Solving Mathematical Problems using Large Language
Models: A Survey

Feijuan He'#, Han Lai*, Jiaqi Liu®, Bo Wang', Haoran Chen', Haohan Liu', Chenxi Zhang'

'Xi’an Jiaotong University City College, Shaanxi 710018, China
*School of Computer Science and Technology, Xi’an Jiaotong University, Shaanxi 710049, China

*Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China

“‘Engineering research center of loT intelligent sensing interactive platform, universities of Shaanxi province, Shaanxi 710018, China

Keywords: Large language models; Mathematical problems; Fine-tuning; Prompt engineering; Symbolic solvers;

Evaluators; Validators; Survey; Knowledge graph

Citation: He FJ., Lai H., LiuJ.Q., etal.: Solving Mathematical Problems using Large Language Models: a Survey. Data Intelli-
gence, Vol. 7, Art. No.: 2025r44, pp. 1-40, 2025. DOI: https://doi.org/10.3724/2096-7004.di.2025.0064

ABSTRACT

Large Language Models (LLMs) exhibit impressive performance across various Natural Language Processing
(NLP) tasks due to their robust contextual understanding, content generation and few/zero-shot learning
abilities. However, LLMs still show significant limitations while handling with mathematical problems that
require complex reasoning skills and interpretable solving processes. Consequently, a series of research efforts
have been made in solving mathematical problems using Large Language Models (SMP-LLM). This survey
provides a comprehensive review of such endeavors. First, we introduce a two-layer classification system
for SMP-LLM: at the primary layer, we categorize extant researches into four classes of solution methods,
including: fine-tuning, prompt engineering, collaboration with symbolic solvers, and collaboration with
evaluators/validators. At the second layer, we classify mathematical problems into four categories: math word
problem, geometry problem, theorem proving, and combinatorial optimization problem. This classification
system finds the correlation between solution methods and the categories of mathematical problems. Second,
we analyzed typical research works under of each method, and summarized their strengths and weaknesses.
Third, we elucidate current mainstream datasets for solving mathematical problems and analyzed how
these datasets promote SMP-LLM research from different perspectives. Finally, summarize the challenges
that SMP-LLM are facing and highlighted four research directions: geometric analysis, comprehension, and
generation of mathematical expressions, indirect reasoning and benchmarks for evaluating mathematical
ability. We hope that this survey can provide useful references for researchers interested in SMP-LLM.

* Corresponding author: Han Lai (E-mail: hanlai@stu.xjtu.edu.cn; ORCID:0009-0000-3310-8075).

© 2025 Chinese Academy of Sciences. Published under a Creative Commons Attribution 4.0 International (CC BY 4.0)
license.

Solving Mathematical Problems using Large Language Models: A Survey

1. INTRODUCTION

Large Language Models (LLMs) refer to deep learning models trained on massive text datasets using
self-supervised learning, with parameter sizes typically reaching billions or higher. LLMs possess strong
capabilities in contextual understanding, content generation, and few/zero-shot learning, they can adapt
to various natural language understanding and generation tasks with minimal or no fine-tuning. They have
achieved state-of-the-art performance in tasks such as machine translation, text summarization, sentiment
analysis, and even reached human-level performance. However, LLMs usually employ autoregressive
methods for training and next-token prediction methods for content generation, which leads to weaker
performance in tasks requiring numerical reasoning, symbolic reasoning, and logical reasoning. At the
same time, increasing the number of parameters of the model can not significantly improve its reasoning
performance [1] and may arise inverse scaling phenomena in tasks such as modus tollens inference [2].

Utilizing LLMs directly during mathematical problem solving is challenging because various types
of reasoning tasks are involved. Therefore, the ability to solve mathematical problems is an important
indicator in evaluating intelligent systems. A series of evaluations on LLMs have also confirmed this
conclusion [1, 3-9].

For this purpose, a series of researches have been made on mathematical problem solving with open-
source or closed-source LLMs. These research efforts target various types of mathematical problems,
including math word problem, geometry problem, theorem proving and combinatorial optimization
problem. They employed diverse technical approaches such as fine-tuning, prompt engineering,
collaboration with symbolic solvers and collaboration with evaluators/validators to enhance LLMs’ ablility
on solving complex mathematical problems. This survey will provide a review over such endeavors.
Currently, we have only find one relevant survey [10] which conducts a review of researches on
mathematical language models from two perspectives: mathematical problem types and solution methods.
The former mainly encompasses arithmetic operations and mathematical reasoning, while the latter is
divided into two major categories: based on pre-trained language models and based on LLMs. While this
survey provides valuable reference and guide for researchers engaged in solving mathematical problems
with LLMs, it still has two shortcomings. First, its classification system is relatively ambiguous. In a good
classification system, each category should be mutually exclusive, unambiguous [11]. However, in the
classification system of [10], the boundary between pre-trained language models and LLMs is blurred,
and the boundary between math word problems and mathematical question-answering problems is
also unclear. Thus, it fails to demonstrate the essential characteristics of different types of research work
effectively. Second, it fails to reflect that different types of mathematical problems have varying levels
of difficulty, they rely on different mathematical knowledge, and require different solution strategies.
Therefore, there is strong relevance between mathematical problem types and solution methods, informing
readers about this correlation is helpful in deepening their understanding of this field. However [10],
introduces relevant research work from the perspectives of mathematical problem types and solution
methods independently, which fails in demonstrate their correlation clearly.

Solving Mathematical Problems using Large Language Models: A Survey

Unlike the previous survey, our survey further focuses on the research efforts in solving mathematical
problems using LLM, SMP-LLM, and proposes future research directions. The main contributions are
reflected in four aspects:

(1) We propose a two-layer classification system for SMP-LLM. At the first layer, existing research is
classified into four categories based on the approach to problem-solving, including fine-tuning, prompt
engineering, collaboration with symbolic solvers, and collaboration with evaluators/validators. At the
second layer, mathematical problems addressed by existing researches are classified into four categories,
including math word problem, geometric problem, theorem proving, and combinatorial optimization
problem. We present the classification system in a grid format, demonstrating the relationship between
solution methods and types of mathematical problems.

(2) We analyze typical research works for each category and summarize the advantages and
disadvantages of each type of work based on the proposed classification system.

(3) We exposit current mainstream mathematical problem-solving datasets, and analyze how these
datasets promote research in SMP-LLM from various perspectives.

(4) We summarize the challenges SMP-LLM is facing and identify four future research directions:
geometric analysis, mathematical expression comprehension and generation, indirect reasoning and the
benchmark for mathematical proficiency.

The organization of the remaining sections of the survey is as follows: Section 2 introduces the
classification system of SMP-LLM. Sections 3 to 6 respectively review typical research works in the four
categories of fine-tuning, prompt engineering, collaboration with symbolic solvers, and collaboration
with evaluators/validators. Section 7 analyzes datasets related to mathematical problem solving. Section 8
summarizes the challenges faced and future research directions. Finally, Section 9 presents the
conclusions.

2. CLASSIFICATION SYSTEM

2.1 Solution Methods

From the perspective of solution methods, existing researches on SMP-LLM mainly adopts two strategies:
one is to enhance or activate the mathematical reasoning ability of LLMs themselves, and the other is to
enable LLMs to collaborate with other modules while solving mathematical problems.

The former includes two methods: fine-tuning and prompt engineering. The fine-tuning methods
usually adjust small numbers of paramters in pre-trained language models using instruction-formatted
instances in supervised learning ways to adapt them to specific tasks. Instruction-formatted instances
typically consist of task descriptions (referred to as instructions), input-output pairs, and a small number
of optional demonstrations [12]. Prompt engineering usually use well-designed prompts to assist LLMs
to better adapt to their tasks, further comprising two subclasses: (1) In-context learning (ICL), which adds

Solving Mathematical Problems using Large Language Models: A Survey

natural language-formatted examples in prefix form for queries [13] to enable LLMs to solve specific
types of mathematical problems through analogical reasoning. (2) Chain-of-Thought (CoT) instructs the
model to generate a series of interrelated intermediate reasoning steps [13]. CoT significantly improves the
multi-step reasoning ability of LLMs, which is a common requirement for solving complex mathematical
problems. Unlike fine-tuning methods, prompt engineering will not modify the parameters of LLMs.

The latter also includes two methods: collaboration with symbolic solvers and collaboration with
evaluators/validators. The methods of collaborating with symbolic solvers synthesize LLMs’ advantages in
contextual understanding and symbolic systems” advantages in composability, interpretability and complex
reasoning. In the methods of collaboration with evaluators/validators, LLMs usually serve as the generator,
executor or enhancer of the solution. In which, evaluators are usually used to assess the correctness of
solutions generated by the LLM and select the optimal solution based on the evaluation results, while
validators are mainly used to provide feedback to the LLM to help improve its solutions. They enable the
LLMs to improve the solution iteratively.

2.2 Mathematical Problem Types

From the perspective of mathematical problem types, the existing researches on SMP-LLMs mainly
focuses on four types of mathematical problems:

First, Math Word Problems, which require solving specific real-life problems using mathematical
methods. Solving these problems usually involves understanding the problem scenario, extracting key
information, establishing mathematical models, and conducting multi-step reasoning to ultimately provide
interpretable solutions. An example of math word problems is shown as example 1.

Example 1. If Sally has 5 pencils and her friend gives her 3 more pencils, how many pencils

does Sally have in total?

Second, Geometry Problems, which involve mathematical problems related to geometric shapes, spatial
relationships and properties. Solving these types of problems requires accurately identifying geometric
figures, understanding their spatial relationships, applying various geometric theorems, adding necessary
auxiliary lines, and performing logical reasoning and numerical calculations. An example of geometry
problems is shown as example 2.

Example 2. As shown in the figure, in ©O, AB is the chord, AL
OC L AB, if the radius of OO is 5 and CE=2 , then the length of AB is ().
A.2B.4C.6D.8

Third, Theorem Proving, which requires finding a direct or indirect method to prove mathematical
theorems. Solving these types of problems involves executing logical reasoning and symbolic computation

4 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

based on pre-constructed theorem library, and effectively controlling the reasoning path and search space
to find the optimal proof path. An example of theorem proving is shown as example 3.

Example 3. Prove the theorem that there are infinitely many prime numbers.

Forth, Combinatorial Optimization Problems, which requires finding the optimal combination within
a set of constraints to maximize or minimize a certain objective function. Combinatorial optimization
problems face the challenge of combinatorial explosion. On one hand, efficient search algorithms are
needed to find the optimal solution in a vast search space. On the other hand, need to maintain diversity
in the search to avoid falling into a local optima. An example of combinatorial optimization problems is
shown as example 4.

Example 4. Online Bin Packing Problem: [14]

Input: Bins with limited capacity and arriving items with varying sizes.

Constraints: (1) Each item must be assigned to a bin upon arrival. (2) Once an item is
assigned to a bin, it cannot be moved to a different bin. (3) The total size of items in a bin
cannot exceed the bin’s capacity.

Objective: Minimize the number of bins used to pack all items.

Solving the above four types of problems requires various abilities shown in Table 1. Compared to v,
vV indicates a higher demand for that ability. But because LLMs possess only language understanding
abilities and relatively weaker logical reasoning and numerical computation abilities, researchers need to
make more efforts to help LLMs gain the abilities mentioned above.

Table 1. Different Abilities Required by Different Types of Mathematical Problems.

Capacity MPar t(l:b\[/\ézd Geometry Problem Theorem Proving %1:2?;?;;322'
Text Understanding v v v v
Diagram Parsing v

Logical Reasoning v vV vV v
Numerical Calculation v v v
Symbolic Manipulation v vV vV
Spatial Search Vv vV vV

Data Intelligence 5

Solving Mathematical Problems using Large Language Models: A Survey

2.3 A Two-layer Classification System of SMP-LLM

Combining the above analysis, we propose a two-layer classification system of Solution Method-
Problem Type, as shown in Figure 1, which demonstrates the correlation between solution methods and
mathematical problem types of SMP-LLM. Fine-tuning is suitable only for simple math word problems
and geometry problems, as it is limited by the quality of training data and the capability of LLM itself.
Though prompt engineering can guide LLMs to generate expected outputs through methods such as
Chain-of-Thought, it is still limited by LLM’s reasoning abilities and cannot solve mathematical problems
involving complex reasoning, so it is mainly used in solving math word problems. Compared to the first
two methods, combining LLMs with external modules such as symbolic solvers, evaluators or validators,
can better develop the potential of LLMs and enhance their abilities to solve more complex problems such
as combinatorial optimization problems.

Mathematical
Combinatorial problem
optimization Algorithm evolution:
problems [14,75,76,77]
Theorem Symbolic; LLM: Formal verification:
proving 159, 61, 64, 67] 173, 741
Geometry LLM with aimage Symbolic,,: 28]
prob]ems encoder: [27, 30] Symbolic; LLM: [55, 56]
Math Outcome supervision: CoT prompt: [42, 43]
[16, 17, 20] Self-consistency prompt: X o .
word Process supervision: [23, 24] [44, 46, 47] Sytlsellicy, ; Ex-verlffgathn: 18, 691 Solution
problems Others. 1251 Least-to-most prompt: [48] [50, 52, 53, 54] Self-verification: [71, 72] method
Fine-Tuning Prompt Collaborating with Collaborating with
engineering symbolic solvers evaluators or validators

Figure 1. Classification System of SMP-LLM.

We employed the chi-square test to verify the correlation between the solution methods and
mathematical problem types. The analysis was based on the citation counts of various mathematical
problems under different solution methods, as presented in Figure 1. The null hypothesis proposed is that
the solution methods and mathematical problem types are independent, with a significance level set at o =
0.05. The results of the test indicated a significant correlation between the two. (Pearson’s chi-square
statistic x* = 22.8 exceeded the critical value gg4(9)=16.92)

3. FINE-TUNING

The fine-tuning method assumes that adjusting model parameters based on relevant datasets alone can
enable LLMs to solve simple mathematical problems. These mathematical problems mainly include math
word problems and simple geometry problems with few reasoning steps.

6 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

3.1 Math Word Problems

Existing researches mainly focus on increasing the scale and diversity of datasets to improve the
performance of the fine-tuned LLMs. According to whether the data used for fine-tuning are outcome data
or process data, existing researches can be subdivided into outcome supervision and process supervision.
Outcome supervision provides feedback on the final results, process supervision provides feedback for
each intermediate reasoning step [15]. Works on outcome supervision include:

Yu et al. employed three methods to rephrase math word problems and constructed the MetaMathQA
dataset for fine-tuning LLMs [16]. The first method involves reformulating math word problems using LLMs.
The second is reverse reasoning, where known numerical terms in the problem will be replaced with
variables, and the problem is rewrite to deduce the variables based on the answer. The third method
supplements the second method by appending the statement If we know the answer to the above problem
is a;, what is the value of the unknown variable x? directly behind the math word problem after replacing

the variables. Yu et al. fine-tuned LLaMA-2 on MetaMathQA, creating the MetaMath language model for
mathematical reasoning.

Xu et al. proposed a two-stage fine-tuning method for injecting diverse symbolic knowledge into
LLMs [17], believing that the inherent correlations among various symbolic knowledge can enhance the
performance of LLMs on symbolic tasks, including math word problem. In the injection stage, the authors
emphasize using the intrinsic connections between different symbols in tasks such as mathematical
reasoning, code generation, and knowledge graph construction to comprehensively learn various symbolic
knowledge. In the infusion stage, both symbolic data and general instruction fine-tuning were utilized to
balance the model’s symbolic and language-related abilities. Specifically, symbolic knowledge related to
mathematical reasoning mainly comes from math word problem datasets such as GSM8k [18], MATH [1],
and AQUA [19].

Inspired by the way students learn to correct their mistakes, An et al. proposed a method called
LEMA that uses a new type of data pairs called error-correction to fine-tune LLMs [20]. In the data pair
generation phase, LEMA uses multiple LLMs like LLaMA and GPT series to collect correct reasoning paths.
Then, using GPT-4 [21] as the corrector, LEMA generates error-correction data pairs through four steps:
identifying errors, explaining the reasons for errors, correcting errors, and generating the final answers. In
the LLMs fine-tuning phase, LEMA utilizes QLoRA [22] to fine-tune LLMs used for solving mathematical
problems on reasoning paths and error-correction data pairs. The bottleneck of LEMA’s performance lies in
the ability of the corrector, for GPT-4 finds it difficult to correct challenging problems.

Due to process supervision is usually superior to outcome supervision [15], certain research endeavors
utilize data from the reasoning process for fine-tuning. Yuan et al. enhanced the fine-tuning dataset [23] by
generating reasoning paths. Specifically, they utilized the zero-shot Chain-of-Thought (CoT) capability of
LLMs to generate reasoning paths and filtered out erroneous paths and other reasoning paths with identical
equation lists.

Solving Mathematical Problems using Large Language Models: A Survey

Luo et al. proposed an evolutionary instruction feedback reinforcement learning method
WizardMath [24] to enhance the mathematical problem-solving ability of LLaMA-2. WizardMath first
generates diversified mathematical instruction data automaticlly using the math-specific Evol-Instruct.
Then, trains the Instruction Reward Models (IRM) and Process supervision Reward Models (PRM), where
the IRM assesses the quality of evolutionary instructions and the PRM evaluates each solution step. Finally,
it conducts Proximal Policy Optimization (PPO) training based on the evolutionary instructions obtained
from GSM8k [18] and MATH [1] and the instruction rewards and answer rewards obtained from IRM
and PRM.

Few research works focus on the computational cost of fine-tuning. Full-model fine-tuning (FFT) requires
significant computational resources. An approach called parameter efficient fine-tuning (PEFT) involves
fine-tuning only a small portion of the external parameters, rather than the entire backbone network
model, which has shown success on pre-trained models. Hu et al. further investigated the optimal settings
and effects of PEFT on open-source LLMs [25], focusing on math word problems and common sense
reasoning as downstream tasks. The conclusions are as follows. (1) The optimal positions for series adapter,
parallel adapter, and Low-Rank Adaptation (LoRA) [25] are respectively: after the MLP layer, parallel
to the MLP layer and both after the attention layer and MLP layer. (2) The open-source language model
LLaMA-13B [26] using the PEFT approach outperforms GPT-3.5 in solving math word problems.

Since math word problems are targeted at elementary school students, solving such problems mainly
relies on text comprehension ability, demanding lower logical reasoning and numerical calculation skills
compared to other types of math problems. Therefore, most math word problems can be addressed by fine-
tuning LLMs.

3.2 Geometry Problems

LLMs cannot directly process geometric figures, and current Multimodal Large Language Models
(MLLMs) also struggle to accurately understand basic geometric elements and their relationships, these
models have limitations in solving mathematical problems with geometric figures. Therefore, researchers
combine LLMs with image encoders to solve geometry problems. Typical works include:

Gao et al. constructed a multimodal geometry dataset, Geo170 K [27], based on the Geometry3k [28]
dataset. The process involved: first, convert manually annotated logical forms into detailed information
items and geometric summaries, then generate QA pairs based on the information items and summaries.
Using Geo170 K, four strategies were employed to construct the instruction fine-tuning dataset: Equation
Solving (ES), Value Scaling (VS), Re-Formulating Condition as Unknown (RCU), Sentence Paraphrase (SP).
G-LLaVA 7B and 13B models were obtained by fine-tuning on LLaVA [29], which consists of LLaMA-2 and
a pretrained vision transformer.

Liang et al. proposed a multimodal mathematical reasoning model called UniMath [30]. To tackle
geometry problems, math word problems, and table-based mathematical reasoning problems, UniMath
fine-tuned a T5 model [31] and added a Vector Quantized Variational Autoencoders (VQ-VAE) [32-33]

Solving Mathematical Problems using Large Language Models: A Survey

as an image encoder that’s specifically designed for geometry problems. VQ-VAE transforms geometry
image patches into new tokens, and concatenates them with textual tokens to make the input. Through
joint training across tasks on datasets SVAMP [34], GeoQA [35], and TableMWP [36], and fine-tuning
on MathQA [37] and UniGeo-Proving [38] datasets, UniMath enhances mathematical reasoning abilities
including geometry problem solving.

The above methods work well for geometry problems with simple shapes and few reasoning steps
(usually no more than 5 steps). However, for complex geometry problems such as those in Olympic
competitions, it is still challenging to address them effectively through fine-tuning LLMs.

3.3 Other Fine-tuning Based Research Work

There are also a few works that do not target specific types of mathematical problems. For example,
building upon previous work [39], Zhao et al. further proposed JiuZhang 2.0 [40], a unified Chinese
language model specifically designed for multitask mathematical problem-solving. First, the authors
devised an architecture based on Mixture-of-Experts (MoE) to transfer and share mathematical knowledge
across different tasks, thereby enhancing the performance of each task. Second, they designed a multitask
continual pretraining and fine-tuning strategy, including masked token prediction, mathematical logic
recovering, and solution checking, where masked token prediction serves as a common objective for
LLMs and PLMs. The aim of mathematical logic recovering is to improve the model’s understanding of
mathematical logic, and solution checking aims to enhance the model’s ability to identify and correct
errors in the output. Third, to further enhance the model’s general ability to solve various complex tasks,
the authors utilized LLMs as a complementary model to refine the generated solutions.

Summary: Fine-tuning methods can improve the performance of LLMs in solving math word problems
and simple geometry problems. However, there are two main limitations: first, it requires sufficient
annotated data for effective training, leading to a high dependency on data. Second, the inherent weakness
in reasoning ability of autoregressive LLMs cannot be significantly improved through fine-tuning alone,
making this method inadequate for addressing mathematical problems involving complex reasoning.

4. PROMPT ENGINEERING

By providing specific inputs, prompt engineering can assist models to better understand the
requirements of downstream tasks, reduce the gap between the model and the tasks, and enhance the
model’s performance and generalization ability on specific tasks.

This method is mainly used to solve math word problems. Typical works can be summarized into three
categories: Chain-of-Thought prompting (CoT), self-consistency prompting and least-to-most prompting.

First, the primary technique employed is the CoT prompting method [41]. The CoT prompting technique
induces models to mimic the logical chains of human thoughts to solve reasoning tasks that require
multiple steps. Typical works include:

Solving Mathematical Problems using Large Language Models: A Survey

Using the Let's think step by step prompt, LLMs can generate reasoning chains step by step for the
examples provided, but the generated chains often contain errors. To mitigate the impact of erroneous
reasoning chains, Zhang et al. proposed an automatic CoT prompt method called Auto-CoT [42], which
clusters problems into multiple clusters and implements diverse sampling based on these clusters to
automatically generate examples for CoT.

Huang et al. proposed a method called CoT-Influx [43] to enhance the mathematical reasoning
capability of LLMs using CoT. This method employs a coarse-to-fine pruner, which first identifies as many
key CoT examples as possible and then prunes out unimportant tokens within the context window, so as to
address the challenge of example selection caused by the limited context window length.

Second, self-consistency prompting. In this method, the LLMs will first generate several prompts, then
select the optimal prompt by voting. Typical works include:

Fu et al. indicate that prompts with higher reasoning complexity, which means CoTs with more
reasoning steps, perform significantly better in multi-step reasoning than simple prompts [44]. In light of
this, the authors propose complexity-based prompts, a simple and effective method for selecting multi-step
reasoning examples. This method selects the top 8 training samples with the most reasoning steps from
datasets such as GSM8K [18] and MathQA [37] as CoT prompts. These prompts are then used to generate
multiple reasoning chains with GPT-3 175B [45], then simple reasoning chains are excluded, and answers
are generated from the remaining complex reasoning chains using a majority vote approach.

Students may validate their problem-solving processes using different methods when solving math
problems. Inspired by this, Imani et al. proposed the Math-Prompter method to enhance the reasoning
ability of LLMs in solving math word problems [46]. First, replace the numerical terms in the problem with
variables. Then, use Zero-shot CoT to generate different solutions in the form of algebraic expressions or
Python functions. Third, evaluate the solutions by replacing input variables with random values to assess if
there is a consensus among different solutions. If there is no clear consensus, repeat the process.

Also inspired by the idea mentioned above, Wang et al. propose a self-consistency strategy to replace
the greedy strategy in CoT [47]. This strategy samples different reasoning paths and then selects the most
consistent answer by marginalizing the sampled paths.

Last, least-to-most prompting. CoT prompts often perform poorly when meeting problems that are
harder than the examples provided by the prompts. To overcome this generalization challenge from easy
tasks to hard tasks, Zhou et al. proposed a least-to-most prompting strategy [48]. This strategy decomposes
complex problems into two steps: initially querying the LLM to decompose the problem into sub-
problems; then query the LLM to solve the sub-problems sequentially, in this step, the answers previously
solved from the sub-problems contribute to solving each subsequent sub-problem.

Summary: Prompt engineering can guide LLMs to generate desired outputs without updating model
parameters. However, it also has two limitations: firstly, manually designed prompts introduces human
labor costs and biases, leading to incorrect outputs. Secondly, relying on CoT alone cannot significantly

Solving Mathematical Problems using Large Language Models: A Survey

enhance reasoning abilities. Similar to fine-tuning methods, prompt engineering cannot address
mathematical problems involving complex reasoning.

5. COLLABORATING WITH SYMBOLIC SOLVERS

LLMs have rich prior knowledge, strong generalization and high flexibility, but weak reasoning ability
and poor interpretability. Symbolic systems exhibit properties like composability, interpretability, and
support for higher-order reasoning and multi-step inference, but also suffer from issues like combinatorial
explosion and sensitivity to noise. Combining the two of them can provide a best-of-both-worlds situation,
and has become a promising direction for solving mathematical reasoning problems. Referencing the
neuro-symbolic architectures classification system proposed in [49], we categorize the paradigms of the
collaboration between LLMs and symbolic solvers into two types:

(1) Symbolic,,,,.
problem into symbolic data, and then process the data by a symbolic solver.

In this paradigm, LLMs do not perform the reasoning process, but only convert the

(2) Symbolic; LLM. In this paradigm, LLMs and symbolic solvers iteratively interact as independent
modules, each accomplishing the subtasks they are skilled at.

5.1 Math Word Problems

Solving math word problems primarily adopts the Symbolic,,, paradigm. Specifically, it involves using
LLMs to translate natural language formatted mathematical problems into formal languages that symbolic
solvers can process, such as code. Typical works include:

Chen proposed Program-of-Thoughts (PoT) to solve math word problems [50]. PoT utilizes LLMs such as
Codex [51] to generate Python programs where Codex is a descendant of GPT-3, its training data contains
both natural language and billions of lines of source code from publicly available sources. The generated
programs are then executed by a Python interpreter to produce answers, thus separating complex
computations from reasoning and language understanding.

Gao et al. proposed the Program-Assisted Language model (PAL) [52], which employs Codex [51] to
parse natural language problems and generate programs as intermediate reasoning steps, while the solving
process is delegated to interpreters like Python.

Yamauchi et al. proposed a mathematical reasoning framework called LPML [53] which combines
CoT with Python REPL (Read-Eval-Print Loop). REPL is a standard library in Python, it provides a basic
interactive environment for inputting and executing Python code line by line and displays results instantly.
Unlike directly generating Python code to solve problems, LPML establishes an interaction between LLM
and REPL, allowing LLM to simultaneously generate CoT and Python code. The code execution results are
then fed back to LLM to induce corrections to the errors in CoT. LPML uses the consistency between CoT
and Python code execution to enhance mathematical reasoning performance.

Solving Mathematical Problems using Large Language Models: A Survey

The above methods are limited by LLMs’ ability of code generation. When facing problems with
multiple processes, it is very difficult to ensure that LLM generates the correct code for each step.

Though programs can directly represent the solving process, some more complex math word problems
require more abstract mathematical statements. To address this, He et al. proposed a method that
combines LLM with an external symbolic solver [54]. LLM can translate math word problems into a set of
mathematical statements composed of variables and equations (e.g., Let b be how many apples she had
in the morning after eating 2 apples [var b]. We have [eq b = a — 2]), while the external symbolic solver is
used to solve the equations in the mathematical statements.

5.2 Geometry Problems

Researches on solving geometry problems by combining LLMs with symbolic solvers is currently less,
but it still encompasses the two paradigms mentioned above.

Lu et al. adopted the Symbolic,,,, paradigm. Specifically, the authors defined a geometric formal
language consisting of predicate, literal, and primitives and proposed a geometric solving method based
on geometric formal language and symbolic reasoning, called the Interpretable Geometry Problem Solver
(InterGPS) [28]. InterGPS automatically parses the problem text and diagrams into formal language using
rule-based text parsing and object detection. Then, it applies theorems as conditional rules, and performs
symbolic reasoning step by step. To achieve more efficient and rational search paths, the authors designed
a theorem predictor to provide theorem usage sequences for the symbolic solver.

Wu et al. [55] also adopted the Symbolic,,
existing methods: first, poor interpretability; second, the small scale and incomplete annotations of
existing datasets make it hard for LLMs to comprehend geometric knowledge. To address these issues,
the authors proposed the method called Explainable Geometry Problem Solving (E-GPS) [55]. E-GPS first
parses geometric graphs and problem text into a unified formal language representation. Then, it uses a
Top-Down Problem Solver (TD-PS) to obtain the answers the interpretable reasoning steps. To mitigate the
data issues, the authors designed a Bottom-Up Problem Generator (BU-PC) to expand the dataset with

paradigm. The authors considered two limitations in

various well-annotated constructed geometry problems.

For complex geometry problems, the cost of converting human proofs into machine-verifiable formats
is very high, which leads to a severe scarcity of training data, current machine learning methods are not
suitable for solving complex geometry problems. In response, Trinh et al. adopted the Symbolic; LLM
paradigm and developed a Euclidean plane geometry tailored theorem-proving program: AlphaGeometry
[56], in which LLM is responsible for generating auxiliary lines, and the symbolic system handles
reasoning and computation. Specifically, the authors iteratively invoke three modules: deductive database
(DD) [571], algebraic rules (AR) [56], and random auxiliary point addition, to automatically generate
synthetic data in the form of <premises> <conclusion> <proof> triplets, thus avoiding manual annotation.
Then use the generated one hundred million synthetic data to train an LLM capable of adding auxiliary
points for geometric problems. In this process, DD and AR respectively performed symbolic reasoning and

Solving Mathematical Problems using Large Language Models: A Survey

operations, the former applies in inference rules on given premises repeatedly to derive new conclusions,
while the latter handles addition and proportion relationships between the angles and edges. In geometric
problem-solving, AlphaGeometry alternately called DD + AR + LLM to iteratively execute geometric
reasoning and auxiliary point construction.

Using LLMs to solve or generate geometric problems is a potential research direction. Currently, a
limitation of such methods is their relatively poor understanding of geometric figures. For example,
InterGPS [28] can only parse relatively simple geometric shapes. existing methods still struggle to apply
complex geometric figures, such as those in the International Mathematical Olympiad level problems. For
instance, AlphaGeometry [56] directly conducts reasoning using formal representations, bypassing the
process of converting figures into formal representations.

5.3 Theorom Proving

Currently, there have been some studies that combine LLMs with symbolic systems for theorem proving,
mainly adopting the Symbolic; LLM paradigm. In these approaches, LLMs are mainly used to address
bottleneck issues in theorem proving, namely, how to select appropriate premises from a large premise
pool [58]. Typical works include:

Yang et al. developed an open-source Lean experimentation environment called LeanDojo [59],
consisting of toolkits, data, models, and benchmarks. The data extracted from Lean in LeanDojo includes
fine-grained annotation of the premises in the proofs. Utilizing the data, Yang et al. developed an LLM
based retrieval-augmented prover: ReProver, using the retrieval-enhancement ability one can retrieve small
sets of premises from mathlib [60], the mathematical library of Lean. To enhance the retrieval performance,
hard negative instances need to be provided during training, which are negative instances difficult to
distinguish. To address this, the authors proposed a simple strategy, which is to select negated premises
from the same Lean source file that the true premises are defined in as negative instances.

Thakur and colleagues proposed a formal theorem proving method based on LLMs called COPRA [61].
COPRA employs a black-box LLM (GPT-4 [21]) as part of the stateful backtracking search strategy. During
the search process, the strategy can select proof tactics and retrieve lemmas and definitions from an
external database. Each selected proof tactic is executed within the theorem proving environment Coq [62]
or Lean [63], and the execution feedback is used to establish prompts for the next strategy invocation.

Automatic formalization is the process of automatically converting natural language mathematical
expressions into formal specifications and proofs, which is a crucial step in theorem proving. Research by
Wau et al. [64] shows that using different scales of LLMs such as PaLM [65] and Codex [51], with a simple
prompt Translate the natural language version to an Isabelle version, can correctly translate a considerable
portion (25.3%) of mathematical competition problems into formal specifications in Isabelle/HOL [66].
Furthermore, experiments also demonstrate that automatic formalization can provide useful training data
for neural theorem provers.

Solving Mathematical Problems using Large Language Models: A Survey

Welleck and Saha developed a proof step recommendation tool, LLMSTEP [67], which integrates LLM
and Lean [63]. LLMSTEP sends the user’s proof state to Pythia 2.8B [68], the LLM is fine-tuned on samples
from Lean Mathlib [60]. Pythia then generates suggestions for proof steps. LLMSTEP employs Lean to verify
the validity and completion of each suggestion.

The performance of the aforementioned work in theorem proving still has significant limitations,
primarily due to the deficiency of LLMs in selecting premises. This not only requires LLMs to possess
sufficient mathematical knowledge but also demands LLMs to search for suitable premises from a vast
candidate space.

Summary: LLMs are skilled at understanding natural language mathematical descriptions, identifying
problem types, and generating problem-solving strategies, they are capable of transforming complex
textual expressions into mathematical concepts and relationships. Symbolic solvers, on the other hand,
demonstrate excellence in precise calculations, logical reasoning, and formal verification, ensuring the
accuracy of computations and the rigor of reasoning. The collaboration between LLMs and symbolic
solvers can effectively solve complex mathematical problems described in natural language and involving
symbolic operations and exact calculations.

However, they still show significant limitations on the following types of mathematical problems: First,
cross-media problems involving abstract graphics. Neither symbolic solvers nor current multimodal LLMs
can achieve precise parsing and spatial relationship reasoning of abstract geometric images. Second,
problems that are highly abstract and lack clear patterns. Such problems often lack recognizable standard
patterns or require extremely strong creative reasoning, such problems include: certain pure mathematical
proving and frontier theoretical mathematical issues. Third, problems relying on large-scale numerical
simulations. For Monte Carlo simulation problems, the collaborative advantage of symbolic solvers and
LLMs is not evident; these problems rely more on specialized numerical computation tools.

6. COLLABORATING WITH EVALUATORS/VALIDATORS

Many mathematical problems possess the characteristic of hard to solve, easy to evaluate, these
problems can be solved by collaborating LLMs with evaluators/validators, essentially exploration-
exploitation approaches. During the exploration phase, LLMs generate candidate complete solutions or
individual solution steps. In the exploitation phase, evaluators/validators discriminate or select among the
candidate solutions or steps. This process is usually executed iteratively to generate the optimal solution.

6.1 Math Word Problems

For math word problems, some research works directly utilize LLMs to generate solutions, corresponding
verification methods include external-verification and self-verification. In external-verification, independent
modules are used to evaluate the generated solutions of the LLM, and in self-verification, the same LLM acts
as the verifier to provide feedback on the generated solutions. Works on external-verification include:

Solving Mathematical Problems using Large Language Models: A Survey

Cobbe et al. constructed a dataset of 8.5K high-quality math word problems, GSM8K [18], which has
become an important benchmark for evaluating the mathematical reasoning abilities of LLMs. None of the
GPT-3 6B/175B was able to achieve satisfactory performance on this dataset. To address this, the authors
trained an evaluator to estimate the correctness of the model-generated solutions, the correctness of the
solution is determined solely by whether it produces the correct answer. When testing, the evaluator will
select the highest scored solution from the candidate solutions as the final solution.

Li et al. proposed a reasoning step diversification validator, DIVERSE, to further enhance the reasoning
ability of LLMs [69]. The formal validator first generates diverse prompts to explore different reasoning
paths for the same problem. Second, composite voting and verification strategies to filter out incorrect
answers through weighted voting. Third, it verifies each reasoning step individually rather than the entire
reasoning chain, taking full advantage of the correct steps within incorrect reasoning. DIVERSE is fine-
tuned on deberta-v3-large [70] and uses OpenAl’s davinci series models for reasoning, it achieved state-of-
the-art results on tasks such as math word problems.

Some research works take advantage of code verification to generate solution schemes in the form of
code and use self-verification to evaluate the outcomes. Typical works include:

Madaan et al. proposed Self-Refine [71] method uses LLMs to generate initial outputs, the same LLM
is then employed as a validator to provide feedback to iteratively refine the generated outputs. In this
process, the LLM simultaneously acts as the generator, validator, and improver, thus eliminating the
need for any supervised training data, additional training, or reinforcement learning. For math word
problems, Madaan et al. used PAL [52] to generate solutions in Python. By utilizing Self-Refine, the model
can identify errors in the code and improve the solutions through an iterative process of introspection
and feedback.

Building on the work [52], Zhou et al. further proposed the explicit code-based self-verification
(CSV) [72]. CSV employs the zero-shot prompt with GPT4-Code, encouraging GPT-4 [21] to generate code
to self-verify its answers. If the verification status is incorrect, the model will automatically correct the
solution, this is similar to how humans rectify errors during a math exam.

The above methods draw inspiration from how humans self-correct errors during math exams, thereby
enhancing LLMs" ability in solving math word problems. But they also introduce certain drawbacks,
such as the increase of model complexity and higher training costs. Self-verification is more efficient and
convenient compared to external-verification because it uses the same LLM as the verifier so it can gain
feedbacks quickly. However, it may be limited by the LLM’s own reasoning ability and fail to provide a
completely objective evaluation result. At the same time, though external-verification may provide a more
objective and accurate evaluation result, it increases the model’s complexity and computational expenses
because of the need to introduce additional modules.

Solving Mathematical Problems using Large Language Models: A Survey

6.2 Theorem Proving

In the field of automated theorem proving, some research efforts combine validators such as Metamath [16]
and Isabelle [66] with LLMs to enhance theorem proving performance. Typical works include:

Polu and Sutskever applied transformer-based LLMs to automated theorem proving and proposed an
automatic theorem prover and proof assistant for Metamath formal language: GPT-f [73]. GPT-f uses a
trained decode-only transformer architecture LLM to generate the proving process, and uses a Metamath
verifier to verify it. To enhance the proof search efficiency of LLMs, the authors annotated the LLM
generation process using the verifier, and iteratively trained the value function using the annotated data
to improve the performance of GPT-f. GPT-f also discovers several new short proofs, 23 short proofs have
been included to the Metamath library.

Different from existing methods that predict one proof step at a time, First et al. proposed the theorem
proving approach Baldur [74], which is a theorem proving method based on LLMs trained on natural
language texts and codes and fine-tuned on proofs. It generates the entire proof of the theorem at one
time rather than predicting one step at a time. Specifically, Baldur consists of three modules: the proof
generation module, which is an LLM that generates candidate proofs based on the input theorem
statement; Isabelle, a higher-order logic (HOL) theorem prover [66], it is used to verify the candidate
proofs, if the verification fails, it will return an error message; the proof correction module, also an LLM, it
corrects the proof process based on the error message returned, then passes it to Isabelle to verify, iterates
this process until Isabelle passes the verification.

Collaboration between LLMs and evaluators/validators can effectively demonstrate strong theorem proving
capabilities, but it relies on the scoring signals generated by the evaluators/validators. For multi-step proof
processes, it is difficult to provide rich scoring signals for each inference step for proof process correction.

6.3 Combinatorial Optimization Problems

Combinatorial optimization problems involve finding the optimal solution from a finite solution space.
In addition to the objective function that needs to be maximized or minimized, combinatorial optimization
problems are also accompanied by a series of constraints that solutions must satisfy. The solution space
of combinatorial optimization problems is typically large and discrete; thus, researchers proposed the
Algorithm Evolution framework [75] shown in Figure 2 to manage these problems. It involves prompting
the LLM to generate initial solution algorithms in code form, and continuously evolving these algorithms
by maintaining an algorithm pool. The basic process is: prompt LLM to execute operations such as
crossover, mutation, and creation on algorithms selected from the algorithm pool, and use the evaluator to
select algorithms to add to the algorithm pool, iterate this process until an optimized solution is found.

Solving Mathematical Problems using Large Language Models: A Survey

Algorithm pool

Creation

Solution

Selection

Problem to be solved LLM

Evolutionary operations

Al
...... New algorithms

Figure 2. Algorithm Evolution Framework.

Evaluator

Typical works under the framework include:

Liu et al. proposed the AEL method [75] that can automatically generate optimization algorithms using
LLMs under the evolutionary framework. AEL achieves algorithm construction and evolution by prompting
LLMs to execute operations such as initialization, crossover, and mutation. This process eliminates the
need for model training, significantly reducing human workload and domain knowledge requirements.
Furthermore, Liu et al. utilized the AEL framework to design the Guided Local Search (GLS) algorithm [76].
GLS employs a utility function to guide lower-level local search algorithms, which can effectively explore
the search space and prevent the algorithm from falling into a local optimal state. GLS was applied to solve
the Traveling Salesman Problem (TSP). AEL can automatically evolve excellent GLS algorithms within two
days with minimal human intervention and no need for model training.

Romera-Paredes et al. proposed a combinatorial optimization problem solving method that combines
LLMs with evaluators named FunSearch [14]. Though FunSearch and the research by Liu et al. [75-76]
are independent of each other, they share similar ideas, so it can still be classified under the category of
algorithm evolution. In each iteration, FunSearch selects the highest scoring program from the program
library to generate prompts and inputs them into the LLM to generate new programs. If the new program
passes evaluation of the evaluator, it will be stored in the program library, the solution to the problem is
obtained by retrieving the highest scored program of the program library.

Liu et al. utilized LLMs to solve combinatorial optimization problems and proposed the LLM-driven
Evolutionary algorithm(LMEA) method [77]. In each generation of evolutionary search, LMEA constructs
prompts to guide the LLM in selecting parent solutions from the current population and performs crossover
and mutation to generate offspring solutions. LMEA evaluates and selects new solutions to be included in
the next generation population. LMEA employs a simple self-adaptive mechanism, it balances exploration
and exploitation by controlling the temperature of the LLM to prevent the search from falling into a
locally optimal solution. LMEA can quickly adapt to different optimization problems due to the fact that
optimization problems can be described in natural language descriptions and LLMs can be guided by the
desired solution properties.

Data Intelligence 17

Solving Mathematical Problems using Large Language Models: A Survey

With the algorithmic evolution framework, LLMs and evaluators/validators can collaborate to solve
some complex combinatorial optimization problems, but they have a high dependency on scoring signals.
For certain combinatorial optimization problems, it is challenging to generate rich scoring signals for
algorithmic evolution.

6.4 Reinforcement Learning-Driven Mathematical Problem Solving

The LLMs used in the aforementioned studies are usually autoregressive models formed through self-
supervised learning or supervised fine-tuning. Recently, a series of LLMs that incorporate reinforcement
learning, also known as reasoning models, have emerged, such as OpenAl’s 01/03 and DeepSeek-R1 [78],
they show significant improvement in complex reasoning tasks, including mathematical problem-solving.
The main reason for this improvement is that, compared to supervised learning, reinforcement learning
can better address the two key characters of complex mathematical problem-solving. First is delayed
rewards, the effect of each reasoning step may only become apparent after numerous subsequent steps,
and intermediate rewards may be sparse or even zero. Reinforcement learning can effectively handle
the delayed reward issue through value functions/networks and policy optimization. Second is balancing
exploration and exploitation, Supervised learning can only leverage existing labeled data, and lacks
exploration mechanisms, but reinforcement learning can explore new strategies to discover potentially
better solutions, avoiding local optima or ineffective reasoning paths.

Such works can also be classified under the “Generator-Evaluator” paradigm, where the generator is
represented by the policy, responsible for generating steps or strategies for problem-solving; the evaluator
is represented by the value function or reward model, it provides feedback by assessing the quality of the
generated action a. Among these works, the models primarily focused on mathematical problem-solving
tasks include: WizardMath [24], DeepSeekMath [79], and R® [80].

Luo et al. proposed WizardMath [24], which enhances the mathematical reasoning ability of LLMs
through Reinforcement Learning from Evol-Instruct Feedback (RLEIF). This approach combines Math
Evol-Instruct and process supervision. It generates diverse mathematical instruction data through both
downward and upward evolution.It introduces Instruction Quality Scoring and Process Supervision to
optimize the model.

Shao et al. proposed DeepSeekMath [79], an LLM which focuses on mathematical reasoning. The
training process of the model is: First, pre-train DeepSeek-Coder-Base-v1.5 7B on 120 billion high-quality
math-related data. Second, proceed reinforcement learning optimization by Group Relative Policy
Optimization (GRPO), GRPO significantly reduces the need for training resources by using the average
reward of multiple sampled outputs as baseline, and significantly reduces the need for training resources,
avoiding the need for value networks as required in Proximal Policy Optimization (PPO).

Xi et al. proposed a method named R* [80], it can enhance the reasoning ability of LLMs through
Reverse Curriculum Reinforcement Learning. R® employs the outcome supervision as the evaluator,
achieving an effect similar to Process Supervision while avoiding the high cost of manual annotation.

Solving Mathematical Problems using Large Language Models: A Survey

Specifically, R® starts from the intermediate states of the correct demonstrations and gradually moves
backward to provide approximated Process Supervision signal.

Research on reinforcement learning-based reasoning models is still in its early stages. Employing
reasoning models for mathematical problem-solving still faces two major challenges: First, the issue of
delayed rewards leads to the temporal credit assignment problem, which refers to how to properly allocate
delayed rewards to reasoning steps. Second, in the tradeoff of exploration and exploitation, excessive
exploration or exploitation may result in underthinking and overthinking. The former refers to the model’s
tendency to frequently switch between reasoning strategies without processing deep inference on any
single strategy. The latter refers to the model’s lack of exploration, meaning that the model may process
excessive reasoning steps within a particular strategy, leading to either failure in problem-solving or the
generation of redundant reasoning paths.

Summary: In mathematical problem solving, the introduction of evaluators/validators to LLMs
demonstrates significant advantages. The system can detect errors in real time at each reasoning step
and trigger correction mechanisms, effectively preventing error accumulation and amplification. This
approach can further enhance the exploratory capabilities in reasoning after integrating with reinforcement
learning frameworks, achieving or even surpassing human-level performance on challenging mathematical
problems such as theorem proving and combinatorial optimization.

However, this collaborative mechanism also faces three core limitations. First is the sparse reward
problem: during long-chain reasoning processes (e.g., the average proof length for olympiad theorems is
50 steps [56]), the evaluator often fails to provide dense and timely scoring signals, impacting reasoning
efficiency. Second is the exploration suppression issue: due to the inherently conservative tendency of
evaluators to identify and penalize errors, it may restrict the model’s exploration of novel reasoning paths,
even leading to overthinking. Last is the computational burden problem: each reasoning step requires
additional evaluation, significantly increasing computational costs and response latency, which could
become a critical bottleneck in practical deployments.

7. DATASETS

Currently, several mathematical problem datasets have been constructed specifically for performance
testing or model training. Figure 3 categorizes different datasets according to three problem types, the
arrows indicate that the subsequent dataset introduced some or all of the mathematical problems from
previous datasets.

The experimental results on the main benchmarks from the key references are provided in Appendix A.

Table 2(a) ~ 5 provide some brief descriptions of these datasets, along with typical examples of the
problems.

Data Intelligence 19

Solving Mathematical Problems using Large Language Models: A Survey

Math word AGLIA Math@QA
problems 2017) 120149)

GSMBK

2021)

SVAMI
(2021)

: ;
Geomelry E Ceomelry 3K LiniGeo E
problems i 1202 7) (2022) i
) '
i }
Theorem
¥ Wietlijk's list of 100 minik2f LeanDojo Fimo
proving -) 4 o R e
thearams (1999) (200271 (20221 L2023)
problems
Figure 3. Mathematical Problem Datasets.
Table 2(a). Math Word Problem Datasets.
Dataset Brief Descriptions Problem Examples

AQUA contains 100,000 problems
constructed through crowdsourcing,
the problems are based on 34,202

AQUA [19] seed problems from GMAT and
(2017) GRE exams. Each problem is

decomposed into four parts: the
problem description, options, the
rationale, and the correct option.

Problem 1:

Question: Two lrains running in opposite directions cross a
man standing on the platform in 27 seconds and 17 seconds
respectively and they cross each other in 23 seconds. The ratio
of their speeds is:

Options: A) 3/7 B)3/2 C)3/88 D)3/8 E)22

Rationale: Let the speeds of the two trains be x m/sec and y
mi/sec respectively. Then, length of the first train = 27x meters,
and length of the second train = 17 y meters. (27x + 17y} / (x +
¥) =23 = 27x + 17y =23x + 23y = 4x = by = x/y = 3/2.
Correct Option: B

MathQA contains 37,200 problems
from AQUA [19], along with
corresponding multiple-choice
options and solution processes. The
authors developed a specialized
annotation platform and used

MathQA [37] crowdsourcing to accurately
(2019) annotate the solution processes. In

addition to mathematical reasoning
performance evaluation, this
dataset can also be used to fine-
tune or prompt LLMs to improve
reasoning performance and
interpretability.

An artist wishes 1o paint a circular region on a square poster

that is 3.4 feet on a side. if the area of the circular region is to

be 1/2 the area of the poster, what must be the radius of the
cireular region in feet?

Maltiply (11.56, 0.5)

Sqrt(18343)

Output == 1.3543

20

Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

Table 2(b). Math Word Problem Datasets.

Dataset

Brief Descriptions Problem Examples

ASDiv [81]
(2021)

ASDiv (Academia Sinica Diverse) contains 2,305 math word problems, covering a wider range
of text patterns and most problem types found in elementary school curricula. Each math word
problem is labeled with the problem type and grade level (indicating difficulty). To assess the
diversity of the problems, the authors proposed the lexicon usage diversity (LD) index based on
BLEU [81] to evaluate the diversity of the dataset.

SVAM [34]
(2021)

SVAMP includes 2,305 math word problems, covering a broader range of text patterns and
most problem types in elementary school mathematics. The problems are sourced from the
arithmetic subset ASDiv-A of ASDiv [81] and have undergone three types of modifications.
These modifications are aimed to evaluate the model’s capabilities in three aspects: whether
the answers depend on the problems themselves, whether slight changes in problem text affect
the reasoning steps, and whether changes in the surface structure of the problem text affect the
answers or reasoning steps.

GSMB8K [18]
(2021)

Dean's mother gave him $28 to go to the toy store. Dean bought 6

GSMB8K contains 8.5K high-quality,
human-constructed elementary math
problems, with 7.5K problems for
training and 1K problems for testing.

toy cars and 5 teddy bears. Each toy car cost $2 and each teddy
bear cost $1. His mother ther feels generous and decides 1o give
him an extra $10. How much money does Dean have left?

The solution processes primarily use
basic arithmetic operations such as
+, -, %, +, and the steps to solve the
problems range from 2 to 8. The
solution processes are described in

Ground Truth:

The cost of the toy cars is 6 cars x $ 2/car=$ << 6*2=12>>12.
The cost of the teddy bears is 5 bears x § 1/bear

$ << 5% =5>>5.

The total cost of the toys is $12 + §5=§ << 12 + 5 =17 == 17.

natural language rather than purely
mathematical expressions to better
evaluatethe language model’s ability
to solve math word problems.

Adding the two amounts of money his mother gave him, we

find that Dean has $28 + $10 = § << 28 + 10 = 38 >> 38 1o spend.
Dean has $38 — $17= $21 left.

A 21

Data Intelligence 21

Solving Mathematical Problems using Large Language Models: A Survey

Table 3(a). Geometry Problem Datasets.

problem type, including Angle
Calculation, Length Calculation,

OE = OC-CE = 5-2 = 3. According o the Pythagorean Theorem,
AE =A[OAT — OF2 =+/52— 32 =4. Thus, AB = 2AE = 8.

Dataset Brief Descriptions Problem Examples
GeoQA contains 4,998 real s“Asshown in the figure, in ©O, ABis —
geometry problems from Chinese | the chord, OC LAB, if the radius of “ E
middle school exams. Each | ©Ois5 (N0) and CE=2 (1), then the &
problem can be represented E length of AB is () i
as(t d ci etk p).tisthe ! o -
problem text; d is the geometric | o 8"_‘ o Bl E
figure; ¢ = {c,, ¢, ¢, ¢} are the 1 Answer: D.8 |
. Lo B e e e e e e eSS e e |
answer options; 1 is the answer ; problem Type: Length Calculation]
index, where ¢, € ¢ e is the | . . . i
/ i Knowledge Points: Vertical Diameter, Pythagorean Theorem 1
CeoOA natural language-based problem- o - —— . |
eoQA [35] solving explanation; ¢ is the ! Problem Solving Explanations: :
(2021) | i
] i
1]
] i

and other types; k is the related
knowledge point, such as the
Pythagorean Theorem; p is the
Annotated Programs, represented
in the language form consisting
of operations (e.g., Add, Sin),
constants (e.g., @, 30), problem
variables, and process variables.

Annotated programs:

[Minus | No | N1| PythagoreanMinus | N0 | VO | Double | V1 |

)=5-2=3 (VD)

Step2: PythagoreanMinus (M0, V) =457 237 = 4 (V1)

)
]
1
)
)
1
I
1 Stepl: Minus (MO, ™
)
]
]
'
]

Step3: Double (V1) =2 x 4 =8 (V2)

-

Geometry-3K
[28] (2021)

Geometry3K contains 3,002
geometry problems. Annotators
labeled the problem text,
geometric figures, options, and
correct answers. The problem
text and geometric figures are
described using literals, each
literal consists of a predicate and
a set of arguments (constants,
variables, orliterals). Forexample,
AreaOf (Triangle (A, B, Q)
represents the area of AABC.
This geometry formal language
bridges the semantic gap between
text and geometric figures,
facilitating symbolic problem
solving.

C In triangle ABC, AD =3
and BD = 14, Find CD,

Choices:

A.6.0 B65 C7.0

A D
Diagram formal language

B Answer: B

. 8.5

Triangle (A, B, C)

Triangle (A, C, D)

Triangle (B, C, D)

PointLiesOnLine (D, Line (A, B))
Perpendicular (Line (A, C), Line (B, C))
Perpendicular (Line (C, D), Line (A, B))

Text formal language

Triangle (A, B, €)

Equals (LengthOf (Line (A, D)), 3)
Equals (LengthOf (Line (B, DN, 14)
Find (LengthOf (Line (C, D))

22

Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

Table 3(b). Geometry Problem Datasets.

steps are finely annotated, with

Dataset Brief Descriptions Problem Examples
GeoQA+ annotates an additional 2,518 geometry problems on the basis of GeoQA [35],
GeoQA+ [82] including 636 area-type problems, which are not presented in GeoQA. Compared to
(2022) the average solving steps of 1.96 in GeoQA, the newly annotated problems are more
challenging, with an average solving steps of 2.61.
UniGeo contains 4,998 geometric computation problems from GeoQA [35], as well as
Uni geometric proof problems from the IXL2 website (https://www.ixl.com/math/geometry).
niGeo [38]
(2022) Each prpofs problem is annotated WIth multi-step proofs mc!udlng reasoning and mathematical
expressions. The proof can be easily reformulated as a proving sequences that shares the same
formats with the annotated program sequence for calculation problems.
______________________________________ :
I
PGPSI9K contains 9,022 geometry ; FaRtoal ARGz Finik i :
problems, with 2,891 problems Answer: 1,49 i
selected from Geometry3K [28], Solution Program: :
and the rest from mathematics Geo_Mean NO N1 N4 Gougu
course websites. The problems in NT N4 N3 Gets y "
PGPS9K are categorized into 30 Mesmo = e o e H
types, such as Line Segment, Angle, ! Theorem operator NGB Gpeand /
PGPSOK [83] aqd Circumference a,nd A.rea. of ' * * E
(2023) Circle. Each problem’s derivation i Geo_Mean NONT N N Getsy |
i ' :
1

each step consisting of an operator Step |1 Step 2 Step 3
and several operands. PGPSOK T i vn oo o e e
defines 34 operators (such as
geometric theorems) and 55
operands (including problem
variables, process variables,

unknown variables, and constants).

! W Step 1: Geomelric mean thearem in right AADC with
: altitude BD on hypotenuse AC

! ABINO)- BCINT) = BDIN4) = BC=z=v2/3

4 B Step 2: Pythagorean theorerm in right ACBD

! BCINTF + BD(N4Y = DCIN3F = DC=y=25/3
! W Step 3: Cet result of y

GeoEval [84]
(2024)

GeokEval’s geometry problems come from datasets such as Geometry3K [28], PGPS9K [83],
UniGeo [38], and GeoQA+ [82], and are divided into four subsets. (1) The GeoEval-2000
dataset contains 2,000 problems. (2) The GeoEval-backward dataset is created by the
corresponding backward problems of 750 selected problems of the GeoEval-2000 subset,
by providing answers o reverse-engineering the masked numbers. (3) The GeoEval-aug
subset is formed by rephrasing 2,000 problems from the GeoEval-2000 subset using GPT-
3.5, this can address the problem of data leakage. (4) The GeoEval-hard subset contains
300 geometry problems, it focuses particularly on solid geometry and analytic geometry, it
can help enhance problem type diversity.

Data Intelligence

23

Solving Mathematical Problems using Large Language Models: A Survey

Table 4. Theorem Proving Datasets.

Dataset

Brief Descriptions and Problem Examples (portion)

Wiedijk’s list of 100 theorems [85]
(1999)

In July 1999, at a mathematics conference, mathematicians Jack Abad
and Paul Abad unveiled the list of The Hundred Greatest Theorems. Their
ranking was based on the theorem’s status in the literature, the quality of
the proof, and the unexpectedness of the result. The top three theorems
were: The Irrationality of the Square Root of 2, the Fundamental Theorem
of Algebra, and the Denumerability of the Rational Numbers. In [85], the
formalization of these theorems in systems such as Isabelle [66], Coq [62],
and Lean [63] was documented.

miniF2F [86] (2021)

miniF2F is a dataset of manually formalized statements of Olympiad-
type problems, aligned in Lean [63], Metamath [87], and Isabelle [66],
providing a cross-platform benchmark for formal mathematical
reasoning. The formalized statements in miniF2F come from multiple
sources, covering exercises from high school and undergraduate levels
to Olympiad problems, mainly from AIME (American Invitational
Mathematics Examination), AMC (American Mathematics Competition),
IMO problems, and informal datasets from MATH [1], allowing miniF2F
to encompass a broader range of difficulties. MiniF2F also covers various
subfields and proof strategies in mathematics, with a primary focus on
algebra, number theory, and inequalities.

LeanDojo Benchmark [59] (2022)

LeanDojo is a benchmark for premise selection and theorem proving,
including 98,734 theorems and proofs extracted from the Lean
mathematics library [60], covering topics such as analysis, algebra, and
geometry. Unlike the existing Lean dataset, the LeanDojo Benchmark also
includes definitions of 130,262 premises, comprising not only theorems
but other definitions usable as premises. Additionally, the dataset contains
217,776 tactics, with 129,243 tactics involving at least one premise.
Among the tactics with premises, the average number of premises is 2.13.

Fimo [88] (2023)

Fimo is a dataset of human-verified auto-formalized statements of IMO-
level mathematical problems aligned in Lean language. It comprises 149
formal problem statements, accompanied by both informal problem
descriptions and their corresponding LATEX-based informal proofs.

Table 5. Theorem Proving Datasets.

Dataset

Brief Descriptions and Problem Examples (portion)

Hendrycks et al. constructed the MATH dataset [1], which contains 12,500 mathematics
competition problems sourced from AMC 10, AMC 12, AIME and other mathematics
competitions. Unlike previous datasets, most problems in MATH cannot be solved

MATH [1] (2021)

directly using the K-12 mathematic tools but require skills and heuristic methods. The
problems in the MATH dataset span different subjects and difficulty levels. The seven

subjects are Prealgebra, Algebra, Number Theory, Counting and Probability, Geometry,
Intermediate Algebra, and Precalculus. Each problem includes a multi-step solution and
a final answer, and is assigned a difficulty rating from 1 to 5.

24

Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

8. FUTURE RESEARCH DIRECTIONS

8.1 Geometric Figure Analysis

In courses such as plane geometry, solid geometry, and analytic geometry, there are numerous
geometric figures composed of lines, rectangles, circles, etc. Parsing these geometric shapes to identify
their elements and topological relationships, and representing them formally, is a prerequisite for
collaborative reasoning with LLMs. Although AlphaGeometry [56] can solve IMO-level geometric
problems, it directly uses the formal language of geometric figures as input.

In practice, parsing geometric figures into formal language is not easy for two main reasons: first, unlike
natural images in the field of computer vision, geometric figures have sparse visual features, their color,
texture, and background information are much less than those of natural images. Second, geometric
figures exhibit a phenomenon different from natural images known as isomorphism but different shapes,
meaning that geometrically different figures (as shown in Figure 4) may express the same topology.

.r!\, B

Figure 4. isomorphism but different shapes.

This makes it difficult to apply object detection models that perform well on natural images to geometric
figure parsing. Our test results indicate that object detection models like classic Faster R-CNN [89] and popular
models like DETR [90], CenterNet [91], etc., achieve an average accuracy of 85.3% on MSCOCO [92], but
only 13.3% on GeoQA [35]. Additionally, we also employed GPT-4V to describe 50 randomly selected
geometric figures from GeoQA [35], using the prompt Please list out the known information that is directly
reflected in the given geometric diagram. Only 6 descriptions were completely correct, Figure 5 lists 4
typical failure cases.

8.2 The Comprehension and Generation of Mathematical Expressions

Mathematical problems and their solution processes usually include many mathematical expressions,
there are three challenges in understanding and generating these expressions:

First, mathematical expressions contain specific symbols with specific meanings, such as [, 4, ¥, T].
Understanding the meanings of these symbols is essential for accurately understanding mathematical
expressions.

Data Intelligence 25

Solving Mathematical Problems using Large Language Models: A Survey

1. AB equals 1o AC; c . LA lm'g(l?lr tria.ngh_\1 f.\AB-(-:,']x |
. The length of AB is 32 unit; i j 2uLsmdliee teang e a s !

x Fiply ; i | 3. ACED and AABC share the same

| 3. AABC is an isosceles triangle; . 4 | vertex C;%¢ ;

é 4. The length of BC is 32 unit; % i | 4. Two pink arrows both point to the |

| 5. The length of BD is 16 unit. x : A E D7 inside part of ACED, % |

A g 1. This is a right triangle with a / . 1. P is the center of the circle; X :
| vertex Z; % i | 2. K is the midpoint of string |N: 3¢ |

“ 9 [2.The length of AZ is 4 unit; x| M | 3. The distance from P to IN is 10 uré¢ |
! B 3. The length of AB is 9 unit; \ : 4, Diameter ML and NK intersect at % I
c v i 4. There is a blue box around £B, | 1 % i 5. ZLPKisaright angle. X !

i

referring it's a right angle. % A -

Figure 5. Typical Failure Cases of GPT-4V.

Second, mathematical expressions often have complex structures and hierarchical relationships composed
0 . .
of symbols, constants, variables, etc. For example, J.Ox”e’xdx is a typical mathematical expression in

advanced mathematics with a complex structure, involving concepts such as integration, exponential

functions, and power functions. Understanding such expressions requires strong text parsing abilities.

Third, mathematical expressions are not isolated in problem-solving and theorem proving, but have
various logical and numerical relationships. Understanding or generating mathematical expressions with
relationships requires logical reasoning and numerical calculation abilities.

8.3 Indirect Proof

Currently, researchers usually employ direct proof approaches when using LLMs in mathematical proofs.
Unlike directly proving a proposition P to be true, indirect proofs often demonstrate that P cannot be false.
Indirect proofs are commonly used in mathematics, particularly for proving existence, uniqueness, and
propositions that are challenging to prove directly.

Indirect proofs can be further classified into proof by contradiction and proof by contrapositive.
The fundamental principle of proof by contradiction is: to prove P to be true, first assume P to be false,
which leads to a contradiction, thereby demonstrating P to be true, i.e., (-P = 1) = P. One classic
example is the proof of The infinitude of the primes by the ancient Greek mathematician Euclid using
proof by contradiction. The basic principle of proof by contrapositive is: to prove P = Q, one can prove
its contrapositive, i.e., “Q = =P. For example, proof by contrapositive can easily demonstrate If n is an
integer and n? is even, then n is also even.

Directly applying LLMs for indirect proof may involve modus tollens inference. Empirical studies show
that LLMs exhibit the inverse scaling phenomenon [2] on such reasoning tasks, which means that though
the size of the model and the amount of the training data have increased, the performance of the LLMs
decreased. Combining large models with symbolic reasoning also faces challenges such as the need for
more skillful strategies in finding reasoning paths. For example, in the indirect proof of The infinitude of the

26 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

primes, it is necessary to creatively introduce an integer N :Hi”: P +1, where p, is the ith prime in

ascending order, and p_is the largest prime.

8.4 LLM Benchmark for Solving Mathematical Problems

Although there have been many research works on evaluating the mathematical abilities of LLMs [1, 3-8],
constructing a fair, accurate, and comprehensive benchmark for the assessment of mathematical abilities
still faces many challenges:

First is the issue of diversity, manifested in the various types, difficulty levels, and solution methods of
mathematical problems. To comprehensively assess the mathematical abilities of LLMs, the benchmark
should cover a wide range of problem types and difficulties, as well as multiple solution approaches.

Second is the problem of interpretability. Even though LLMs can generate correct answers, if they
cannot provide concise and easily understandable solution processes, these answers remain unacceptable.
Therefore, there is a need to design indicators and quantitative methods specifically for interpretability.

Third is the issue of data contamination, it means that the evaluation dataset contains data seen during
training, leading to evaluation results far higher than the actual performance of the model. For example,
evaluation results on 4,550 problems from 30 math and EECS courses required for MIT degree exams
indicated that [93] GPT-4 almost passed with full score. But subsequent analysis revealed that significant
contamination of the test dataset. Therefore, it is necessary to ensure that the mathematical problems in the
evaluation data are not present in the training data of LLMs.

9. CONCLUSION

In this survey, we reviewed methods for solving mathematical problems using LLMs by analyzing
relevant papers in the field of LLMs and mathematical problem-solving. Based on our analysis, we propose
a two-layer classification system for SMP-LLM. At the first layer, existing researches are classified into
four categories based on the approach to problem-solving, including: fine-tuning, prompt engineering,
collaboration with symbolic solvers, and collaboration with evaluators/validators. And at the second layer,
mathematical problems addressed by existing researches are classified into four categories, including:
math word problem, geometry problem, theorem proving, and combinatorial optimization problem.This
classification system demonstrates the correlation between solution methods and mathematical problem
types of SMP-LLM. We provide a comprehensive analysis of existing works along the dimensions defined
by our classification system, and stated the strengths and weaknesses of each approach. Finally, we
systematically introduce related datasets in this field and outline future research directions and challenges.
We hope our survey will assist other researchers in making further contributions to this area.

Solving Mathematical Problems using Large Language Models: A Survey

AUTHOR CONTRIBUTIONS

Feijuan He: Conceptualization, Methodology, Writing-Original draft preparation (Chapters 1, 2, 8),
Writing-Review & Editing. Han Lai: Writing-Original draft preparation (Chapters 3, 4, 9), Writing-Review &
Editing. Jiaqi Liu: Writing-Review & Editing (Chapter 5). Bo Wang: Writing-Review & Editing (Chapter 6).
Haoran Chen: Writing-Review & Editing (Chapter 6). Haohan Liu: Data curation (Chapter 7), Writing-Review &
Editing (Chapter 7). Chenxi Zhang: Data curation (Chapter 7), Writing-Review & Editing (Chapter 7).

ACKNOWLEDGEMENTS

This work was supported by the National Natural Science Foundation of China (No. 62477037),
the Shaanxi Provincial Social Science Foundation Project (No. 2024P041), the Youth Innovation Team
of Shaanxi Universities “Multi-modal Data Mining and Fusion”, Shaanxi Undergraduate and Higher
Education Teaching Reform Research Program (No. 23BY195), and Xi’an Jiaotong University City College
Research Project (No. 2024Y01).

NON-STANDARD ABBREVIATIONS

SMP-LLM: solving mathematical problems using Large Language Models.

REFERENCES

[11 D. Hendrycks, C. Burns, S. Kadavath, A. Arora, S. Basart, E. Tang, D. Song, and J. Steinhardt, “Measuring
mathematical problem solving with the MATH dataset,” in NeurIPS Datasets and Benchmarks, 2021.

[2] 1. R. McKenzie, A. Lyzhov, M. Pieler, A. Parrish, A. Mueller, A. Prabhu, E. McLean, A. Kirtland, A. Ross,
A. Liu, A. Gritsevskiy, D. Wurgaft, D. Kauffman, G. Recchia, J. Liu, J. Cavanagh, M. Weiss, S. Huang, T.
F. Droid, T. Tseng, T. Korbak, X. Shen, Y. Zhang, Z. Zhou, N. Kim, S. R. Bowman, and E. Perez, “Inverse
scaling: When bigger isn’t better,” Trans. Mach. Learn. Res., vol. 2023, 2023.

[31 W. Chen, M.Yin, M. Ku, P. Lu, Y. Wan, X. Ma, J. Xu, X. Wang, and T. Xia, “Theoremqa: A theorem-driven
question answering dataset,” in Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 7889-7901, 2023.

[4] L. Floridi and M. Chiriatti, “Gpt-3: Its nature, scope, limits, and consequences,” Minds and Machines, vol.
30, pp. 681-694, 2020.

[5]1 S. Frieder, L. Pinchetti, A. Chevalier, R. Griffiths, T. Salvatori, T. Lukasiewicz, P. Petersen, and J. Berner,
“Mathematical capabilities of chatgpt,” in NeurlPS, 2023.

[6] J. Hoffmann, S. Borgeaud, A. Mensch, E. Buchatskaya, T. Cai, E. Rutherford, D. d. L. Casas, L. A.
Hendricks, J. Welbl, A. Clark, et al., “Training compute-optimal large language models,” arXiv preprint
arXiv:2203.15556, 2022.

[71 M. Kazemi, H. Alvari, A. Anand, J. Wu, X. Chen, and R. Soricut, “Geomverse: A systematic evaluation of
large models for geometric reasoning,” arXiv preprint arXiv:2312.12241, 2023.

[8] P Lu, H.Bansal, T. Xia, J. Liu, C. Li, H. Hajishirzi, H. Cheng, K. Chang, M. Galley, and J. Gao, “Mathvista:
Evaluating mathematical reasoning of foundation models in visual contexts,” in ICLR, OpenReview.net,
2024.

Solving Mathematical Problems using Large Language Models: A Survey

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

F. Xu, Q. Lin, J. Han, T. Zhao, J. Liu, and E. Cambria, “Are large language models really good logical
reasoners? a comprehensive evaluation from deductive, inductive and abductive views,” arXiv preprint
arXiv:2306.09841, 2023.

W. Liu, H. Hu, J. Zhou, Y. Ding, J. Li, J. Zeng, M. He, Q. Chen, B. Jiang, A. Zhou, et al., “Mathematical
language models: A survey,” arXiv preprint arXiv:2312.07622, 2023.

D. Gasevi¢, D. Djuri¢, and V. Devedzi¢, Model driven architecture and ontology development, vol. 10.
Springer, 2006.

W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al., “A survey
of large language models,” arXiv preprint arXiv:2303.18223, 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le, D. Zhou, et al., “Chain-of-thought
prompting elicits reasoning in large language models,” Advances in Neural Information Processing
Systems, vol. 35, pp. 24824-24837, 2022.

B. Romera-Paredes, M. Barekatain, A. Novikov, M. Balog, M. P. Kumar, E. Dupont, F. J. Ruiz, J. S. Ellenberg,
P. Wang, O. Fawzi, et al., “Mathematical discoveries from program search with large language models,”
Nature, pp. 1-3, 2023.

H. Lightman, V. Kosaraju, Y. Burda, H. Edwards, B. Baker, T. Lee, . Leike, J. Schulman, I. Sutskever, and K.
Cobbe, “Let’s verify step by step,” in ICLR, OpenReview.net, 2024.

L. Yu, W. Jiang, H. Shi, J. Yu, Z. Liu, Y. Zhang, J. T. Kwok, Z. Li, A. Weller, and W. Liu, “Metamath: Bootstrap
your own mathematical questions for large language models,” in ICLR, OpenReview.net, 2024.

F. Xu, Z. Wu, Q. Sun, S. Ren, F Yuan, S. Yuan, Q. Lin, Y. Qiao, and J. Liu, “Symbol-lim: Towards
foundational symbol-centric interface for large language models,” in ACL (1), pp. 13091-13116,
Association for Computational Linguistics, 2024.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun, L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R.
Nakano, et al., “Training verifiers to solve math word problems,” arXiv preprint arXiv:2110.14168, 2021.
W. Ling, D. Yogatama, C. Dyer, and P. Blunsom, “Program induction by rationale generation: Learning to
solve and explain algebraic word problems,” in Proceedings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pp. 158-167, 2017.

S. An, Z. Ma, Z. Lin, N. Zheng, J.-G. Lou, and W. Chen, “Learning from mistakes makes I[Im better
reasoner,” arXiv preprint arXiv:2310.20689, 2023.

J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.

T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer, “Qlora: Efficient finetuning of quantized lims,”
in NeurlPS, 2023.

Z. Yuan, H. Yuan, C. Li, G. Dong, C. Tan, and C. Zhou, “Scaling relationship on learning mathematical
reasoning with large language models,” arXiv preprint arXiv:2308.01825, 2023.

H. Luo, Q. Sun, C. Xu, P. Zhao, J. Lou, C. Tao, X. Geng, Q. Lin, S. Chen, Y. Tang, and D. Zhang,
“Wizardmath: Empowering mathematical reasoning for large language models via reinforced evol-
instruct,” in The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore,
April 24-28, 2025, OpenReview.net, 2025.

Z. Hu, L. Wang, Y. Lan, W. Xu, E. Lim, L. Bing, X. Xu, S. Poria, and R. K. Lee, “LIm-adapters: An adapter
family for parameter-efficient fine-tuning of large language models,” in EMNLP, pp. 5254-5276,
Association for Computational Linguistics, 2023.

H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava, S.
Bhosale, et al., “Llama 2: Open foundation and fine-tuned chat models,” arXiv preprint arXiv:2307.09288,
2023.

Data Intelligence 29

Solving Mathematical Problems using Large Language Models: A Survey

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[371

[38]

[391]

[40]

30

J. Gao, R. Pi, J. Zhang, J. Ye, W. Zhong, Y. Wang, L. Hong, J. Han, H. Xu, Z. Li, and L. Kong, “G-llava:
Solving geometric problem with multi-modal large language model,” in The Thirteenth International
Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025, OpenReview.net,
2025.

P. Lu, R. Gong, S. Jiang, L. Qiu, S. Huang, X. Liang, and S.-c. Zhu, “Inter-gps: Interpretable geometry
problem solving with formal language and symbolic reasoning,” in Proceedings of the 59" Annual Meeting
of the Association for Computational Linguistics and the 11" International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), pp. 6774-6786, 2021.

H. Liu, C. Li, Q. Wu, and Y. J. Lee, “Visual instruction tuning,” Advances in neural information processing
systems, vol. 36, pp. 34892-34916, 2023.

Z. Liang, T. Yang, J. Zhang, and X. Zhang, “Unimath: A foundational and multimodal mathematical
reasoner,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing,
pp. 7126-7133, 2023.

H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma, A.
Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson, D.
Valter, S. Narang, G. Mishra, A. Yu, V. Y. Zhao, Y. Huang, A. M. Dai, H. Yu, S. Petrov, E. H. Chi,]. Dean,
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei, “Scaling instruction-finetuned language models,” /.
Mach. Learn. Res., vol. 25, pp. 70:1-70:53, 2024.

A. Van Den Oord, O. Vinyals, et al.,, “Neural discrete representation learning,” Advances in neural
information processing systems, vol. 30, 2017.

A. Razavi, A. van den Oord, and O. Vinyals, “Generating diverse high-fidelity images with vg-vae-2,” in
Proceedings of the 33" International Conference on Neural Information Processing Systems, pp. 14866—
14876, 2019.

A. Patel, S. Bhattamishra, and N. Goyal, “Are nlp models really able to solve simple math word
problems?,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pp. 2080-2094, 2021.

J. Chen, J. Tang, J. Qin, X. Liang, L. Liu, E. Xing, and L. Lin, “Geoqa: A geometric question answering
benchmark towards multimodal numerical reasoning,” in Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 513-523, 2021.

P. Lu, L. Qiu, K.-W. Chang, Y. N. Wu, S.-C. Zhu, T. Rajpurohit, P. Clark, and A. Kalyan, “Dynamic prompt
learning via policy gradient for semi-structured mathematical reasoning,” in The Eleventh International
Conference on Learning Representations, 2022.

A. Amini, S. Gabriel, S. Lin, R. Koncel-Kedziorski, Y. Choi, and H. Hajishirzi, “Mathqga: Towards
interpretable math word problem solving with operation-based formalisms,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pp. 2357-2367, 2019.

J. Chen, T. Li, J. Qin, P. Lu, L. Lin, C. Chen, and X. Liang, “Unigeo: Unifying geometry logical reasoning via
reformulating mathematical expression,” in Proceedings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pp. 3313-3323, 2022.

W. X. Zhao, K. Zhou, Z. Gong, B. Zhang, Y. Zhou, J. Sha, Z. Chen, S. Wang, C. Liu, and J.-R. Wen,
“Jiuzhang: A chinese pre-trained language model for mathematical problem understanding,” in
Proceedings of the 28" ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
4571-4581, 2022.

X. Zhao, K. Zhou, B. Zhang, Z. Gong, Z. Chen, Y. Zhou, J.-R. Wen, J. Sha, S. Wang, C. Liu, et al., “Jiuzhang
2.0: A unified chinese pre-trained language model for multi-task mathematical problem solving,” in

Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]
[52]

[53]

[54]

[55]

[56]

[571

[58]

[59]

Proceedings of the 29" ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
5660-5672, 2023.

J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou, “Chain-
of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information
Processing Systems, pp. 24824-24837, 2022.

Z. Zhang, A. Zhang, M. Li, and A. Smola, “Automatic chain of thought prompting in large language
models,” in The Eleventh International Conference on Learning Representations, 2022.

X. Huang, L. L. Zhang, K.-T. Cheng, and M. Yang, “Boosting [Im reasoning: Push the limits of few-shot
learning with reinforced in-context pruning,” arXiv preprint arXiv:2312.08901, 2023.

Y. Fu, H. Peng, A. Sabharwal, P. Clark, and T. Khot, “Complexity-based prompting for multi-step
reasoning,” in ICLR, OpenReview.net, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al., “Language models are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877-1901, 2020.

S. Imani, L. Du, and H. Shrivastava, “Mathprompter: Mathematical reasoning using large language
models,” in ACL (industry), pp. 37-42, Association for Computational Linguistics, 2023.

X. Wang, J. Wei, D. Schuurmans, Q. V. Le, E. H. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-
consistency improves chain of thought reasoning in language models,” in The Eleventh International
Conference on Learning Representations, 2022.

D. Zhou, N. Scharli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. V. Le,
et al., “Least-to-most prompting enables complex reasoning in large language models,” in The Eleventh
International Conference on Learning Representations, 2022.

H. Kautz, “The third ai summer: Aaai robert s. engelmore memorial lecture,” Al Magazine, vol. 43, no. 1,
pp. 105-125, 2022.

W. Chen, X. Ma, X. Wang, and W. W. Cohen, “Program of thoughts prompting: Disentangling computation
from reasoning for numerical reasoning tasks,” Trans. Mach. Learn. Res., vol. 2023, 2023.

O. Wojciech Zaremba, Greg Brockman, “Openai codex,” 2021.

L. Gao, A. Madaan, S. Zhou, U. Alon, P. Liu, Y. Yang, J. Callan, and G. Neubig, “Pal: Program-aided
language models,” in International Conference on Machine Learning, pp. 10764-10799, PMLR, 2023.

R. Yamauchi, S. Sonoda, A. Sannai, and W. Kumagai, “Lpml: Llm-prompting markup language for
mathematical reasoning,” arXiv preprint arXiv:2309.13078, 2023.

J. He-Yueya, G. Poesia, R. E. Wang, and N. D. Goodman, “Solving math word problems by combining
language models with symbolic solvers,” arXiv preprint arXiv:2304.09102, 2023.

W. Wu, L. Zhang, J. Liu, X. Tang, Y. Wang, S. Wang, and Q. Wang, “E-gps: Explainable geometry problem
solving via top-down solver and bottom-up generator,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 13828-13837, 2024.

T. H. Trinh, Y. Wu, Q. V. Le, H. He, and T. Luong, “Solving olympiad geometry without human
demonstrations,” Nature, vol. 625, no. 7995, pp. 476-482, 2024.

S.-C. Chou, X.-S. Gao, and J.-Z. Zhang, “A deductive database approach to automated geometry theorem
proving and discovering,” Journal of Automated Reasoning, vol. 25, no. 3, pp. 219-246, 2000.

G. Irving, C. Szegedy, A. A. Alemi, N. Eén, F. Chollet, and J. Urban, “Deepmath-deep sequence models for
premise selection,” Advances in neural information processing systems, vol. 29, 2016.

K. Yang, A. Swope, A. Gu, R. Chalamala, P. Song, S. Yu, S. Godil, R. J. Prenger, and A. Anandkumar,
“Leandojo: Theorem proving with retrieval-augmented language models,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

Data Intelligence 31

Solving Mathematical Problems using Large Language Models: A Survey

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

32

T. mathlib Community, “The lean mathematical library,” in Proceedings of the 9" ACM SIGPLAN
International Conference on Certified Programs and Proofs, p. 367-381, Association for Computing
Machinery, 2020.

A. Thakur, Y. Wen, and S. Chaudhuri, “A language-agent approach to formal theorem-proving,” arXiv
preprint arXiv:2310.04353, 2023.

G. Huet, G. Kahn, and C. Paulin-Mohring, “The coq proof assistant a tutorial,” Rapport Technique, vol.
178, 1997.

L. de Moura, S. Kong, J. Avigad, F. Van Doorn, and J. von Raumer, “The lean theorem prover (system
description),” in Automated Deduction-CADE-25: 25" International Conference on Automated Deduction,
Berlin, Germany, August 1-7, 2015, Proceedings 25, pp. 378-388, Springer, 2015.

Y. Wu, A. Q. Jiang, W. Li, M. Rabe, C. Staats, M. Jamnik, and C. Szegedy, “Autoformalization with large
language models,” Advances in Neural Information Processing Systems, vol. 35, pp. 32353-32368, 2022.
A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, et al., “Palm: Scaling language modeling with pathways,” Journal of Machine Learning
Research, vol. 24, no. 240, pp. 1-113, 2023.

T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: a proof assistant for higher-order logic. Springer,
2002.

S. Welleck and R. Saha, “Llmstep: Llm proofstep suggestions in lean,” in The 3 Workshop on
Mathematical Reasoning and Al at NeurlPS’23, 2023.

S. Biderman, H. Schoelkopf, Q. G. Anthony, H. Bradley, K. O’Brien, E. Hallahan, M. A. Khan, S. Purohit,
U. S. Prashanth, E. Raff, et al., “Pythia: A suite for analyzing large language models across training and
scaling,” in International Conference on Machine Learning, pp. 2397-2430, PMLR, 2023.

Y. Li, Z. Lin, S. Zhang, Q. Fu, B. Chen, J.-G. Lou, and W. Chen, “Making language models better reasoners
with step-aware verifier,” in Proceedings of the 61 Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 5315-5333, 2023.

P. He, X. Liu, J. Gao, and W. Chen, “Deberta: Decoding-enhanced bert with disentangled attention,” in
International Conference on Learning Representations, 2020.

A. Madaan, N. Tandon, P. Gupta, S. Hallinan, L. Gao, S. Wiegreffe, U. Alon, N. Dziri, S. Prabhumoye,
Y. Yang, S. Gupta, B. P. Majumder, K. Hermann, S. Welleck, A. Yazdanbakhsh, and P. Clark, “Self-refine:
Iterative refinement with self-feedback,” in NeurlPS, 2023.

A. Zhou, K. Wang, Z. Lu, W. Shi, S. Luo, Z. Qin, S. Lu, A. Jia, L. Song, M. Zhan, and H. Li, “Solving
challenging math word problems using GPT-4 code interpreter with code-based self-verification,” in ICLR,
OpenReview.net, 2024.

S. Polu and I. Sutskever, “Generative language modeling for automated theorem proving,” arXiv preprint
arXiv:2009.03393, 2020.

E. First, M. Rabe, T. Ringer, and Y. Brun, “Baldur: Whole-proof generation and repair with large language
models,” in Proceedings of the 31t ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1229-1241, 2023.

F. Liu, X. Tong, M. Yuan, and Q. Zhang, “Algorithm evolution using large language model,” CoRR, vol.
abs/2311.15249, 2023.

F. Liu, X. Tong, M. Yuan, X. Lin, F. Luo, Z. Wang, Z. Lu, and Q. Zhang, “An example of evolutionary
computation+ large language model beating human: Design of efficient guided local search,” arXiv
preprint arXiv:2401.02051, 2024.

S. Liu, C. Chen, X. Qu, K. Tang, and Y. Ong, “Large language models as evolutionary optimizers,” in CEC,
pp. 1-8, IEEE, 2024.

Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

[78]

[791

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[871
[88]

[89]

[90]

[91]

[92]

[93]

[94]

DeepSeek-Al, D. Guo, D. Yang, H. Zhang, J. Song, R. Zhang, R. Xu, Q. Zhu, S. Ma, P. Wang, X. Bi, X. Zhang,
X.Yu, Y. Wu, Z. F. Wu, Z. Gou, Z. Shao, Z. Li, Z. Gao, A. Liu, B. Xue, B. Wang, B. Wu, B. Feng, C. Lu, C.
Zhao, C. Deng, C. Zhang, C. Ruan, D. Dai, D. Chen, D. Ji, E. Li, F. Lin, F. Dai, F. Luo, G. Hao, G. Chen, GC.
Li, H. Zhang, H. Bao, H. Xu, H. Wang, H. Ding, H. Xin, H. Gao, H. Qu, H. Li, J. Guo, J. Li, J. Wang, J. Chen,
J. Yuan, J. Qiu, J. Li, J. L. Cai, J. Ni, J. Liang, J. Chen, K. Dong, K. Hu, K. Gao, K. Guan, K. Huang, K. Yu, L.
Wang, L. Zhang, L. Zhao, L. Wang, L. Zhang, L. Xu, L. Xia, M. Zhang, M. Zhang, M. Tang, M. Li, M. Wang,
M. Li, N. Tian, P. Huang, P. Zhang, Q. Wang, Q. Chen, Q. Du, R. Ge, R. Zhang, R. Pan, R. Wang, R. J. Chen,
R. L. Jin, R. Chen, S. Lu, S. Zhou, S. Chen, S. Ye, S. Wang, S. Yu, S. Zhou, S. Pan, and S. S. Li, “Deepseek-r1:
Incentivizing reasoning capability in llms via reinforcement learning,” CoRR, vol. abs/2501.12948, 2025.

Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al., “Deepseekmath: Pushing
the limits of mathematical reasoning in open language models,” arXiv preprint arXiv:2402.03300, 2024.

Z. Xi, W. Chen, B. Hong, S. Jin, R. Zheng, W. He, Y. Ding, S. Liu, X. Guo, J. Wang, et al., “Training large
language models for reasoning through reverse curriculum reinforcement learning,” in International
Conference on Machine Learning, pp. 54030-54048, PMLR, 2024.

S.-Y. Miao, C.-C. Liang, and K.-Y. Su, “A diverse corpus for evaluating and developing english math
word problem solvers,” in Proceedings of the 58" Annual Meeting of the Association for Computational
Linguistics, pp. 975-984, 2020.

J. Cao and J. Xiao, “An augmented benchmark dataset for geometric question answering through dual
parallel text encoding,” in Proceedings of the 29" International Conference on Computational Linguistics,
pp. 1511-1520, 2022.

M. Zhang, F. Yin, and C. Liu, “A multi-modal neural geometric solver with textual clauses parsed from
diagram,” in I/CAl, pp. 3374-3382, ijcai.org, 2023.

J. Zhang, Z. Li, M. Zhang, F. Yin, C. Liu, and Y. Moshfeghi, “Geoeval: Benchmark for evaluating lims and
multi-modal models on geometry problem-solving,” in ACL (Findings), pp. 12581276, Association for
Computational Linguistics, 2024.

F. Wiedijk, “Formalizing 100 theorems,” 2023.

K. Zheng, J. M. Han, and S. Polu, “minif2f: a cross-system benchmark for formal olympiad-level
mathematics,” in International Conference on Learning Representations, 2021.

N. Megill and D. A. Wheeler, Metamath: a computer language for mathematical proofs. Lulu. com, 2019.
C. Liu, J. Shen, H. Xin, Z. Liu, Y. Yuan, H. Wang, W. Ju, C. Zheng, Y. Yin, L. Li, et al., “Fimo: A challenge
formal dataset for automated theorem proving,” arXiv preprint arXiv:2309.04295, 2023.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection with region
proposal networks,” Advances in neural information processing systems, vol. 28, 2015.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko, “End-to-end object detection
with transformers,” in European conference on computer vision, pp. 213-229, Springer, 2020.

K. Duan, S. Bai, L. Xie, H. Qi, Q. Huang, and Q. Tian, "Centernet: Keypoint triplets for object detection,” in
Proceedings of the IEEE/CVF international conference on computer vision, pp. 6569-6578, 2019.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick, “Microsoft coco:
Common objects in context,” in 13" European Conference Computer Vision, pp. 740-755, Springer, 2014.

S.J. Zhang, S. Florin, A. N. Lee, E. Niknafs, A. Marginean, A. Wang, K. Tyser, Z. Chin, Y. Hicke, N. Singh,
et al., “Exploring the mit mathematics and eecs curriculum using large language models,” arXiv preprint
arXiv:2306.08997, 2023.

H. Wang, H. Xin, C. Zheng, Z. Liu, Q. Cao, Y. Huang, J. Xiong, H. Shi, E. Xie, J. Yin, Z. Li, and X. Liang,
“Lego-prover: Neural theorem proving with growing libraries,” in The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024, OpenReview.net, 2024.

Data Intelligence 33

Solving Mathematical Problems using Large Language Models: A Survey

AUTHOR BIOGRAPHY

Feijuan He is an Associate Professor at Xi‘an Jiaotong University City
College, holding a master’s degree from The Hong Kong Polytechnic
University. Her research interests include educational data mining, natural
language processing, and large language models.

Han Lai is a graduate student in the School of Computer Science and
Technology at Xi’an Jiaotong University. Her research focuses on enhancing
the reasoning abilities of Large Language Models.

Liu Jiaqi is a postgraduate student specializing in pediatric traditional
Chinese medicine at Dongfang Hospital of Beijing University of Chinese
Medicine. Her research focuses on medical data mining.

34 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

Bo Wang is a Lecturer at Xi‘an Jiaotong University City College, holding a
master’s degree from Chongqing University. His research interests include
industrial big data mining and analysis, and pattern recognition in the
healthcare field.

Haoran Chen is an undergraduate student majoring in Computer Science at
Xi’an Jiaotong University City College. His research interests include data
mining, computer vision, and machine learning.

Data Intelligence 35

Solving Mathematical Problems using Large Language Models: A Survey

Haohan Liu is an undergraduate student majoring in Computer Science
at Xi‘an Jiaotong University City College. His research interests focus on
learning data analysis and machine learning.

Chenxi Zhang is an undergraduate student majoring in Computer Science at
Xi‘an Jiaotong University City College. Her research interests include data
mining and machine learning.

36 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

APPENDIX A. DATA ANALYSIS

If not specially specified, the evaluation metric for each dataset is accuracy, the unit is %.

Table A.10: Math Word Problems.

Model GSK8K MATH SVAMP
Fine-tuning
MetaMath-7B/13B/70B [16] 66.5/72.3/82.3 19.8/22.4/26.6 -
Symbol-LLMbase-7B/13B [17] 61.14/68.69 28.24/33.39 -
Symbol-LLMinstruct-7B/13B 59.36/65.58 26.54/31.32 -
LLaMA-2-7B/13B/70B + Learning From Mistakes [20] 54.1/64.2/83.5 9.4/12.6/25.0 -/-/81.6
LLaMA-65B + Learning From Mistakes 77.9 20.8 72.8
MetaMath-13B/70B + Learning From Mistakes 73.2/85.4 22.7/26.9 -
WizardMath-7B/13B/70B + Learning From Mistakes 55.9/73.2/84.2 11.9/22.7/27 .1 -
LLaMa2-13B + RFT-U13B [23] 55.4 - -
LLaMa-7B/13B + LorA [25] 37.5/47.5 - 52.1/54.6

Prompt Engineering

Auto-CoT [42] 47.9 - 69.5
Code-davinci-002 + Complex CoT [44] 66.6 - -
Code-davinci-002 + Vote Complex 82.9 - -
LLaMA2-7B/13B/70B + CoT-Max [43] 15.92/32.37/59.59 - -
Code-davinci-002 + Self-consistency [47] 78.0 - 86.8
Code-davinci-002 + LeasLLaMA2-7B/13B/70Bt-to- 62.39 i i
Most [48]
Collaborating with Symbolic Solvers

PoT + GPT4 [50] 97.2 - 97.4
Codex + PAL [52] 72.0 - 79.4
DECLARATIVE3-shot + principles + SymPy [54] 69.4 + 0.65 - -
LPML + GPT-3.5 [53] 76.6 60.0 -

Data Intelligence 37

Solving Mathematical Problems using Large Language Models: A Survey

Table A.11: Math Word Problems.
Model GSK8K MATH SVAMP
Collaborating with Evaluators/Validators
Code-davinci-002 + DIVERSE [69] 82.3 - 87.0
GPT-4 + SELF-REFINE [71] 93.1 - -
GPT-4-Code + CSV [72] - 73.54 -
GPT-4-Code + CSV + Voting - 84.32 -
WizardMath-GPT2-Small/Medium/Large/XL [24] 26.4/38.7/50.1/58.9 12.3/15.6/21.2/25.4 -
WizardMath-Qwen2.5-7B 94.0 74.5 -
WizardMath-Qwen2.5-Math-7B 93.9 77.8 -
WizardMath-DeepSeekMath-7B 91.0 64.6 -
WizardMath-Llama-3-1B/3B/8B 63.3/85.5/90.3 33.5/49.9/58.8 -
WizardMath-Llama-2-7B/13B/70B 84.1/89.7/92.8 43.5/50.6/58.6 -
DeepSeekMath Corpus [79] 23.8 13.6 -
DeepSeekMath-Base-7B 64.2 36.2 -
RD;:SF;SrﬁiI;I;Aath-Instruct-7B (Chain-of-Thought 82.9 16.8 i
DeepSeekMath-RL-7B (Chain-of-Thought Reasoning) 88.2 51.7 -
DeepSeekMath-Instruct-7B (Tool-Integrated Reasoning) 83.7 57.4 -
DeepSeekMath-RL-7B (Tool-Integrated Reasoning) 86.7 58.8 -
Llama2-Base-7B + R* [80] 50.49 - 64.40
Table A.12: Geometry Problems.
Model SVAMP GeoQA MathVista Geometry3K
Fine-tuning
UniMath-T5-base 37.3 [30] 49.6 - -
UniMath-Flan-T5-base 41.8 50.0 - -
G-LLaVA-7B/13B [27] - 64.2/67.0 53.4/56.7 -
Collaborating with Symbolic Solvers
Inter-GPS [28] - - - 57.5
38 Data Intelligence

Solving Mathematical Problems using Large Language Models: A Survey

Table A.14: Theorem Proving.

Model miniF2F-valid miniF2F-test

LeanDojo Benchmark

Prompt Engineering

Thor after 2 expert iterations (M2) [64] 37.3 35.2

LEGO-Prover + ChatGPT [94] 57.0 50.0

Collaborating with Symbolic Solvers

COPRA + GPT-3.5 [61] - 22.13 -
COPRA + GPT-4 - 23.36 -
ReProver [59] - 26.5 51.2/26.3
LLMSTEP (Pythia-2.8b) [67] 26.2 27.9 -

Table A.15: Combinatorial Optimization Problems.

Model TSP20 TSP20 TSP100 TSP200 TSP500 TSP1000
Gap Gap Gap Gap Gap Gap
Collaborating with Evaluators/Validators
AEL + GPT-3.5-turbo [75] 11.2 16.8 20.0 21.8 23.1 22.8
AEL + GPT-4 6.2 11.1 10.5 11.2 12.8 12.8
AEL-GLS [76] 0.000 0.000 0.032 - - -
Table A.16: Combinatorial Optimization Problems.
Model ORI OR2 OR3 OR4 WeSiE“” Wf;)bk“” V\qeoigﬁ”
Collaborating with Evaluators/Validators
FunSearch [14] 5.30 4.19 3.1 2.47 0.68 0.32 0.03
Table A.17: Combinatorial Optimization Problems.
Model rue-10 Gap rue-15 Gap rue-20 Gap rue-25 Gap
Collaborating with Evaluators/Validators
LMEA [77] 0.00% = 0.00% 0.06% =+ 0.06% 3.94% + 1.54% 18.72% + 3.31%

Data Intelligence

39

Solving Mathematical Problems using Large Language Models: A Survey

Table A.18: Combinatorial Optimization Problems.

Model clu-10 Gap clu-15 Gap clu-20 Gap

clu-25 Gap

Collaborating with Evaluators/Validators

LMEA 0.00% + 0.00% 0.11% = 0.11% 4.05% + 0.69%

10.06% + 1.69%

40

Data Intelligence

