2  The Comprehension and Generation of Mathematical Expressions

Mathematical problems and their solution processes usually include many mathematical expressions, 
there are three challenges in understanding and generating these expressions:

First, mathematical expressions contain specific symbols with specific meanings, such as ∫, ∂, ∑, ∏. 
Understanding the meanings of these symbols is essential for accurately understanding mathematical 
expressions.

Figure 4.  isomorphism but different shapes.
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Second, mathematical expressions often have complex structures and hierarchical relationships composed 
of symbols, constants, variables, etc. For example, 

∞ −∫0
n xx e dx  is a typical mathematical expression in 

advanced mathematics with a complex structure, involving concepts such as integration, exponential 
functions, and power functions. Understanding such expressions requires strong text parsing abilities.

Third, mathematical expressions are not isolated in problem-solving and theorem proving, but have 
various logical and numerical relationships. Understanding or generating mathematical expressions with 
relationships requires logical reasoning and numerical calculation abilities.

8.3  Indirect Proof

Currently, researchers usually employ direct proof approaches when using LLMs in mathematical proofs. 
Unlike directly proving a proposition P to be true, indirect proofs often demonstrate that P cannot be false. 
Indirect proofs are commonly used in mathematics, particularly for proving existence, uniqueness, and 
propositions that are challenging to prove directly.

Indirect proofs can be further classified into proof by contradiction and proof by contrapositive. 
The fundamental principle of proof by contradiction is: to prove P to be true, first assume P to be false, 
which leads to a contradiction, thereby demonstrating P to be true, i.e., (¬P ⇒ ⊥) ⇒ P. One classic 
example is the proof of The infinitude of the primes by the ancient Greek mathematician Euclid using 
proof by contradiction. The basic principle of proof by contrapositive is: to prove P ⇒ Q, one can prove 
its contrapositive, i.e., ¬Q ⇒ ¬P. For example, proof by contrapositive can easily demonstrate If n is an 
integer and n2 is even, then n is also even.

Directly applying LLMs for indirect proof may involve modus tollens inference. Empirical studies show 
that LLMs exhibit the inverse scaling phenomenon [2] on such reasoning tasks, which means that though 
the size of the model and the amount of the training data have increased, the performance of the LLMs 
decreased. Combining large models with symbolic reasoning also faces challenges such as the need for 
more skillful strategies in finding reasoning paths. For example, in the indirect proof of The infinitude of the 

Figure 5.  Typical Failure Cases of GPT-4V.
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primes, it is necessary to creatively introduce an integer +∏  = 1
=  1

n

ii
N p , where pi is the ith prime in 

ascending order, and pn is the largest prime.

8.4  LLM Benchmark for Solving Mathematical Problems

Although there have been many research works on evaluating the mathematical abilities of LLMs [1, 3-8],  
constructing a fair, accurate, and comprehensive benchmark for the assessment of mathematical abilities 
still faces many challenges:

First is the issue of diversity, manifested in the various types, difficulty levels, and solution methods of 
mathematical problems. To comprehensively assess the mathematical abilities of LLMs, the benchmark 
should cover a wide range of problem types and difficulties, as well as multiple solution approaches.

Second is the problem of interpretability. Even though LLMs can generate correct answers, if they 
cannot provide concise and easily understandable solution processes, these answers remain unacceptable. 
Therefore, there is a need to design indicators and quantitative methods specifically for interpretability.

Third is the issue of data contamination, it means that the evaluation dataset contains data seen during 
training, leading to evaluation results far higher than the actual performance of the model. For example, 
evaluation results on 4,550 problems from 30  math and EECS courses required for MIT degree exams 
indicated that [93] GPT-4 almost passed with full score. But subsequent analysis revealed that significant 
contamination of the test dataset. Therefore, it is necessary to ensure that the mathematical problems in the 
evaluation data are not present in the training data of LLMs.

9.  CONCLUSION

In this survey, we reviewed methods for solving mathematical problems using LLMs by analyzing 
relevant papers in the field of LLMs and mathematical problem-solving. Based on our analysis, we propose 
a two-layer classification system for SMP-LLM. At the first layer, existing researches are classified into 
four categories based on the approach to problem-solving, including: fine-tuning, prompt engineering, 
collaboration with symbolic solvers, and collaboration with evaluators/validators. And at the second layer, 
mathematical problems addressed by existing researches are classified into four categories, including: 
math word problem, geometry problem, theorem proving, and combinatorial optimization problem.This 
classification system demonstrates the correlation between solution methods and mathematical problem 
types of SMP-LLM. We provide a comprehensive analysis of existing works along the dimensions defined 
by our classification system, and stated the strengths and weaknesses of each approach. Finally, we 
systematically introduce related datasets in this field and outline future research directions and challenges. 
We hope our survey will assist other researchers in making further contributions to this area.
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APPENDIX A. DATA ANALYSIS

If not specially specified, the evaluation metric for each dataset is accuracy, the unit is %.

Table A.10:  Math Word Problems.

Model GSK8K MATH SVAMP

Fine-tuning

MetaMath-7B/13B/70B [16] 66.5/72.3/82.3 19.8/22.4/26.6 -

Symbol-LLMbase-7B/13B [17] 61.14/68.69 28.24/33.39 -

Symbol-LLMinstruct-7B/13B 59.36/65.58 26.54/31.32 -

LLaMA-2-7B/13B/70B + Learning From Mistakes [20] 54.1/64.2/83.5 9.4/12.6/25.0 -/-/81.6

LLaMA-65B + Learning From Mistakes 77.9 20.8 72.8

MetaMath-13B/70B + Learning From Mistakes 73.2/85.4 22.7/26.9 -

WizardMath-7B/13B/70B + Learning From Mistakes 55.9/73.2/84.2 11.9/22.7/27.1 -

LLaMa2-13B + RFT-U13B [23] 55.4 - -

LLaMa-7B/13B + LorA [25] 37.5/47.5 - 52.1/54.6

Prompt Engineering

Auto-CoT [42] 47.9 - 69.5

Code-davinci-002 + Complex CoT [44] 66.6 - -

Code-davinci-002 + Vote Complex 82.9 - -

LLaMA2-7B/13B/70B + CoT-Max [43] 15.92/32.37/59.59 - -

Code-davinci-002 + Self-consistency [47] 78.0 - 86.8

Code-davinci-002 + LeasLLaMA2-7B/13B/70Bt-to- 
Most [48]

62.39 - -

Collaborating with Symbolic Solvers

PoT + GPT4 [50] 97.2 - 97.4

Codex + PAL [52] 72.0 - 79.4

DECLARATIVE3-shot + principles + SymPy [54] 69.4 ± 0.65 - -

LPML + GPT-3.5 [53] 76.6 60.0 -
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Table A.12:  Geometry Problems.

Model SVAMP GeoQA MathVista Geometry3K

Fine-tuning

UniMath-T5-base 37.3 [30] 49.6 - -

UniMath-Flan-T5-base 41.8 50.0 - -

G-LLaVA-7B/13B [27] - 64.2/67.0 53.4/56.7 -

Collaborating with Symbolic Solvers

Inter-GPS [28] - - - 57.5

Table A.11:  Math Word Problems.

Model GSK8K MATH SVAMP

Collaborating with Evaluators/Validators

Code-davinci-002 + DIVERSE [69] 82.3 - 87.0

GPT-4 + SELF-REFINE [71] 93.1 - -

GPT-4-Code + CSV [72] - 73.54 -

GPT-4-Code + CSV + Voting - 84.32 -

WizardMath-GPT2-Small/Medium/Large/XL [24] 26.4/38.7/50.1/58.9 12.3/15.6/21.2/25.4 -

WizardMath-Qwen2.5-7B 94.0 74.5 -

WizardMath-Qwen2.5-Math-7B 93.9 77.8 -

WizardMath-DeepSeekMath-7B 91.0 64.6 -

WizardMath-Llama-3-1B/3B/8B 63.3/85.5/90.3 33.5/49.9/58.8 -

WizardMath-Llama-2-7B/13B/70B 84.1/89.7/92.8 43.5/50.6/58.6 -

DeepSeekMath Corpus [79] 23.8 13.6 -

DeepSeekMath-Base-7B 64.2 36.2 -

DeepSeekMath-Instruct-7B (Chain-of-Thought 
Reasoning)

82.9 46.8 -

DeepSeekMath-RL-7B (Chain-of-Thought Reasoning) 88.2 51.7 -

DeepSeekMath-Instruct-7B (Tool-Integrated Reasoning) 83.7 57.4 -

DeepSeekMath-RL-7B (Tool-Integrated Reasoning) 86.7 58.8 -

Llama2-Base-7B + R3 [80] 50.49 - 64.40
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Table A.14:  Theorem Proving.

Model miniF2F-valid miniF2F-test LeanDojo Benchmark

Prompt Engineering

Thor after 2 expert iterations (M2) [64] 37.3 35.2 -

LEGO-Prover + ChatGPT [94] 57.0 50.0 -

Collaborating with Symbolic Solvers

COPRA + GPT-3.5 [61] - 22.13 -

COPRA + GPT-4 - 23.36 -

ReProver [59] - 26.5 51.2/26.3

LLMSTEP (Pythia-2.8b) [67] 26.2 27.9 -

Table A.15:  Combinatorial Optimization Problems.

Model
TSP20 
Gap

TSP20 
Gap

TSP100 
Gap

TSP200 
Gap

TSP500 
Gap

TSP1000 
Gap

Collaborating with Evaluators/Validators

AEL + GPT-3.5-turbo [75] 11.2 16.8 20.0 21.8 23.1 22.8

AEL + GPT-4 6.2 11.1 10.5 11.2 12.8 12.8

AEL-GLS [76] 0.000 0.000 0.032 - - -

Table A.16:  Combinatorial Optimization Problems.

Model OR1 OR2 OR3 OR4
Weibull 

5k
Weibull 

10k
Weibull 

100k

Collaborating with Evaluators/Validators

FunSearch [14] 5.30 4.19 3.11 2.47 0.68 0.32 0.03

Table A.17:  Combinatorial Optimization Problems.

Model rue-10 Gap rue-15 Gap rue-20 Gap rue-25 Gap

Collaborating with Evaluators/Validators

LMEA [77] 0.00% ± 0.00% 0.06% ± 0.06% 3.94% ± 1.54% 18.72% ± 3.31%
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Table A.18:  Combinatorial Optimization Problems.

Model clu-10 Gap clu-15 Gap clu-20 Gap clu-25 Gap

Collaborating with Evaluators/Validators

LMEA 0.00% ± 0.00% 0.11% ± 0.11% 4.05% ± 0.69% 10.06% ± 1.69%


