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Abstract

In the past two years, many progresses were made in magnetospheric physics by the data of OMNI,

SuperMAG networks, Double Star Program, Cluster, THEMIS, RBSP, DMSP, DEMETER, NOAA, Van Allen
Probes, GOES, Geotail, Swarm, MMS, BeiDa, Fengyun, ARTEMIS, MESSENGER, Juno, Chinese Mars ROVER,

MAVEN, Tianwen-1, Venus Express, Lunar Prospector e.g., or by computer simulations. This paper briefly re-

views these works based on 356 papers published from January 2020 to December 2021. The subjects covered var-

ious sub-branches of Magnetospheric Physics, including solar wind-magnetosphere-ionosphere interaction, inner

magnetosphere, outer magnetosphere, magnetic reconnection, planetary magnetosphere.
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1 Solar Wind-magnetosphere-
ionosphere Interaction

Solar wind dynamic pressure (Pygyy,) is the main driving
factor that determines the intensity of a great geomagne-

21 and plays an important role in the wave evo-

tic storm
lution and particle dynamics in the inner magneto-
sphere[ys]. Xiang et al™® confirmed that the solar wind
speed has the greatest influence on the MeV electron
flux variations, particularly at higher L, while the Py,
has more influence at lower L. There were both electron
dropout and enhancement drift echoes in some Pgy, de-
crease events ). The magnetopause shadowing process
in association with a sudden Py, pulse or a large geo-
magnetic storm may be the major loss mechanism dur-
ing the initial phase of the storm at L > 4.5" Shi et
al® reviewed how changing solar wind Pgyy, produces
the vortices, Ultralow Frequency (ULF) waves, and au-

AR

rorae. Zhao et a provided direct evidence of the sce-

Received May 27, 2022

E-mail: jbcao@buaa.edu.cn

Solar wind-magnetosphere-ionosphere interaction, Inner magnetosphere, Outer magnetosphere,

nario that magnetospheric flow vortices generated by a
Py, pulse carry Field-Aligned Currents (FACs) into the
ionosphere and thereby modulate auroral activity.

Zou et al""! demonstrated that persistently enhan-
ced Pgy, can modulate the radiation belt electron dyna-
mics before the storm main phase. For energetic energy
level, the occurrence rate of the pancake (butterfly)
PADs does not clearly decrease (increase) with the en-
hancement of Py, at L < 121" About 5% time, pro-
tons with energies of 3050 keV showed two distinct
populations, having an additional field-aligned popula-
tion overlapping with the original pancake populationm].
Radiation belt electron butterfly PADs are well connect-
ed to the solar wind condition, substorm activity, and

magnetospheric wave distribution''".

Xiang et al™

suggested that actual radial diffu-
sion rates in the inner belt are lower than previous esti-
mates in which cosmic ray albedo neutron decay contri-

butions were not considered. Simulations showed that
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solar flares increased global daytime currents and re-
duced the eastward electric fields during the daytime
from the equator to middle latitudes' . The solar wind
density plays a significant role in transferring solar wind
energy into the magnetosphere, besides the southward
magnetic field and the solar wind speedm].

Cai et al"™

reported the characteristics of the top-
side ionospheric O diffusive flux during both geomag-
netically quiet and moderate times for solar minimum
from 1970 to 2018. Statistical results show that the O"
density and its abundance (O'/H") vary with SYM-H in-
dex and Pgy, exponentially“g], and the H and O life-
times generally increase with L shell®”, During the main
phase, Ring Current (RC) ions with lower magnetic mo-
ments can penetrate into the deep inner magneto-
sphere[zl].

The global lightning can dominate the atmospheric

s qal?2]
noise

and can generate whistler waves which can tra-
vel upward into the radiation belts during higher geomag-
netic activities’”. The day-night difference of energetic
electrons in the South Atlantic Anomaly (SAA) region
depends not only on the electron energy but also on the
geomagnetic activity levels™. The subauroral polariza-
tion streams induced equatorial electrojet presented a
semidiurnal pattern associated with the variations of the
F,-layer virtual height[m and flows westward and east-
ward in the daytime and dawn/dusk sectors, respec-
tively[%].

The statistical characteristics of the structures of gi-
ant undulations during geomagnetic storms were studied
for the first time, based on aurora images during 2005—
20197, He er al®® showed direct observations of a
plasmapause surface wave and its impacts during a geo-
magnetic storm. The electron density fluctuation events
at the plasmapause mainly occur in the twilight sectors
and the spatial distribution varies with MLT and geo-
magnetic activitym]. Li et alP” suggested that the oc-
currence rate of an observed plasmaspheric plume in the
inner magnetosphere is larger during stronger geomag-
netic activity. The source population and the charge ex-
change losses along the drift paths play a very important
role in the formation of the “finger” structure”'.

The result of Ren et al.”” may explain previous ob-
servation that substorms frequently occur shortly after

northward IMF turning. The statistical analysis shows

that strong substorms (4E£>1000 nT)and super sub-
storms (4E>2000 nT) triggered by interplanetary shocks
are most likely to occur under southward IMF and fast
solar wind pre-conditionsm]. Duan et al”®" indicated
that characteristics of dipolarization with a large begin-
ning elevation angle within the substorm onset region
provide a new indicator to identify substorm onset loca-
tion. Fu et al.”” suggested that there is an additional cur-
rent wedge during intense substorms located near the
dusk. Tang et alP® reported local secondary magnetic
reconnection at Earth’s flank magnetopause, suggesting
a new pathway for the entry of the solar wind into geos-
pace. The magnetospheric energy deposition into the
northern polar upper atmosphere has obvious longitudi-
nal and seasonal variations””". The ions with larger graz-
ing angles would meander around the magnetopause
without a full escape, whereas the meandering motion
for those with smaller angles could be more easily to es-

cape™®

. Non-storm time super-substorm may also have a
significant contribution to the RC™. The reversed ener-
gy spectra of RC protons with distinct flux can be preva-
lent inside the plasmasphere[4o].

Wang et al! provided the first observational evi-
dence that solar/interplanetary energetic electrons can di-
rectly and continuously enter the planet’s cusp/lobe re-
gions and get trapped there. Guo et al™ found that dur-
ing the northward IMF, high latitude magnetic reconnec-
tion both poleward and equatorward of the cusp can oc-
cur almost simultaneously. High solar wind density, low
latitude magnetopause reconnection and positive dipole
tilt are favorable conditions for high-density cusp
events'™’!. Based on topology information, a new nor-
malized statistical methodology is developed by Xiao et
al™ to organize the measurements of cusp crossings to
obtain distributions of magnetic field and plasma param-
eters in the xz plane.

Xue et al*”! reported a simultaneous observation of
two band Electromagnetic lon Cyclotron (EMIC) waves
and toroidal Alfven waves by the Van Allen Probe mis-
sion. The original right-handed elliptically polarized
Alfven waves become linearly polarized, and eventually
become right-handed and circularly polarized[46]. Dipo-
larization Fronts (DFs) in the magnetosphere could cou-
ple the ionosphere with Alfven waves!".

Chen et al.*” demonstrated that kinetic-scale FACs
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are significant in magnetosphere-ionosphere coupling
which can be generated by velocity shear shortly and lo-
cally'™ between fast plasma flows associated with
nightside magnetic reconnection and slower background

magnetotail plasma flows?™

. Ton upflow occurrence
shows a dawn-dusk asymmetry distribution that match-
es well with the Region 1 FACs"". Conjunctive obser-
vations of a downward FAC and ground data were made
to investigate the generation of downward FAC"?,

Yao et al.”’! presented a new type of Kinetic-Scale
Flux Rope (KFR) in the Earth’s dayside magnetosheath
boundary layer, which was possibly generated by a
FAC, differing from typical dayside flux ropes usually
observed within the current sheet where magnetic recon-
nection can occur. Pitkanen et al."*! statistically investi-
gated how the rotation of the neutral sheet depends on
the sign and magnitude of IMF By. Electrons can be
non-adiabatic at the neutral sheet, which is able to scat-
ter their PAD"™).

The Transpolar Arcs (TPAs) presented by Park et
alP® were believed to be the result of both indirect and
direct processes of solar wind energy transfer to the
high-latitude ionosphere. Tang et al P’ suggested that
the semiannual variation observed in the TPA incidence
may be related to the Russell-McPherron effect due to
the projection effect of the IMF By under northward
IMF conditions. The observations and simulations re-
veal that these multiple TPAs are generated by precipi-
tating energetic magnetospheric electrons within FAC
sheets™.

Ma et al.”>” suggest that the flow of polar cap ori-
gin may play a crucial role in auroral surges by feeding
low entropy plasma into surge initiation and develop-
ment. Li et al™”! suggested that the electron precipita-
tion through the polar rain can be a main energy source
of the polar wind during periods of high levels of solar
activity. Polar cap cold patches occur more frequently
during solar maximum years'"'. The spatial size of cold
and hot patches decreases with solar activity (increases
with geomagnetic activity). Zhang et al ' summarized
the recent new progress in the formation and evolution
of patches.

Zhang et al presented the first statistical study
on the Auroral Kilometric Radiation (AKR) electric field
amplitude in the radiation belts. The first (higher) har-
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monic order of AKR contributes to diffusion coeffi-
cients at small (larger) pitch angles[64].

Fujimoto and Sydora[ﬁs] showed that the electron K-
H instability plays a primary role in driving intense elec-
tromagnetic turbulence, and the high-energy electrons
are efficiently scattered by the turbulences, leading to
the dissipation and electron heating[éé]. The distribution
of magnetosheath turbulence in the wavenumber space is
dominantly transverse to the background magnetic
field"®”. The correlation (and Taylor) length scale of the
solar wind turbulence is the largest along the magnetic
field, and is the smallest in the field-perpendicular direc-
tions'®. The Taylor scale increases with the increasing
sunspot number, indicating that the Taylor scale is posi-

tively correlated with the energy cascade rate!™,

2 Inner Magnetosphere

Proton sustained gaps are predominantly distributed near
the prenoon sector "), while the narrow gaps for oxygen
ions are most frequently observed near the noon sector!”'.
Using the time-of-flight technique based on the pitch
angle dependence of electron drift velocities, the “boo-
merang-shaped” stripes are inferred to originate from
straight stripesm]. The particle tracing model suggests
that the wedge-like structures originate from intermit-
tent substorm injection, and it is the accessibility region
of these injected ions that determines their shapesm].
These wedge-like structures are probably attributed to
fresh substorm injections from the outer region”’*. Li ez
al”™ found a clear MLT dependence of the number of
stationary “nose-like” ion spectral structures. Ren et
all’® suggested that the wedge-like and nose-like spec-
tral signatures are merely the manifestations of one sin-
gle structure along different spacecraft trajectories.

The Very Low Frequency (VLF) transmitter sig-
nals have a slight influence on the loss of energetic elec-
trons with pitch angles larger than 80°"". Xiang et al.!”
suggested that the VLF transmitter signals in the inner
magnetosphere mainly propagate along the magnetic

field line across the station position. Hua et al’”

pro-
vided quantitative evidence that VLF transmitter emis-
sions that leak from the Earth-ionosphere waveguide are
primarily responsible for bifurcating the energetic elec-

tron belt. The bifurcation of the Earth’s energetic elec-
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tron belt (tens of keV) is mostly observed at 30—100
kev!™.

Electron Cyclotron Harmonic (ECH) and chorus
may not grow independently but competitively or collab-

[81]

oratively gain energy from hot electrons”™ ' and nonlin-

ear wave-wave interactions can redistribute the primary
ECH wave energy over a broader frequency range[gz].
Wu et al.*” demonstrated that the heating of cold elec-
trons is negligible and non-resonant, different from pre-
vious conclusions, and suggested that the saturation of
the ECH wave is caused by the filling of the loss cone of
hot electrons. Lou et al.*™ confirmed the significant role
of ECH waves in driving the dayside diffuse aurora.
ECH waves at Earth could exhibit frequency chirping[gs].

Wave trapping caused by field-aligned density ir-
regularities (ducts) may account for whistler-mode

[86,87]
waves

, which are found to be generated by the but-
terfly type PADs of clectrons™, with field-aligned elec-
tron components acting as the energy source™. The
wave ducting effects at the plasmapause may lead to un-
usual and anomalous energetic pitch angle scattering[go].
Lu et al.®" demonstrated that a continuous injection of
energetic electrons caused by an azimuthal drift is essen-
tial for the repetitive emissions of chorus waves.
One-dimensional Particle-in-Cell (PIC) simulation
can give a further understanding of the generation and

. .. 92,93
propagation of rising-tone chorus waves'” "’

, e.g., bidi-
rectional chirping of whistler waves in a uniform mag-
netic field and falling-tone-only chirping in an inhomo-
geneous field””, a spectrum with a power gap around
0.5 O The gap is found between two peaks of
whistler-mode waves, which is caused by the mode split-
ting of beam-like electrons'”).

Theoretical and numerical models of chorus waves
were reviewed in Tao et al.”", focusing on the nonlin-
ear wave particle interactions and the frequency chirp-
ing of rising tone chorus waves. The duration of whistler
mode chorus waves increases and the chirping rate
(Gamma) decreases with increasing L-shell, although the
dependence is weak””. Liu et al.”® presented two unex-
pected chorus rising tone events within which the sub-
elements exhibit unexpected clearly reversed, falling
frequency-sweep. Statistically, lower-band chorus emis-
sions exhibit higher wave occurrence rates and larger

normalized peak wave frequencies in northern hemi-

sphere but somehow stronger peak wave intensities in
southern hemisphere[99]. Tao et al'™” proposed a phe-
nomenological model which could be applied to explain
the fine structures of chorus waves, including subpack-
ets and bandwidth.

The radial structures of seed electron Phase Space
Density (PSD) should be considered when studying the
dynamics of the outer radiation belt"". Chen er ar'™
showed that electron PSD presents a peaked radial pro-
file and power law energy spectrum, confirming that lo-
cal acceleration plays an important role in the electron
dynamics. Liu et al '™ reported that whistler waves can
effectively trap/bunch thermal electrons and modulate
electron phase space trajectories. Using a test particle

simulation code, Cai et al '

investigated effects of
nonlinear resonance broadening on scattering of elec-
trons and compare the results with a previous nonlinear
theory. Wu et al'® suggested that the loss and recov-
ery processes developed first at higher L-shells. The “S-
shaped” inner boundary is abruptly transformed from
“V-shaped” in storm main phase but reoccurs in sever-
al days in the late recovery phase[l%].

Various frequency chorus waves have different ef-
fects on electron dynamics[m]. ELF chorus can result in
unusual loss of relativistic electrons while regular cho-
rus contributes to the acceleration!'*. By studying the
Landau resonance between whistler mode waves and
electrons, Kong et al '™ provided a better understand-
ing of the formation of beam-like electron distribution in
the Earth’s magnetosphere. However, bounce resonance
diffusion rates have slight energy dependence for
>100 keV electrons while Landau-resonant scattering
rates decrease significantly in the MeV energy range[1 101,
Statistical electron PADs

whistler- and non-whistler waves are associated with the

features observed in the

Landau resonance of whistler-mode waves and drift-
shell splitting effect!''"l. Chen er al!"'” demonstrated
that the particle energy change might be underestimated
in the conventional theories, as the Betatron accelera-
tion induced by the curl of the wave electric field was
often omitted.

The statistical studies of He e al.l'"! showed that
incoherent hiss is widely distributed in dayside plasmas-
phere, with peak frequencies below 500 Hz; and intense
coherent hiss occurs in outer plasmasphere of L > 4. Liu
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et all"™ presented the first comprehensive observations
of hiss waves growing from the substorm-injected elec-
tron instability. Both hiss and exohiss waves have high-
er occurrence rates on the dayside (08:00—20:00 MLT)
and are positively correlated' .

Hiss and chorus can simultaneously occur at the
same electron drifting shells due to the irregular plasma-
sphere[”(’]. Chorus wave is incoherent when the spatial
extent is greater than 433 km or the time lag lasts about
10 "7, Using high-quality Van Allen Probes measure-
ments, Gu et al"™ verified that chorus waves act as a
critical candidate for relativistic electron acceleration
and plasmaspheric hiss as a viable cause for relativistic
electron loss. Fu et all'"”! suggested that the hiss waves
have different sources: low-frequency (<0.18 f;.) hiss
waves transmitted from chorus outside the plasmas-
phere and high-frequency (>0.18 f.) hiss waves locally

amplified. Li et al.l"*"

suggested that the enhanced elec-
tric field can significantly change the energetic electron
distributions, which provide free energy for hiss wave
amplification.

The gradual formation of “reversed energy spec-
trum” at L=3.5 indicates that hiss scattering inside the
plasmapause contributed to the fast decay of sub-MeV
remnant belt'"*'. The collaborated effect of a low-fre-
quency band and high-frequency band hiss can cause
significant precipitation losses of energetic electrons of
1221 and Lo-

cally generated High-Frequency Plasmaspheric Hiss

tens to several hundreds keV within 2 days

(LHFPH) could be a potential mechanism for the precip-
itation loss of suprathermal electrons of 0.1 keV to tens
of keV!'*.

The competitive influences of different plasma
waves on the PAD of energetic electrons depend on den-
sity of ambient plasmas and relative intensity of
waves' >, Man-made VLF waves and naturally generat-
ed hiss or Lightning-Generated Whistlers (LGWs) play
complementary and catalytic roles in the loss of radia-
tion belt electrons'' >, and weaken the top hat Pitch An-
gle (PA) distribution' >, Mei er al.""*” developed an em-
pirical model of the energy-dependent boundaries of
Earth’s electron radiation belt slot region. Slot region
electron loss timescales vary significantly from <1 day
to several years[lzs].

Hot plasma effects will modify the hiss dispersion

Chin. J. Space Sci. ZIAFAFFIR 2022, 42(4)
relation'"*”. The cold plasma theory can become less re-
liable for plasmaspheric hiss waves under disturbed geo-
magnetic circumstances and the realistic wave disper-
sion is essential to better quantify the electron scattering
effect of hiss waves'". Wang et al P! presented the
first quantitative study on the evolution of suprathermal
electrons under the competition between Landau heat-
ing by whistler mode hiss waves and Coulomb collision-
al cooling by background plasma inside a plasmaspheric
plume. Fu et al"** demonstrated that the cyclotron reso-
nance is mainly responsible for the pitch angle scatter-
ing of electrons <80°, while both Landau and bounce
resonances can affect the scattering of near-equatorially
mirroring electrons. Li ef al™* found similarities and
differences between sub-MeV and ultra-relativistic elec-
trons three-belt events, providing a new perspective in
three-belt structure study.

Strong storms and moderate storms can share in
common a lot of features on the azimuthal mode struc-
ture and power spectrum of ULF waves!**. The genera-
tion of Pc4-5 ULF waves after interplanetary shock-in-
duced electric fields is studied by Zhang et al"™ Li et
al proposed that the shoulder-like pulsations which
had been observed in many ULF wave events can be
caused by monochromatic oscillations of the magnetic
flux tubes in a ballooning-mirror mode structure, which
are likely facilitated by the magnetic reconnection alter-
ing the state of plasma in the downstream plasma
sheet!""].

These toroidal ULF waves, like their poloidal coun-
terparts, play an important role in magnetospheric parti-
cle dynamicsmg]. The seed (hundreds of keV) and core
(=1 MeV) electrons can resonate with ULF wave
modes with distinctive values simultaneously['39]. Reso-
nant electrons can remain phase trapped by the low-m
ULF waves under strong convection electric fields,
whereas for high-m ULF waves, the electrons trajecto-
ries can be significantly modified"*”. Zhao et al!'*"
suggested that localized ULF waves trapped in the
plume may result in the preference of localized ULF
wave-electron interactions in noon-to-dusk region. Liu et
al'"* found the phase shift of ion flux oscillation across
resonant pitch angles varies with time, when ULF wave
growth and damping cannot be neglected. Li et al!'*
suggested 180° phase shifts across pitch angle can also
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result from pitch angle-dependent bump-on-tail distribu-
tions.

During large AE, EMIC waves are mainly generat-
ed in the dusk sector and near the magnetic equator[m].
Liu e al"* highlighted the importance of solar wind
conditions for the evolution of inner magnetospheric
EMIC waves from a new perspective. Xiong et al "
suggested that the inward extension of EMIC waves may
be driven by the inward injection of anisotropic energet-
ic protons from the dense plasma sheet.

However, H and He" band EMIC waves can be si-
multaneously excited in the midnight sector under ap-
propriate conditions'"*”, The maximum growth rate of
H-band of EMIC waves appears in the dusk-to-midnight
sector near the plasmapause, while O-band is excited at a
slightly outer region[l48]. The frequency of the H' band
EMIC wave triggered by anisotropic hot H' drops quick-
ly in the initial stage, and then, a narrow He' band EMIC
wave is excited '*). He” band EMIC waves appeared to
split into O”" and He" band emissions, providing insight
into the generation of O°" band EMIC waves' "

Wang et al™" demonstrated for the first time the
existence of the intense unguided L-mode EMIC waves
in the radiation belt according to the polarization charac-
teristics. The effects of super-thermal plasmas on EMIC
wave instability growth have a strong dependence on the
emission band, temperature anisotropy Ay,, and parallel
beta S, of hot protons[m]. Hot protons alter the refrac-
tive index of EMIC waves at a given wave frequency
along latitude and thus modify resonance latitude!"*).
Polarization reversal of EMIC waves contributes signifi-
cantly to the pitch angle diffusion coefficients at low
pitch angles extending to the loss cone angle for various

parameter sets'*Y or of H' band-induced particles[lss].

111561

Wang et a revealed the important mechanism

for the loss of RC protons, that is being scattered by

EMIC waves'"”, and more important than the one due

[158,159]

to field line curvature , which mostly contributes to

ion precipitation in outer regions (L > 4-5). When the in-
tensity of EMIC waves is large, the cold protons (ions)
having low-energies can be energized by the EMIC
waves!' .

Intense EMIC and Magnetosonic (MS) waves were
simultaneously observed in the high-density regions and

[161]

disappeared in low-density regions The linear

growth rates estimated for both these two waves are in
good agreement with the observed wave frequency spec-
tral %!, Huang et all'® suggested that the complex un-
stable distribution in the velocity phase space of RC pro-
tons during the magnetic dip can trigger the simultane-
ous generation of EMIC and MS waves in the inner
magnetosphere.

The MS wave occurrence rate and amplitude B, in-
creases with enhanced geomagnetic activity and decreas-
ing magnetic latitude, and is strongest near the geomag-
netic equator within the 08:00-20:00 MLT sector, both
inside and outside the plasmapause, while the By, can
reach higher values inside the plasmapause than it does
outside the plasmapause as the Kp index increases!' "%,
This is different from the finding that narrowband fast
MS waves near the lower hybrid resonance frequency
were observed mainly outside the plasmapause[l“], with
a distinct boundary where energies of the low-harmonic
fast MS waves cannot penetrate inward in the time-fre-
quency domain"'®”. The electric/magnetic fields of MS
waves decrease/increase rapidly when propagating ac-
ross the plasmapause boundary layer from the outside!" .
However, Huang et al."® performed the first observa-
tions of high frequency MS waves with the frequencies
of harmonics higher than the lower hybrid frequency in
the Earth’s magnetosphere. Zou et al'” presented an
unusual event of MS waves with more than six harmon-
ics wavebands (n =1, 2, -+, 6). MS waves would be ful-
ly reflected near the cut-off point, since only evanescent
waves are allowed in the cut-off regions[m].

Sun er al'?' demonstrated that the background
plasma density variation can modulate the MS waves
and may play an important role in the spatial distribu-
tion of MS waves. Yu ez al.'” indicated the validation
of cold plasma approximation to estimate the electric
field components of MS waves from their magnetic
counterparts in the inner magnetosphere. Wu et al" 1
lustrated a scenario that off-equatorial proton ring distri-
butions could be a significant source of inner magneto-

1731 \which can first appear at a distant

[176]

sphere MS waves
region and then propagate to low L-shells

Gu et al""" indicated that the MS waves associat-
ed with the density drop can cause considerable pitch an-
gle and momentum diffusion for radiation belt electrons.

1[178]

Yuan et a provided ionospheric signature of RC
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ions scattered by MS waves. Zhou et all'’ suggested
that the electron butterfly distribution has important im-
plications for revealing the combined scattering of MS
wave-particle interactions. Fu and Ge!"*™ demonstrated
that the local acceleration of the RC protons by MS
waves contributes to the dynamic evolution of Earth’s
RC.

3 Outer Magnetosphere

Liu et al"®" presented the first observational evidence
for Magnetic Hole (MH) generation by electron mirror
instability behind a DF. The reconstructed results of Liu
et al."™ showed that the Electron-Scale Magnetic Holes
(ESMHs) may have complex cross-section shapes (e.g.,
saddle-like shapes) and comparable extension lengths in
the parallel and perpendicular directions to the magnetic
field, which are inconsistent with the cylinder simplifi-
cations in previous studies. Kinetic-Scale Magnetic
Holes (KSMHs) occur in the magnetosheath at rates far
above their occurrence in the solar wind"*". Huang et
al"™*" identified whistler waves at the boundary of an
ion scale magnetic hole, which should be locally excited
rather than propagated from other regions.

Whistler waves were also observed in the Earth’s
foreshock!"*™. There is a clear decreasing trend between
the size of foreshock cavitons and their velocity in the
solar wind frame!*". Magnetic reconnection could oc-
cur in the foreshock region and heat/accelerate the elec-

U871 A correlation between variations of

trons therein
magnetosheath hot ion fluxes and the transverse fluctua-
tions of the ULF waves is found by Cai and Wei'*,
Wang et al™ for the first time found that the drift-
bounce resonances played a major role in modulating the
energy of ions with energy dispersions, during the inter-
actions between the ions and the foreshock transient-
driven Pc5 ULF wave. There are more than two reso-
nant pitch angles at fixed energy, revealing a new drift-
bounce acceleration mechanism in the dayside outer
magnetosphere[wo].

A global MHD model is used by Lu et al™" to
study the energy transfer from solar wind to magneto-
sphere through magnetopause under radial IMFs, when
the dayside of the bow shock is located closer to the

Earth than the average“gz]. Wang et al' performed a

Chin. J. Space Sci. ZIAFAFFIR 2022, 42(4)
series of 3D global Magnetohydrodynamic (MHD) sim-
ulations and demonstrated the quantitative effects of the
IMF B, component on the locations and shapes of the
bow shock and magnetopause during northward IMF.
Shang et al'® demonstrated that the compressed mag-
netopause is sharply deflected at lunar distances in re-
sponse to the shock and solar wind V-Y effects. Man et
al' presented a comprehensive study of the intense
current structures at the dayside magnetopause. There
are obvious asymmetries on both flanks of the magne-
topause and the dawn side magnetopause is thicker and
more active!*". The statistical results reveal the impor-
tant role of Py, in electron dynamics inside the magne-
topause. The O density in the duskside magnetopause
boundary layer during the recovery phase is larger than
that during the expansion phase[m].

Zhu et al'™ provided key parameters to help un-
derstand how Hot Flow Anomalies (HFAs) disturb the
magnetosphere. The electron velocity within the elec-
tron jets is much larger than the local Alfven speed, im-
plying that these jets belong to super-Alfvenic flows!"””".
At MHD scales, the spectral indices of the magnetic-
field and velocity spectra present a positive and nega-
tive correlation with Alfven Mach number”"”. When the
IMF is southward and the Alfven Mach number of solar
wind is high, the bow shock indentation can be clearly
determined™"".

Guo et al.”™ for the first time demonstrated the be-
tatron-cooling effect beyond the Earth, which helps to
understand the electron dynamics in the planetary mag-
netosphere. The donut-shaped PADs of magnetic cavity
electrons were formed by the combined effects of beta-
tron cooling, radial transport, and pitch angle varia-
tions"”"”
the Magnetospheric Multiscale (MMS) constellation, Li

et al?*! developed a kinetic model which can utilize

. Based on the multipoint measurements from

magnetic cavity observations by one MMS spacecraft to
predict measurements from a second/third spacecraft.
Liu et al.** reported evidence of evolution of an identi-
fied microscale (i.e., electron gyro-scale) magnetic cavi-
ty structure and reveal within it a unique energization
process that does not adhere to prevailing adiabatic in-
variance theory. Observations from the MMS constella-
tion"”" have shown the existence of helical magnetic
cavities characterized by the presence of azimuthal mag-
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netic fields, which could not be reconstructed by the pre-
vious models.

Non-gyrotropic electron distributions can be gener-
ated by the finite electron gyration at an electron-scale
boundary, and the electric field normal to this boundary
usually contributes to the electron acceleration to make a
gyrotropic distributions more apparent”””. The magne-
tic field line curvature in the turbulent magnetosheath
plasma exhibits two power-law distributions: the
low/large curvature follows the scaling of %33/
#~2162% Three kinds of PADs commonly observed in
the magnetotail, Pancake, Rolling pin, and Cigar distri-
butions, are formed in sequence during the propagation
of the DFs”"!. These electron pitch-angle distributions,
as well as butterfly, are crucial to understanding elec-
tron dynamics in the magnetotail. For the first time, Liu

A presented that they couldn’t find any statistical

eta
correlation between magnetic structures and the rolling-
pin distributions, different from previous studies sug-
gesting a close connection between them.

Current sheets with widths of several ion inertial
lengths are produced in the magnetosheath after the up-
stream large-amplitude electromagnetic waves penetrate
through the shock and are then compressed in down-
stream®™' ', Yang et al.”'"™ shed new insight on the mech-
anism for electrostatic wave excitations and possible
Electromagnetic wave emissions at young coronal mass
ejection-driven shocks in the near-Sun solar wind. Wang

A suggested that the ion-scale magnetic peaks are

eta
coherent structures associated with energy dissipation
and electron heating in the magnetosheath. Magnetic re-
connection can play a significant role for the energy dis-
sipation in these magnetic peaks, which have been inves-
tigated by Lu et al. %1 in the downstream of a quasi-per-

pendicular shock. Yang et al?™

provided direct evi-
dence of shock self-reformation, and also shed light on
energy dissipation and energetic particle acceleration at
collisionless shocks throughout the universe.

Bipolar current densities exist in the cross section
of two hole-like mirror-mode structures, referred to as
Magnetic Dips (MDS)[Zlé]. Yao et al”'" identified four
different types of MDs: “frozen-in,”
“contracting,” and “stable-propagating.” MDs and the
injected protons perform good agreement[m]. The posi-

tive slope is responsible for the generation of high-fre-

13 . ”
expanding,

quency electrostatic wave in the magnetic dip ahead of

the DF™""),
Wei et al.

tense dB/dt (and dH/df) variations are associated with a

(2201 reported that the wide-range of in-

large-scale, substorm current system, driven by multiple
Bursty Bulk Flows (BBFs). Zhang et al ! suggested
that the strong/weak vorticity field of the plasma bulk
(convective) velocity within the BBF corresponds to the
ion flux enhancement at high/ medium energy (above
10 keV/2 -5 keV). Zhang et al P proposed a possible
mechanism on the BBF deceleration, i.e., “collision”
with the tailward flow. Inside the BBFs, the strongest
earthward electron flows are observed in the ion flow
boundary, away from the current sheet center’”*”, Zhang
et al”*" revealed that the cross-tail current sheet at the
DF is rolled up, which could decelerate BBF and change
the flow structure.

4 Magnetic Reconnection

Wang et al P! provided the first dynamic picture of
magnetic reconnection, demonstrating that the magnetic
reconnection in space can develop rapidly during tens of
milliseconds. The magnetotail reconnection is possible
to occur when the dawnside tail lobe contacts with the
duskside tail lobe by a sudden increase of the IMF B,
component[226] with significant By[m]. Huang et al P
demonstrated that the asymmetric upstream plasma con-
ditions during magnetic reconnection can be studied in
the laboratory.

When the IMF clock angle is large, the flux ropes
can coalesce and form new ones with larger diam-
eters™). Man et al”” showed a typical ion-scale flux
rope at the subsolar magnetopause. The energetic elec-
tron fluxes inside it were larger than those outside!".
Chen et al.** presented the first observation of a Mag-
netic Flux Rope (MFR) inside an Electron Diffusion Re-
gion (EDR). The subion-scale MFRs host more intense
plasma activity than the ion-scale MFR™, Besides us-
ing four spacecraft with separation scale much smaller
than the flux ropes, current density, curvature radius of
the magnetic field, and the transverse size of flux ropes
can also be inferred by a single-point method™**.

Man et al*> reported an MMS observation of
magnetic reconnection occurring at the edge of a large-
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scale (2 R.) MFR. Zhong et al P presented the first ob-
servational evidence for localized secondary reconnec-
tion at the separatrix surface of an MFR. Zhou ez al.”*”
presented the first evidence that secondary reconnec-
tions occur in the turbulent outflow driven by a primary
reconnection in the Earth’s magnetotail. Wang et al?®
presented direct evidence of secondary reconnection in
the filamentary currents, which are plentiful in both pri-
mary flux ropes and the secondary flux ropes” ). Two
re-reconnection processes increase the plasma energy
and the magnetic flux connected to the Earth, which fa-
vors particle and energy transport toward the Earth’s
magnetosphere’”*”.

The particle acceleration processes around magne-
totail DFs were reviewed by Fu et al?*. As found a DF
structure behind which energetic-electron fluxes are

421 explained both the pres-

modulated by MS waves
ence and absence of energetic electrons behind DFs. Liu
et al”™ indicated that energy budgets at the DFs are
dominated by electron physics, rather than ion dynamics
suggested by previous studies. Betatron acceleration
dominates at the DF*Y. Only Fermi mechanism is con-
tributory to suprathermal electron acceleration and pre-
sented a new explanation for its formation**".

Ma et al.?*"! suggested that plasma heating or tem-
perature enhancements are related to both the flow vor-
ticity/shear and current density, but more strongly with
flow vorticity/shear. By analyzing the velocity of the
electrons, Jiang et al.”*" found the first observation of
electron vortex at the DF as far as they know. However,
magnetic field perturbations induced by this electron
vorticity are not signiﬁcant[24g].

The curvature force continuously accelerates the
DF moving outward, while the thermal pressure gradi-
ent force hinders the movement of the DF*". Wang et
al?” suggested that the downstream magnetic energies
of transient magnetic reconnections in the midtail may
be transported to the near-Earth region by one DF event
after another. Xu ef al.'”>'"! found an intense current at the
Anti-Dipolarization Fronts (ADFs), with the parallel cur-
rent carried by a fast electron jet and the perpendicular
current contributed by ion flow.

Electron current layer in the diffusion region splits
into two sublayers at the electron inertial scale, not long
after the triggering of reconnection”>?. Zhong et al??

Chin. J. Space Sci. ZIAFAFFIR 2022, 42(4)
reported a long EDR that extended at least 20 ion iner-
tial lengths downstream of an X line at the Earth’s mag-
netopause, suggesting that the EDR, where the reconnec-
tion electric field is directly proportional to the electron
outflow speed[254], probably plays more important roles
in the energy conversion in magnetic reconnection than
previously thought. Bai et al > suggested that the
earthward moving flux rope was generated inside the
HFA, implying that magnetic reconnection may have oc-
curred inside the HFA.

Cold ions of ionospheric origin are widely ob-
served in the lobe region of Earth’s magnetotail and can
enter the ion jet region after magnetic reconnection be-
ing triggered in the magnetotail. The cold-ion beams in-
side the explored jet could be accelerated by the Hall
electric field in the cold ion diffusion region and the
shrinking magnetic field lines through the Fermi
effect’™. The large-amplitude unipolar can fill the en-
tire EDR in the magnetosheath reconnection and thus
dominates electron acceleration therein™’\. The gy-
rotropic effect is more important than the nongyrotropic
effect for the wviscous dissipation in the diffusion
region[m].

A typical ion velocity distribution along the separa-
trix is found by Huang et al ! two counter-streaming
populations in the perpendicular direction, with another
two populations accelerated into distinct energy levels in
the parallel direction. Chen et al.”*” demonstrated that
patchy magnetic reconnection has the potential to pre-
serve the ion-to-electron temperature ratio under certain
conditions. Wu ez al.**" reported the D-shaped velocity
distribution of O ions produced by the time-of-flight ef-
fect in the magnetotail reconnection.

Huang et al P quantitatively model the reduction
of the reconnection rate and the maximum outflow speed
observed in the short X-line limit. The distorted ion ve-
locity distributions lead to a bipolar reversal in an off-
diagonal element of the pressure tensor across the X-
line, supporting an enhancement of the ion-scale recon-

[263]

nection electric field™™. But recent observations of

[264]

Huang et al. proposed a new reconnection model:

electron-only without ion coupling in an electron-scale
current sheet. The spontaneous onset of collisionless
magnetic reconnection is controlled by electron kine-

[265]

tics” . However, magnetotail reconnection can start
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from electron reconnection in the presence of a strong
external driver, then develops into ion reconnec-
tion****"], Tang et al **® offered an insight into the Hall
effect in collisionless magnetic reconnection. The Hall
electric field could control the form of reconnection,
producing either electron-only reconnection or tradition-
al reconnection™*”’,

Li et al.””" reported large-amplitude electron Bern-
stein waves at the electron-scale boundary of the hall
current reversal. The flux pileup region hosts whistler
waves because of the pancake distribution of electrons,
whereas the DF boundary hosts lower hybrid drift waves
due to the strong density and magnetic gradients statisti-

cally[27 g

. On the magnetosphere side of reconnection,
whistler waves are highly centered around the 1/2 elec-
tron cyclotron frequency w7, On the magnetosheath
side of reconnection, whistler waves are mainly below
1/2 w, and peaked around 0.2 w,. Yu et al?™ reported
the whistler wave with a very narrow frequency band
just above 1/2w, in the separatrix region, which was ac-

1.2 showed

companied with the ECH waves. Tang et a
that the lower hybrid waves can also be found at the
magnetosheath separatrix in asymmetric guide field re-
connection.

Li et al.”” reported for the first time that the Up-
per-Hybrid (UH) waves were observed on both sides of
the X-line and may play an important role in controlling
the reconnection rate. Shu e al.”’® concluded that the
reconnection rate can only represent the energy conver-
sion at the reconnection site but not at the reconnection
fronts for non-steady state magnetic reconnection. Yi et
al?" examined the energy conversion in multiple X-
line reconnection and found that the magnetic energy re-
leases predominantly through primary islands and sec-
ond at X-lines.

Two-dimensional Particle-in-Cell (PIC) simulations
were performed by Chang et al”™ to investigate the
characteristics of Electrostatic Solitary Waves (ESWs) in
asymmetric magnetic reconnection. Fu et al?” report-
ed the first measurements of an electrostatic ESW’s inte-
rior in a magnetotail reconnection jet and challenged the
conventional belief that ESWs are efficient at particle
acceleration. Using high-resolution MMS data, Guo et
al?* reported the observations of broadband electro-

static waves including electrostatic solitary waves and

electron cyclotron waves associated with parallel elec-
tron temperature anisotropy (1 > 7., ) behind a DF.
Yu et al”*" observed unique electron thermaliza-
tion and associated electrostatic turbulence inside a spe-
cial Dipolarizing Flux Tube (DFT) hosting both hot-ten-
uous and cold-dense electrons. While one-dimensional
simulation helped Yu et al. 2821 to reproduce two types of
waveforms similar to those observed in the EDR, imply-
ing that these electrostatic waves were generated by the
bump-on-tail instabilities. Tang er al.”*" suggested that
the electrostatic waves generated by the fast-growing
electron two-stream instability can contribute to the
rapid isotropization of electron distributions in the re-
connection exhaust, indicating that wave-particle inter-

actions play an important role in electron dynamics.

5 Planetary Magnetosphere

Lai e al”*" studied the flux-return process, improving
our understanding of the magnetic flux circulation in
steady state at Saturn. Slow, global-scale flows resulting

from transient noon-to-midnight electric fields™*),

which are associated with Saturnian zebra stripe[286], are
ultimately responsible for the bulk of the highest energy
electrons trapped at Saturn. Using simultaneous mea-
surements of the aurora, particles, magnetic fields, and
energetic neutral atoms, Guo et al”" revealed that a
chain of paired currents is formed in Saturn's magneto-
sphere, which generates separated auroral patches.

Pan et al”® showed a global picture of low-fre-

1.2%) performed a statisti-

quency waves while Long ef a
cal analysis of ECH wave spatial distribution in Saturn’s
magnetosphere. Although a large anisotropy is general-
ly in favor of linear and nonlinear whistler-mode chorus
wave growth in Saturn’s inner magnetosphere, the non-
linear wave growth for a small anisotropy can still be
generated[zgo]. The occurrence frequency of Saturn radia-
tion belt transient extensions indicates a possible role for
corotating integration regionsml]. At 3.5 < L <6, the
PADs peak near 90° in Saturn’s magnetosphere, while at
2.5 <L <3.5, the PADs transform to butterfly distribu-
tions'”*.

For the first time, Xu e al.””” found that the mag-
netic reconnection could also occur in the dayside mag-

netosphere of Saturn. Direct observations of plasmoids
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in Saturn's dayside magnetodisc were reported for the

first time™,

A statistical model is constructed by Liu et al?”,
providing us with a starting point for understanding the
dynamics of the whole Jupiter's magnetosphere. High-
resolution global simulations of Zhang et al”** showed
that the reconnection rate at the interface between the in-
terplanetary and Jovian magnetic fields is too slow to
generate a magnetically open, Earth-like polar cap.
Wang et al””" demonstrated the capabilities of their im-
proved heliospheric MHD model in the prediction of the
large-scale structures of the solar wind in the inner helio-
sphere of planets in the solar system such as Earth and
Jupiter. Guo et al. [29%] suggested that the evolution of the
double-arc structure of Jupiter is likely a consequence of
the non-steady progress of magnetic reconnection. Si-
multaneous in situ satellite and space-based telescope
Jupiter observations showed surprising similarities to
terrestrial ion aurora™”. Yao er al.”* showed six clear
examples displaying both Jupiter auroral dawn storms
and auroral injection signatures, which could exist dur-
ing intervals of either relatively low or high auroral ac-
tivity. Wang et al P presented a new method combin-
ing Juno multi-instrument data (MAG, JADE, JEDI,
UVS, JIRAM and Waves) and modeling tools to esti-
mate these key parameters along Juno’s trajectories.

The draping of IMF penetrates down to low alti-
tudes and governs dynamics of the Martian iono-

B9 Shan et al”™ demonstrated that periodic

sphere
Martian shocks can perform the same functions as a sin-
gle supercritical shock in a high-speed flow. Shan et

alP™ sinu-

showed an example of small-amplitude,
soidal MS waves at the proton gyro frequency upstream
of the Martian bow shock. Using global MHD simula-
tions, Wang et alP*™ constructed a 3 D parametric Mar-
tian bow shock model that employs a generalized conic
section function defined by seven parameters. The ther-
mal pressure at the Martian Magnetic Pileup Boundary
(MPB) plays a significant role in the compressed mag-

netic field™*".

Small-scale Linear Magnetic Holes
(LMHs) are ubiquitous in the Martian magnetosheath
with an occurrence rate of approximately 1.5 events per
hour™”. Gao et al”*™ presented a new Spherical Har-
monic (SH) model of the crustal magnetic field of Mars,

finding that small-scale fields at low altitudes were un-

Chin. J. Space Sci. ZIAFAFFIR 2022, 42(4)
derestimated by most previous models. The Chinese
Mars ROVER Fluxgate Magnetometers (RoOMAG) will
implement the first mobile magnetic field measurements
on the surface of Mars™"”),

Zhang et alP'" suggested that the plasma clouds of
Mars might be the product of heating due to solar wind
precipitation along the open field lines, generated by
magnetic reconnection at the dayside Martian-induced
magnetopause[3ll]. Huang et alP"™ presented the in situ
detection of KSMHs in the Martian magnetosheath us-
ing Mars Atmosphere and Volatile EvolutioN
(MAYVEN) for the first time. Zou et alP"! described the
scientific objectives and payloads of Tianwen-1, China's
first exploration mission to Mars. The crustal magnetic
fields can withstand the solar wind flows and effectively
[314]

trap heavy ions below 1000 km" ", and significantly at-
tenuate the ion ionospheric motions and raise the flux of
returning ions”", Nearly 30% of the available nightside
suprathermal electron spectra show clear photoelectron
signatures in the Martian ionosphere[316].

Sun et al.®'"! reviewed the research of Mercury’s
magnetosphere in the Post-MESSENGER era. Zhong et

(18] suggested that during extreme solar wind condi-

al.
tions multiple X-line reconnections may dominate the
tail reconnection process and control the global dynam-

ics of Mercury’s magnetosphere. Jang et al P

suggest-
ed that the near-cusp region of Mercury may trap ener-
getic particles under particular conditions. Similar to
Earth’s magnetotail, there are two flapping types exis-
tent in Mercury’s magnetotail, one is the kink-like flap-
ping that can propagate as traveling waves, and the oth-
er one is the steady flapping that does not propagatemo].
The proton density, pressure, and energy spectral index
kappa were higher on the dawnside plasma sheet of Mer-
cury than on the duskside™"!. A new Mercury magne-
topause model gives a closed magnetopause for the
nightside in most cases, and its flaring decreases with
the contraction of the magnetosphere. Zhong et alP*
concluded that Mercury’s magnetopause is a natural
plasma laboratory to study flux rope dynamics and evo-
lution for the upcoming Bepi-Colombo mission. Spec-
tral indices at MHD scales vary from about —5/3 in the
near-Mercury solar wind (possibly the foreshock) to
about —1.3 within the magnetosheath close to bow shock

of Mercury[m].
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With 32 Hz magnetic field data of Venus Express
from May 2006 to August 2012, the global spatial distri-
butions of 1 Hz waves in the near-Venusian space were
presented by Xiao et al’*". The dayside Venusian in-
duced magnetosphere boundary distance increases with
solar activity, but decreases with increasing Py, and

[325]

IMF cone angle”"". The statistical results of Xiao et

al.?*!

suggested that the Venusian bow shock tends to
modify the upstream spectra flatter to 1/f noise in the
MHD regime and steeper to turbulence in the kinetic
regime after the magnetic fluctuations crossing the bow
shock. In the near-Venusian space, an energy cascade
can be developed at the boundary between magne-
tosheath and wake"™’\. In terms of the spectral scaling
features of Venus magnetic fluctuations, the dayside-
nightside shock crossings exhibit a clear asymmetry[m].
Gao et al.P* reported evidence of crossing the ion dif-
fusion region of magnetic reconnection based on two
cases recorded by Venus Express in the Venusian mag-
netotail.

Zhang et al?*” demonstrated that the solar-wind
ions, reflected over the dayside lunar magnetic anoma-
lies, have produced lunar wake magnetic and plasma
asymmetries and periodical modulations. Behind the lu-
nar terminator, the wake field reduction is also asymme-

trict**!,

6 Theory and Technique

Dunlop et alP? reviewed the range of applications and
use of the curlometer technique, initially developed to
analyze Cluster multi-spacecraft magnetic field data, but
more recently adapted to other 2—5 spacecraft configura-
tions. The normal field analysis method was presented
by Shen et al" to determine the geometrical configu-
rations of boundary surfaces in the space environment,
based on multiple spacecraft measurements. Shen et
al?*! presented a novel algorithm that can estimate the
quadratic magnetic gradient as well as the complete geo-
metrical features of magnetic field lines, and another one
for estimating both the linear and quadratic gradients of
physical quantities” . Zhu e al.”**" gave a general de-
scription of the magnetometer onboard the Low Orbit
Pearl Satellite.

Space plasmas are composed of charged particles

that play a key role in electromagnetic dynamics. Three
schemes for measuring charge densities in space are pre-
sented in Ref. [337]. Li et alP*™ reviewed some of the
key results obtained from the wake technique helping us
to understand how cold ionospheric outflow varies.
Huang et alP?* applied the algebraic reconstruction
technique and the minimization of the image total varia-
tion method to reconstruct plasmaspheric He  density
from simulated EUV images. Wang et al?* demon-
strated that the plasma flows at small scales are indeed
linear, and thus the First-Order Taylor Expansion
(FOTE) method can be applied to such flow fields. Fu et
alP*" reviewed and compared the methods for finding
magnetic nulls and reconstructing field topology. Tian et
alP* developed a new Grad-Shafranov solver which
was applied to reconstruct a Pc5 compressional wave

1B suggested the important role of the

event. Yu ef a
linear dispersion relation in the second-harmonic genera-
tion.

Li et alP* developed a method which can effec-
tively predict the geomagnetic disturbances during geo-
magnetic storms. The physical-based model in Zhang et

[345]

al. is more applicable than the persistence model in

prediction of GICs at low-latitude power grids during

storms. Xu et al.?*"

used the Bagging ensemble-learn-
ing algorithm to predict the Dst index 1-6 h in advance.
Using magnetic field observations from Van Allen
Probe-A (VAP-A), Yang and Wang[w] evaluated the
performances of 13 widely used external magnetic field
models in the Earth’s outer radiation belt region in de-
tail. The previous algorithm has been modified by Yu et
al®*™ to be capable of producing typical ripples in the
electron diffusion coefficient maps, and could be ap-
plied to RC protons.

A lot of neural network models were developed to
predict the global dynamic variation of the plasmapause

location™*”

[350]

, average daily flux of relativistic elec-
trons” -, and the electron number fluxes in the central
plasma sheet™'!. Radiation belt electron fluxes can also
be simulated by an analytic model”>” or a three-dimen-
sional (3D) assimilation model”**),

Guo et al.”>! proposed to use the Moon as a plat-
form to obtain a global view of Earth’s magnetosphere
by a lunar-based soft X-ray imager. Sun et al”* intro-

duced a new technique which can find the optimum
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match of tangent directions derived from the X-ray im-

age and the parameterized magnetopause function. With

reasonable assumptions, the large-scale cusp features

can be clearly revealed by analyzing X-ray images

[356]
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