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Abstract

Social networks’ rapid information dissemination, massive user bases, and diverse content make
them vulnerable to text steganography—a covert technique embedding secret messages into texts
undetected, threatening personal privacy and network security. While text steganalysis serves as
a critical defense mechanism, existing datasets for this task suffer from critical limitations in-
cluding missing social graphs, insufficient text attributes, mismatched sample distributions, and
limited data scale, hindering research progress. To address these gaps, this paper proposes a
novel methodology for constructing a social network text steganalysis dataset via meta path-
constrained local group discovery and sample distribution dynamic regulation. It utilizes a local
group discovery algorithm constrained by “user-tweet-hashtag” meta path to sample special user
groups with potential covert communication intentions. In addition, a three-dimensional dynamic
regulation strategy is designed to reshape the original tweets of the special users by adjusting the
ratio, type, and distribution of steganographic texts, simulating complex and diverse covert com-
munication patterns. Finally, a dataset is constructed with rich social graph information, namely
SN-stego. It conforms to the characteristics of text fragmentation and steganography sparsity in
real social networks, and simulates various social network text steganography analysis scenarios
with complex and diverse sample distributions. Statistical analyses and empirical evaluations
demonstrate that SN-stego exhibits substantial advancements in data scale, entity diversity, and
scenario adaptability. The proposed method provides solid technical support for expanding and
deepening the research on text steganalysis in social networks.
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1. Introduction

In the era of the information revolution, social networks have become an indispensable part
of daily life. Not only does it change people’s communication patterns, it also plays a crucial
role in information dissemination, public opinion formation, commercial marketing, and other
aspects. However, as social networks proliferate, information security challenges have surfaced.
Text steganography[1, 2, 3, 4, 5], a technique that conceals secret messages within seemingly
ordinary texts, has emerged as a critical tool for attackers to conduct covert communications and
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disseminate malicious information. Accurate analysis and identification of steganographic text
(which is usually termed “stego”) in social networks to detect and mitigate potential threats are of
paramount importance to safeguard cyberspace security and social stability. Consequently, text
steganalysis[7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18] has emerged as a key research direction
within the field of information security. It aims to detect hidden secret messages embedded
within ordinary texts. However, the construction of an accurate and robust text steganalysis
model largely depends on the quality and diversity of the training dataset. Although there are
already some public text steganalysis datasets, such as T-Steg[9], TStego-THU[19], and Stego-
Sandbox[12], etc., these datasets do not authentically reflect the complexity and diversity of real-
world social network environments, thus constraining advances in text steganalysis technology.

Specifically, texts in the T-Steg[9] are generated by language models with fixed formats,
ensuring data controllability and consistency to some extent but lacking the complexity and di-
versity of natural language in real social networks. Steganalysis algorithms trained on T-Steg
often struggle to adapt to the real-world complexity, resulting in poor detection performance.
The TStego-THU[19] significantly improves in scale and diversity compared to T-Steg, incor-
porating substantial real-world text data (e.g., Twitter[20], IMDB[21]). However, its isolated
texts neglect contextual links (via retweets, replies, quotes) crucial for understanding meaning
and propagation paths, limiting text steganalysis algorithms to isolated text semantic features.
Stego-Sandbox[12] partially addresses TStego-THU’s contextual gaps by considering tweet in-
teractions, yet it still contains only text entities with limited inter text relationships, lacking
exploration of diverse social network entities (e.g., users, hashtags). These entities and relation-
ships play vital roles in covert communication. For example, users are the sender and receiver
of covert communication, and hashtags tags can be used to establish stego propagation chains[?
]. Therefore, these datasets ignore the rich entities and relationships in social networks are im-
perfect. Moreover, stegos in real social networks often spread within specific user groups with
similar behaviors or social ties. Existing datasets lack targeted design for this, hindering text
steganalysis techniques from leveraging group-specific steganographic traits for detection.

Given the limitations of current mainstream text steganalysis datasets, it is crucial to build
a dataset that aligns with real social network patterns. This supports the development and eval-
uation of text steganalysis models in sparse steganographic information and fragmented text
detection scenarios. Theoretically, it reflects fragmented text features and sparse steganographic
information distributions in social networks, incorporating rich contextual and entity-relationship
data. It provides a more comprehensive feature type for model training of text steganalysis in
social networks, as well as a more accurate and reliable experimental verification platform, en-
hancing accuracy and robustness to advance text steganalysis. Practically, it supports cyberspace
security regulators, protecting user privacy and information security, preventing malicious infor-
mation spread, improving cyberspace governance, and maintaining social stability. Thus, this
research holds both theoretical and practical significance.

However, constructing a dataset that can conform to the real schema of social networks
and support text steganalysis research in scenarios where the steganography information is ex-
tremely sparse and the texts are extremely fragmented faces dual challenges: (1) capture of sparse
steganographic signals. Stegos typically spread among a small number of special user groups,
necessitating local group discovery algorithms for large-scale networks without explicit selec-
tion bias. (2) Simulation gaps of steganographic behavior. There is a lack of research on the
behavior patterns of users posting stego. Therefore, a large-scale and diverse dataset is needed to
cover different covert communication behavior patterns, thereby simulating multi-type text ste-
ganalysis scenarios. To address the above challenges, this paper proposes a dataset construction
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method for social network text steganalysis based on local group discovery and dynamic stego
distribution regulation. Using Twitter as a case study, specifically, a meta path-constrained local
group discovery algorithm is employed to sample user clusters with latent covert communication
intentions. Subsequently, these users’ original tweets are dynamically reshaped by adjusting the
sparsity and fragmentation of stegos along three axes: ratio, type, and distribution. This en-
ables the emulation of multifaceted steganalysis scenarios, thereby ensuring dataset realism and
robustness to facilitate the development and evaluation of advanced text steganalysis models in
social networks.

2. The Proposed Approach

In social networks, stego texts typically propagate within covert communication clusters
(e.g., military operations or business acquisitions among decision makers). Members in covert
communication groups establish communication chains through seemingly ordinary social be-
haviors such as like, retweet, or discuss hashtags (metadata tags starting with “#”), enabling the
dissemination of secret information. Among them, excessive direct interactions such as likes
and retweet are likely to catch the attention of regulators. Relatively speaking, the construction
method of hashtags is flexible. They can be either regular words or combinations of text such as
abbreviations and numerical symbols (such as “#YYDS”, “#x4wl”). At the same time, a large
number of hashtags can be carried in tweets, and some social networking platforms (such as
Twitter) have no limit on the number of hashtags when searching for them. Their adaptability
and ease of use enable users to establish indirect, stealthy interactions[22]. Thus, in constructing
the dataset, we first sample local groups using the “user-tweet-hashtag” meta path. Then, we de-
ploy stegos through a three-dimensional (3D) dynamic regulation strategy to simulate complex
covert scenarios. Finally, we build a large-scale dataset for text steganalysis in social networks,
named SN-Stego, which aligns with the characteristics of real social network schema and allows
flexible control over the sparsity and fragmentation of stego.

2.1. Data Preparation
Research indicates that text content on the Twitter platform exhibits greater randomness and

complexity[14]. Text steganography causes less interference to its feature distribution, making
text steganalysis more challenging on Twitter. Therefore, in this paper, we use Twitter as a
research case to illustrate the proposed dataset construction method. Before constructing SN-
Stego, two preparatory tasks are required. The first involves collecting large-scale data from
the Twitter network platform to build a heterogeneous information network (HIN). The second
entails generating a stego library using text steganography algorithms and capacity as parameters.

2.1.1. Heterogeneous Information Network
Feng et al.[23] introduced the TwiBot-22 dataset in 2023. TwiBot-22 is a meticulously con-

structed, large-scale, high-quality Twitter bot detection dataset with complete graph structures.
It contains extensive user and tweet data, ensuring accuracy and reliability through rigorous an-
notation and expert evaluation. Using TwiBot-22 as a data foundation enables leveraging its
large-scale, authentic source data and HIN structure. This facilitates the construction of more
representative and generalizable text steganalysis datasets. To clarify the HIN data basis, we
briefly describe TwiBot-22’s collection process. It primarily consists of two stages.

Phase 1: User Network Collection. This phase focuses on constructing the user network.
Initially, a breadth-first search (BFS) approach is employed, starting from a selected “seed user”
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Table 1: User metadata adopted in diversity-aware sampling[23].

Metadata Name Description Type

active days days between user creation time and collected time numerical
following count number of user followings numerical
followers count number of user followers numerical

tweet count number of user tweets numerical
listed count number of user lists numerical

verified whether the user is verified or not true-or-false
homepage URL whether user has URLs in homepage or not true-or-false

Figure 1: Heterogeneous graph of Twitter social network (left) and the HIN schema (right).

(@NeurIPSConf). Using the Twitter API to retrieve its 1,000 followers and 1,000 followees
for BFS expansion. In addition, two diversity-aware strategies are applied, namely distribution
diversity and value diversity, to optimize BFS-based user expansion. Thus, it ensures broader
coverage of user types, making the collected users more representative. This phase constructs a
homogeneous graph GU = (VU , EF), where VU represents user nodes and EF denotes follower
relationships. Table 1 describes the user metadata used in diversity-aware sampling.

Distribution diversity: Given user metadata, different types of users fall into the metadata
distribution differently. The goal of distribution diversity is to sample users from the top, middle,
and bottom of the distribution. For numerical metadata, select k users with the highest values, k
with the lowest, and k randomly from the rest. For true-or-false metadata, choose k users with
“true” values and k with “false” values.

Value diversity: This sampling strategy prioritizes neighbors with metadata values differing
significantly from the current user. For numerical metadata, the sampling probability of neighbor
v ∈ N(u) is defined as p(v) ∝ |unum − vnum|, where unum is the user’s metadata value. For true-or-
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Table 2: Entities in the TwiBot-22 heterogeneous graph[23].

Entity Name Description

User Users are the most important entity on Twittersphere.
Tweet Users post tweets to share their thoughts and interact with other users.
List A list is curated feeds from selected users that allow you to listen to relevant

discussions or influencers.
Hashtag A hashtag is a metadata tag that is prefaced by “#”. It is used to link tweets

with the same theme together.

Table 3: Relations in the TwiBot-22 heterogeneous graph[23].

Relation Source Entity Target Entity Description

followers user user source user follows target user
following user user source user is followed by target user

post user tweet user posts tweet
pinned user tweet user pins tweet

like user tweet user likes tweet
mentioned tweet user tweet mentions user
retweeted tweet tweet source tweet retweets target tweet

quoted tweet tweet source tweet quotes target tweet with comments
reply tweet tweet source tweet replies to target tweet
own user list user is the creator of list

membership list user user is a member of list
followed list user user follows list
contain list tweet list contains tweet
discuss tweet hashtag tweet discussed hashtag

false metadata, k users are selected from the opposite class.
Phase 2: Heterogeneous graph construction. Upon the user network collected in Phase

1, Phase 2 primarily collects these users’ tweets, associated lists, hashtags, and 12 additional
relations between users and these new entities. For user entities, their metadata, including tweets,
lists, and follow relationships, are gathered. For tweet entities, detailed information is collected,
encompassing retweets, quoted tweets, replies, and mentioned users. Additionally, all hashtags in
listed tweets are extracted, and the Twitter API is used to search for more tweets related to these
topics. As a result, TwiBot-22 forms a Twitter HIN comprising 4 types of entities (92,932,326
nodes) and 14 types of relations (170,185,937 edges). An instance of HIN for modeling Twitter
social network is illustrated on the left side of Figure 1, while the right side presents the HIN
schema, depicting node relationships. Detailed entities (nodes) and relations (edges) are shown
in Table 2 and Table 3, respectively.

2.1.2. Stego Library
Text steganography methods based on automatic text generation can automatically generate a

stego based on confidential information without requiring a carrier text (which is usually termed
“cover”). These methods exhibit strong concealment and high embedding capacity, making them
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Figure 2: A detailed explanation of RNN-Stega[2].

the most widely used text steganography techniques. In this paper, to ensure the diversity of ste-
gos, we employ three advanced generative text steganography algorithms and five types of em-
bedding capacities as parameters. And RNN-Stega, a widely used generative text steganography
model in the field of text steganalysis proposed by Yang et al. [2], is utilized to generate stegos.
The detailed explanation of RNN-Stega is illustrated in Figure 2.

In the generation process, we first preprocess the Twitter texts collected in subsection 2.1.1
and use them as a corpus to train RNN-Stego. RNN-Stega employs Long Short-Term Memory
(LSTM)[24] model to learn statistical features of covers. Then, we employ three widely used
coding methods, namely Arithmetic Coding (AC)[1], Variable-Length Coding (VLC)[2], and
Adaptive Dynamic Grouping (ADG)[3], to encode the probability distribution of words. Among
them, AC[1] employs the reverse sequence of arithmetic coding, a data compression method used
to encode strings of elements with known probability distributions. It first selects a (uniformly
sampled) message and then maps the message to a sequence (of words), achieving informa-
tion hiding while minimizing the difference in statistical characteristic distributions between the
stegos and covers. VLC[2] employs huffman coding to map the secret message to conditional
probabilities, reducing the discrepancy between the stegos and the covers. ADG[3] divides con-
ditional probabilities into several buckets that are as equal and summed as possible, which has
been mathematically proven to achieve the theoretical minimum difference. After encoding the
probability distribution of words, RNN-Stega selects the corresponding word according to the
secret bitstream, so as to achieve the purpose of hiding information. Additionally, we vary the
embedding capacity by adjusting the embedded bits per word (bpw, which is set to 1, 2, 3, 4 and
5 respectively). This produces stegos with different lengths and secret information distributions.
We generated 7,900 stegos respectively for each coding algorithm and embedding capacity. Ulti-
mately, a stego library containing three steganographic algorithms and five embedding capacities
is obtained:

Dstego =
⋃

a∈{AC,VLC,ADG}
c∈[1,5]

S (a, c) (1)

where S (a, c) represents a stego generated by using the steganographic algorithm parameter
a ∈ {AC, ADG,VLC} and the embedding capacity parameter c ∈ [1, 5]. Table 4 presents the
average lengths of the stegos (SL) generated under different steganographic algorithms (SA) and
embedding capacities (bpw) in the stego library Dstego.
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Table 4: The average length of various types of stegos in Dstego.

SA

SL bpw
1 2 3 4 5 6.93

AC 6.81 8.91 11.25 12.88 14.36
/VLC 5.88 7.55 10.34 12.75 13.98

ADG / 12.33

2.2. Local Group Discovery Based On Meta Path Constraint
According to the phenomenon of community aggregation in social networks, covert commu-

nication groups often exhibit similar behavioral patterns or social relationships. As one of the
essential tools in social network analysis, meta paths can reveal complex associations between
different entities. Therefore, this subsection proposes a local group discovery method based on
meta path constraint to sample special user groups with potential covert communication intent.
First, we introduce several fundamental concepts.

Definition 1: HIN.[25] HIN is represented as a directed graph G = (V, E, ϕ, ψ), where V is
the node set, E is the edge set, ϕ : V → N maps nodes to types, and ψ : E → R maps edges to
relation types, with |N | + |R| > 2. Each node v ∈ V belongs to a type ϕ(v) ∈ N, and each edge
e ∈ E belongs to a relation type ψ(e) ∈ R.

Definition 2: Network Schema.[25] Given the HIN G = (V, E, ϕ, ψ) with ϕ : VßN and
ψ : EßR, its network schema is S G = (N,R), which describes how node types in N are connected
via relation types in R. For example, the left of Figure 1 illustrates an HIN instance of the Twitter
social network, while the right of Figure 1 depicts its schema with four node types and their
relations.

Definition 3: Meta path.[25] Meta path P is a path defined on S G, noted as P = (N1
R1
−−→

N2
R2
−−→ . . .

RL
−−→ NL+1), where L is the length of meta path, Ni ∈ N and 1 ≤ i ≤ L + 1, R j ∈ R and

1 ≤ j ≤ L. For brevity, P is usually denoted as a sequence of node types: P = (N1,N2, . . . ,NL+1).
If there exists a path p = (u1, . . . , uL) in S G, and p satisfies ϕ(ui) = Ni(1 ≤ i ≤ L), then p is an
instance of the meta path P (denoted as p ∈ P). Different meta paths encode distinct semantics.
For example, the meta path P1 = (User, tweet, user) indicates that the user likes/retweets the
same tweet. While the meta path P2 = (user, tweet, hashtag, tweet, user) indicates that the user
posts/retweets/likes tweets with the same topic.

Definition 4: P-Connected and P-Neighbors.[26] If node u j is reachable from ui via a path
instance of meta path P, u j is a P-connected node of ui. All P-connected nodes of ui are its
P-neighbors.

Based on these definitions, we first construct a meta path to guide random walks. Since
covert communication users prefer indirect interactions to evade detection, we model such links
via shared hashtags or tweets. The proposed meta path is as follow:

P = (U
post/love
−−−−−−→ T

discuss
−−−−−→ H

discuss
←−−−−− T

post/love
←−−−−−− U) (2)

where U,T,H ∈ N denote respectively represent three node types of user, tweet and hashtag in
the HIN, post,love,discuss ∈ R respectively represent three edge types of post, like and discuss.
This meta path P captures the characteristics of covert communication behaviors where users
interact through tweets and topics.
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Then, we define the correlation degree between nodes as the total number of path instances
connecting them:

Rui∼u j = |{pui∼u j : pui∼u j ∈ P}| (3)

where pui∼u j is a path instance with ui as the starting node and u j as the ending node, | · | indicates
the number of elements in the set. This degree of correlation reflects the interaction intensity
between nodes.

Based on the correlation degree Rui∼u j , the transition probability under the meta path P from
nodeui to u j is defined as follow:

P(u j|ui) =
Rui∼u j∑

uk∈N(ui) Rui∼uk

(4)

where, N(ui) is the set of p-neighbors of node ui. To avoid excessive deviation from the target
area, a restart probability α = 0.15 is set. That is, there is a 15% probability of returning to the
initial user node in each random walk.

Figure 3: The schematic of ”user-tweet-hashtag” meta-path-constrained local group discovery.

When sampling special user groups with potential covert communication intent, we we first
randomly select multiple seed users that are not P-neighbors of each other to enhance the diver-
sity of the users. Starting from each seed user, the random walk follows the guidance of the meta
path to move to the top-k P-neighbor nodes with higher transition probabilities. When the num-
ber of recorded users during the walk reaches 5,000, it will be stopped. Next, we merge the users
sampled from random walks initiated with different seeds, and remove duplicate users to ensure
all elements in the final group set are unique. Figure 3 illustrates the meta path constrained group
discovery process using one seed user as an example.

2.3. Tweet Reconstruction Based On 3D Dynamic Regulation Strategy

In this subsection, we simulate the covert communication behavior of users in social networks
by replacing some users’ tweets with stegos. To flexibly control the distribution and sparsity of
stegos in the dataset while ensuring its authenticity and reliability, we designed a 3D dynamic
regulation strategy, named S-RTD. S-RTD adjusts the stego ratio (SR), stego type (ST), and
stego distribution (SD) to simulate covert communication scenarios with varying complexity and
sparsity. Let the sampled set of local group be U = {u1, u2, ..., u5000}, and the tweet set of user u
be Tu = {t1, t2, . . . , tn}. It should be emphasized that Tu is an ordered sequence arranged in the
order of publication time, where ti represents the i-th tweet. Stego library Dstego = {S a,c}, where
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a ∈ S A = {AC, ADG,VLC} and c ∈ S C = [1, 5]. The following is a detailed elaboration of
S-RTD.

(1) Stego Ratio (SR). Covert communication users may post both steganographic and nor-
mal tweets to conceal the presence of hidden messages. We design different stego ratios ρ ∈
[0.1, 0.3, 0.5, 0.7, 0.9, 1.0] to replace tweets in Tu. The number of tweets to be replaced for user
u is:

CT = ⌈ρ · |Tu|⌉ (5)

where ⌈·⌉ represents rounding up, and |Tu| denotes the cardinality (number of elements) of the
set Tu. By adjusting SR, we can flexibly control the sparsity of stegos in the dataset. Lower SR
results in higher sparsity.

(2) Stego Type (ST). Covert communication users can adopt different strategies to gener-
ate and disseminate stegos. For example, when dealing with fixed secret information, they may
employ a single steganographic algorithm to enhance information transmission efficiency, or
use multiple steganographic algorithms to increase detection difficulty. Additionally, the se-
cret information can be concentrated in a small number of stegos to avoid frequent posting of
steganographic content that might reveal their identity. Alternatively, the secret information can
be dispersed across multiple short texts to reduce the embedding capacity per stego, thereby
improving imperceptibility. Therefore, we use the steganographic algorithm and embedding ca-
pacity as parameters to dynamically adjust the types of stegos in the dataset, denoted as S T .
Both the steganographic algorithm and embedding capacity can be configured as either “single”
or “multiple”, leading to the following four subsets of stegos:

• Single algorithm and single capacity. The subset S (a, c) where a is a specific algorithm
and c is a fixed capacity:

S T = S (a, c) ∈ {S a,c | a × c} (6)

where a × c denotes all possible combinations of (a, c) from sets S A and S C.

• Multiple algorithms and single capacity. The subset S (∼, c), where ∼ indicates the diver-
sity of steganographic algorithms:

S T = S (∼, c) = {S a,c | a ∈ SA} (7)

• Single algorithm and multiple capacities. The subset S (a,∼), where ∼ indicates the diver-
sity of steganographic capacity:

S T = S (a,∼) = {S a,c | c ∈ SC} (8)

• Multiple algorithm and multiple capacities. The subset S (∼,∼):

S T = S (∼,∼) ∈ {S a,c | a ∈ SA, c ∈ SC} (9)

By controlling ST, we simulate text steganalysis environments with varying fragmentation
and complexity. Lower embedding capacities result in shorter stegos with more pronounced
fragmentation, while more steganographic algorithms and capacities increase scenario complex-
ity.

(3) Stego Distribution (SD). When urgently needing to publish large amounts of secret
information, covert communication users must consecutively post multiple stegos to complete
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their covert communication tasks. If time permits, they may instead distribute stegos in smaller
batches interspersed with covers on social platforms. Consequently, stegos may appear densely
clustered within certain time periods, while remaining relatively sparse at other times. We model
the stego distribution R(Tu, ρ,m) by posting stegos in four patterns:

• Front: stegos are concentrated at the beginning of the tweet sequence.

R(Tu, ρ,m) = S T ∪ {tCT+1, · · · , tn}, m = Front (10)

where CT is the number of stegos obtained from formula 5, and S T is the subset of stegos
obtained from formula 6 to formula 9.

• Middle: stegos are centered in the middle.

R(Tu, ρ,m) = {t1, · · · , td} ∪ S T ∪ {tn−d−CT , · · · , tn}, m = Middle (11)

where d =
⌊

n−CT
2

⌋
.

• Latter: stegos are concentrated at the end.

R(Tu, ρ,m) = {t1, · · · , tn−CT } ∪ S T , m = Latter (12)

• Random: stegos are scattered randomly.

R(Tu, ρ,m) = S T ∪ (Tu \ Index(n,CT )), m = Random (13)

where function Index(n,CT ) randomly selects CT indices from n positions.

Adjusting SD allows simulation of different steganographic distribution patterns, reflecting
the complexity text steganalysis environment in real social networks.

2.4. SN-Stego Construction

Based on the above-mentioned local group discovery method and the S-RTD strategy, we
construct a dataset named SN-Stego that authentically reflects social network patterns, and sup-
ports dynamic control over stego sparsity and fragmentation. Figure 4 illustrates the detailed
workflow of SN-Stego construction.

The input consists of the large-scale Twitter heterogeneous information network collected in
subsection 2.1.1 and the stego library Dstego generated in subsection 2.1.2. First, we employ the
local group discovery algorithm proposed in subsection 2.2 to identify small-scale user groups
with potential covert communication intent from the large-scale Twitter heterogeneous informa-
tion network. Next, we apply the S-RTD strategy introduced in subsection 2.3 to reconstruct the
tweets of sampled users by adjusting the stego ratio (SR), stego type (ST), and stego distribu-
tion (SD). This simulates various types of covert communication users with different behavioral
patterns. Subsequently, we remove the association relationships of the replaced tweets in the
heterogeneous information network while preserving all other unmodified entities and relation-
ships. Finally, SN-Stego is constructed that simulates complex text steganalysis environments
with varying fragmentation and sparsity of stegos.
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Figure 4: The workflow of SN-Stego construction.

3. Dataset Evaluation

3.1. Statistical Analysis

We compared SN-Stego with three existing mainstream text steganalysis datasets[9, 19, 12].
The statistical results are presented in Table 5. It shows that SN-Stego boasts a significantly
larger data scale, being hundreds of times larger than TStego-THU[19]. Notably, SN-Stego
contains abundant entities and relational connections. In contrast to other datasets that only
include isolated text data or simple reply relationships, SN-Stego features a more extensive data
volume, richer data types, and broader application scenarios. Its heterogeneous information
network structure can reveal more deep-level and potential steganographic features, providing
researchers with a more comprehensive and reliable platform for study and testing.

Table 5: The statistical comparison results of SN-Stego with three mainstream text steganography analysis datasets.

Dataset Entity Relation Graph structure Text scale

T-Steg[9] 1 × × 30,000
TStego-THU[19] 1 × × 40,000

Stego-Sandbox[12] 1 2 ! 15,639
SN-Stego 4 14 ! 6,580,000

3.2. Experimental Analysis

Through experiments, we aim to reveal the limitations of existing text steganalysis methods
when applied to real-world social network scenarios characterized by text fragmentation and
sparse steganographic information. This highlights the urgency and necessity of developing
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new social network-oriented text steganalysis approaches, thereby demonstrating the significant
value of our proposed dataset construction method and the SN-Stego dataset in supporting related
research.

3.2.1. Experimental Setup

Table 6: Related parameters settings.

Parameter Values

Epoch 40
Batch size 100
Optimizer Adam[27]

Learning rate 1e-5
Criterion Cross entropy loss

Dropout rate 0.5
Class number 128

Benchmark Models. We selected five mainstream deep learning-based text steganalysis
models as benchmark models for SN-Stego. FCN[7], based on a single-layer fully connected
network, identifies semantic correlations between words in text and performs steganalysis by
exploiting the disruption of statistical correlations between words caused by the embedding of
secret information. RNN[8] utilizes a bidirectional recurrent neural network (BiRNN) to extract
conditional distribution features for each word in the text. CSW[9] refines word correlations
in text into continuous word correlation, cross-word correlation, and cross-sentence correlation,
and employs convolutional sliding windows (CSW) of various sizes to extract these correlation
features for LS. ATT[10] adopts an attention mechanism that strategically focuses on salient
parts of the input, enhancing the model’s ability to extract meaningful insights from the data.
EILGF[13] simultaneously extracts and fuses local and global features of the text, and introduces
a group-wise enhancement mechanism to improve the quality of features. All of these models
utilize BERT for text feature extraction. Other parameters are consistent with those described in
their respective papers.

Sample Distribution. We randomly selected 4,000 covers and the same number of stegos
from the constructed SN-Stego dataset, and divided them into the training set, the validation set
and the test set in a ratio of 3:1:1. During the training stage, the same amount of covers and
stegos is adopted to enable the model to fully learn the text features. During the testing phase,
in order to evaluate the generalization of the benchmark models in text steganography analysis
environments with different steganography sparsity, we designed five test sets, among which the
stego ratio (SR) was 10%, 20%, 30%, 40% and 50% respectively.

Evaluation Metrics. Since we used imbalanced test sets, we employed the F1 score (F1)
as the evaluation indicator. The F1 score is a metric in statistics used to measure the accuracy
of binary classification models, taking into account both precision and recall. It is sensitive to
changes in data distribution and thus more useful when dealing with class imbalance issues. The
formulas is described as follows:

F1 =
2 · T P

2 · T P + FN + FP
(14)
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Where TP (True Positive) represents the number of stegos that are predicted correctly by the
model. FP (False Positive) indicates the number of covers predicted to be stegos. FN (False Neg-
ative) illustrates the number of stegos predicted to be covers. And TN (True Negative) represents
the number of covers predicted correctly.

Experimental Environment and Parameters: All experimental codes in this paper are
written based on PyTorch and executed on a GeForce RTX 3080 GPU with 10 Gb of graphics
memory. Other parameters related to the experiments are shown in Table. 6, and the selection of
some hyper-parameters will be discussed and explained in subsequent experiments.

3.2.2. Results and Discussion

Table 7: F1 result of benchmark models in different text steganalysis scenarios.

SR Model
AC VLC ADG

1 2 3 4 5 1 2 3 4 5 6.93

10%

FCN 59.06 60.63 62.42 49.87 41.30 60.57 60.77 59.98 62.94 60.95 0.21
CSW 64.49 64.87 67.82 61.11 63.47 69.97 67.82 70.81 68.34 70.65 13.30
RNN 64.39 65.38 67.21 63.39 64.49 69.24 68.51 71.17 69.82 70.28 9.62
ATT 63.58 63.31 66.43 61.82 62.92 68.39 66.87 69.91 69.11 70.77 7.85
EILGF 61.21 62.05 64.33 56.46 57.12 63.66 62.73 64.96 64.43 66.79 9.88

20%

FCN 63.07 63.71 64.24 65.57 58.47 67.29 69.17 68.42 72.16 70.12 4.73
CSW 81.38 79.39 75.05 75.70 73.47 77.86 75.36 76.15 76.89 76.48 28.95
RNN 79.86 79.76 76.90 75.84 74.30 79.84 74.52 76.49 78.19 77.67 21.25
ATT 79.68 78.89 75.29 75.38 72.97 79.17 76.98 76.85 77.29 77.15 16.58
EILGF 78.37 76.87 73.51 71.71 69.92 74.64 73.65 73.16 74.89 73.81 25.06

30%

FCN 73.16 70.71 73.43 70.09 68.22 72.41 75.26 73.82 75.76 74.87 7.95
CSW 87.94 86.71 86.11 82.55 82.76 87.35 85.78 84.88 83.01 81.27 45.42
RNN 86.39 85.79 85.36 82.33 80.18 86.23 85.47 84.75 81.41 82.22 40.78
ATT 86.04 85.18 84.95 81.87 79.84 86.19 84.25 83.68 83.58 81.46 27.81
EILGF 85.12 84.38 83.73 79.11 77.02 84.42 82.53 82.12 80.88 78.63 31.35

40%

FCN 84.37 81.92 79.50 74.44 71.80 79.18 78.89 75.57 75.86 74.65 30.47
CSW 91.94 91.06 89.79 87.97 85.62 91.80 89.89 89.08 87.79 87.42 55.76
RNN 90.53 89.28 88.98 87.28 86.30 90.65 89.17 88.21 88.53 87.11 49.87
ATT 90.25 89.30 88.96 87.51 86.33 90.37 89.11 87.94 87.69 86.99 41.31
EILGF 89.11 87.90 87.75 86.04 83.15 88.87 87.31 87.26 85.21 84.53 42.49

50%

FCN 89.20 87.32 85.69 77.30 75.89 87.99 86.79 85.69 80.03 78.44 43.31
CSW 94.53 93.62 92.44 91.02 89.74 94.12 92.86 91.96 90.99 89.92 64.22
RNN 93.32 92.16 91.34 90.41 89.31 92.81 91.88 91.66 90.73 89.36 56.99
ATT 93.31 92.09 91.37 90.25 89.17 92.98 91.79 91.64 90.52 89.41 50.85
EILGF 92.28 91.08 90.23 88.61 87.01 91.69 90.55 89.99 88.98 88.27 62.41

Table 7 presents the detection F1 scores of various benchmark models across different text
steganalysis scenarios. Here, AC, VLC, and ADG represent stegos generated using correspond-
ing encoding methods. The numbers below them indicate the embedding capacity in bits per
word (bpw). By analyzing the experimental data in Table 7, we can draw the following conclu-
sions:

First, as the embedding capacity (bpw) increases, the detection accuracy of the benchmark
models generally shows a declining trend. This is attributed to the Psic effect[4] in generative
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stegos, where higher bpw values blur the statistical distribution boundaries between stegos and
covers, making them harder to distinguish. Furthermore, even at lower bpw values, while the
detection performance of the benchmark models improves slightly, it remains unsatisfactory.
This is due to the fragmented nature of social network texts in SN-Stego, which poses significant
challenges to existing text steganalysis that rely solely on textual semantic features.

Second, the F1 scores in the table decrease from bottom to top, indicating that as the sparsity
of stegos increases, the detection performance of the models declines. When the sparsity is high
(e.g., SR=10%), the F1 scores of the benchmark models rarely exceed 70%. For stegos generated
using the ADG steganographic algorithm, the F1 scores even drop below 10%. Only when the
SR approaches 50%, where the ratio of positive to negative samples is relatively balanced, do
these benchmark models achieve relatively better detection performance. It demonstrates that
while these benchmark models perform well under ideal experimental conditions, they struggle
in real-world scenarios where steganographic information is extremely sparse.

Third, stegos generated by the ADG algorithm are more challenging to detect compared to
those generated by AC and VLC. This is because the ADG-generated stegos in our dataset have
a higher embedding capacity, and according to the Psic effect[4], their statistical concealment is
superior. Since the benchmark methods detect stegos based on statistical distribution differences
before and after embedding, the F1 scores for ADG are significantly lower than those for AC and
VLC.

In summary, existing text steganalysis methods exhibit considerable limitations when applied
to highly fragmented and extremely sparse stegos in social networks. Therefore, it is necessary
to broaden research perspectives and develop new algorithms and models to counter the continu-
ously evolving text steganography techniques in social network. The proposed dataset construc-
tion method serves as a foundational and critical step to support such advancements, holding
substantial significance for future research.

4. Conclusion and Future Work

Addressing the limitations of existing steganalysis datasets—such as the lack of social graphs,
inadequate text attributes, mismatched sample distributions, and limited data scales—which
severely constrain text steganalysis research in social networks, this study uses Twitter as a case
study to propose a dataset construction method based on local group discovery and sample dis-
tribution regulation. Specifically, we first collect HIN by aggregating multi-type entities and
their relationships from Twitter, then generate diverse stegos using advanced text steganography
model parameterized by steganography algorithms and embedding capacities. Subsequently, a
local group discovery algorithm constrained by “user-tweet-hashtag” meta path is introduced to
sample special user groups with latent covert communication intentions. Next, we apply the
S-RTD strategy to reconstruct user tweet sequences across stego ratio, type, and distribution,
enabling dynamic control over the fragmentation and sparsity of stegos. Finally, we construct
SN-stego, a large-scale dataset rich in social graph information and diverse sample distributions.
Statistical analyses confirm SN-stego’s advantages in data scale, content diversity, and scenario
adaptability, aligning with the fragmented text and sparse steganography observed in real-world
social networks. Benchmarking existing mainstream text steganalysis models on SN-stego re-
veals their significant limitations in real-world scenarios, further validating the effectiveness of
SN-Stego.

Yet, since SN-Stego is Twitter-based, differences in user behavior and text style across plat-
forms may limit its generalization and stego text diversity. In the future, enrich the dataset with
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more platform types, language styles, and steganography algorithms to better support social net-
work text steganalysis. Our work provides high-quality data support for text steganalysis in social
networks, contributing scientific value and practical significance to advancing text steganalysis
technologies and safeguarding cyberspace security and social stability.

Author Contributions

Qiong Xu: Conceptualization, Data curation, Software, Visualization, Writing – original
draft. Ru Zhang: Supervision, Investigation, Writing – review & editing. Jianyi Liu: Method-
ology, Validation, Resources, Writing – review & editing. Yongfeng Huang: Investigation,
Writing – review & editing.

Acknowledgements

Authors are deeply indebted to anonymous reviewers for their constructive suggestions and
helpful comments. This work was supported by the National Natural Science Foundation of
China under Grant U21B2020.

References

[1] Ziegler Z., Deng Y., Rush A.: Neural Linguistic Steganography. In: the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. Hong
Kong, China: Association for Computational Linguistics, (2019).

[2] Yang Z., Guo X., Chen Z., Huang Y., and Zhang Y.: RNN-Stega: linguistic steganography based on recurrent neural
networks. IEEE Transactions on Information Forensics and Security. 14 (5), 1280-1295 (2019).

[3] Zhang S., Yang Z., Yang J., and Huang Y.: Provably Secure Generative Linguistic Steganography. In: the Findings
of the Association for Computational Linguistics. [s.l.]: Association for Computational Linguistics (ACL-IJCNLP),
pp. 3046-3055 (2021).

[4] Yang Z., Zhang S., Hu Y., Hu Z., and Huang Y.: VAE-Stega: Linguistic steganography based on variational auto-
encoder. IEEE Transactions on Information Forensics and Security. 16, 880–895 (2021).

[5] Wang R., Xiang L., Liu Y., and Yang C.: PNG-Stega: Progressive Non-Autoregressive Generative Linguistic
Steganography. IEEE Signal Processing Letters. 30, 528-532 (2023).

[6] Ding C., Fu Z., Yang Z., Yu Q., Li D., and Huang Y.: Context-Aware Linguistic Steganography Model Based on
Neural Machine Translation. IEEE/ACM Transactions on Audio, Speech, and Language Processing. 32, 868-878
(2024).

[7] Yang Z., Huang Y., and Zhang Y.: A fast and efficient text steganalysis method. IEEE Signal Processing Letters.
26(4), 627-631 (2019).

[8] Yang Z., Wang K., Li J., Huang Y., and Zhang Y.: Ts-rnn: Text steganalysis based on recurrent neural networks.
IEEE Signal Processing Letters. 26(12) 1743-1747 (2019).

[9] Yang Z., Huang Y., and Zhang Y.: TS-CSW: Text steganalysis and hidden capacity estimation based on convolutional
sliding windows. Multimedia Tools and Applications. 79 (25), 18293–18316 (2020).

[10] Zou J., Yang Z., Zhang S., Rehman S., and Huang Y.: High-performance linguistic steganalysis, capacity estimation
and steganographic positioning. In: International Workshop on Digital Watermarking (IWDW), pp. 80-93 (2020).

[11] Yi B., Wu H., Feng G., and Zhang X.: Exploiting Language Model for Efficient Linguistic Steganalysis. In: the
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3074-3078 (2022).

[12] Yang J., Yang Z., Zou J., Tu H., and Huang Y.: Linguistic steganalysis toward social network. IEEE Transactions
on Information Forensics and Security. 18, 859–871 (2022).

[13] Xu Q., Zhang R., and Liu J.: Linguistic steganalysis by enhancing and integrating local and global features. IEEE
Signal Processing Letters. 30, 16-20 (2023).

[14] Wang H., Yang Z., Yang J., Chen C., and Huang Y.: Linguistic Steganalysis in Few-Shot Scenario. IEEE Transac-
tions on Information Forensics and Security. 13, 4870-4882 (2023).

[15] Wang Y., Zhang R., and Liu J.: RLS-DTS: Reinforcement-Learning Linguistic Steganalysis in Distribution-
Transformed Scenario. IEEE Signal Processing Letters. 30, 1232-1236 (2023).

DataIntelligence 15



SN-Stego: Dataset for Social Networks Text Steganalysis via Local Group Discovery and
Sample Distribution Regulation

[16] Xue Y., Wu J., Ji R., Zhong P., Wen J., and Peng W.: Adaptive Domain-Invariant Feature Extraction for Cross-
Domain Linguistic Steganalysis. IEEE Transactions on Information Forensics and Security. 19, 920-933 (2024).

[17] Li S., Du H., and Wang J.: General Steganalysis of Generative Linguistic Steganography Based on Dynamic
Segment-Level Lexical Association Extraction. IEEE Signal Processing Letters, 32, 191-195 (2025).

[18] Yang Z., Luo Y., Yang J., Xu X., Zhang R., and Huang Y.: Class-Aware Adversarial Unsupervised Domain Adap-
tation for Linguistic Steganalysis. IEEE Transactions on Information Forensics and Security, 20, 5181-5194 (2025).

[19] Yang Z., He J., Zhang S., Yang J., and Huang Y.: Tstego-thu: Large-scale text steganalysis dataset. In: International
Conference on Artificial Intelligence and Security (ICAIS), Cham, Switzerland, pp. 335-344 (2021).

[20] Go A., Bhayani R., and Huang L.: Twitter sentiment classification using distant supervision. In: CS224N project
report, 1(12), (2009).

[21] Maas A., Daly R., Pham P., Huang D., Ng A., and Potts C.: Learning word vectors for sentiment analysis. In:
the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, pp.
142–150 (2011).

[22] Szczypiorski K.: StegHash: New Method for Information Hiding in Open Social Networks. International Journal
of Electronics and Telecommunications. 62(4), 347-352 (2016).

[23] Feng S., Tan Z., Wan H., Wang N., Chen Z., Zhang B., Zheng Q., Zhang W., Lei Z., Yang S., Feng X., Zhang
Q., Wang H., Liu Y., Bai Y., Wang H., Cai Z., Wang Y., Zheng L., Ma Z., Li J., and Luo M.: TwiBot-22: Towards
Graph-Based Twitter Bot Detection. arXiv preprint arXiv: 2206.04564 (2023).

[24] Hochreiter S., and Schmidhuber J.: Long Short-Term Memory. Neural Computation. 9(8), 1735-1780 (1997).
[25] SHI C., WANG R., WANG X.: A Survey of Heterogeneous Information Networks Analysis and Applications.

Journal of Software, 33(2), 598-621 (2022).
[26] Wang J., Zhou L., Wang X., Wang L., and Li S.: Attribute-sensitive community search over attributed heteroge-

neous information networks. Expert Systems with Applications. 235, 121153 (2024).
[27] Loshchilov I. and Hutter F.: Decoupled Weight Decay Regularization. In: the 7th International Conference on

Learning Representations (ICLR), pp. 6-9 (2019).

16 DataIntelligence


