# 牛乳中 $\alpha_s$ - 、 $\beta$ - 酪蛋白组分的分离

张 艳,胡志和\*,赖宜萍

(天津市食品生物技术重点实验室,天津商业大学生物技术与食品科学学院,天津 300134)

摘 要:以新鲜脱脂牛乳为原料,在碱性条件下添加钙盐进行选择性沉淀分离  $\alpha_s$ -、β-酪蛋白组分,并用十二烷基磺酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE)法测定分离效果。从  $CaCl_2$  溶液终浓度、冷却温度和反复溶解、沉淀次数三个方面对  $\alpha_s$ -、β-酪蛋白的分离效果进行研究。结果表明:  $CaCl_2$  溶液终浓度 0.065mol/L,冷却温度  $2^{\circ}$ C,经 3 次反复溶解、沉淀,分离得到的  $\alpha_s$ - 酪蛋白组分纯度较高,可达 83.33%,β- 酪蛋白组分纯度为 109.53%。

**关键词**:酪蛋白;  $α_s$ - 酪蛋白; β- 酪蛋白; 分离

Separation of  $\alpha_s$ - and  $\beta$ -Caseins from Milk

ZHANG Yan, HU Zhi-he\*, LAI Yi-ping

(Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China)

Abstract: Selective precipitation of  $\alpha$ - and  $\beta$ -caseins from skimmed milk was achieved by the addition of calcium salt at alkaline pH. Effects of final concentration of CaCl<sub>2</sub> (adding different volumes of 0.5 mol/L CaCl<sub>2</sub> solution to skimmed milk), cooling temperature and repeated dissolution-precipitation procedure times on separation of  $\alpha$ -casein were analyzed by measuring purity of final products using SDS-PAGE followed by Coomassie brilliant blue staining, along with effects of the former two factors on separation of  $\beta$ -casein. The results showed that  $\alpha$ -casein with a purity of 83.33% and  $\beta$ -casein with a purity of 109.53% could obtained when the final concentration of CaCl<sub>2</sub> was 0.065 mol/L, the cooling temperature 2 °C, and the dissolution-precipitation procedure repeated three times.

 Key words:
 casein;
 αs-casein;
 β-casein;
 separation

 中图分类号:
 TS252.1
 文献标识码:
 A
 文章编号:
 1002-6630(2009)14-0031-06

乳蛋白是乳中最有价值的成分,牛乳中蛋白质含量为  $3.0\% \sim 3.7\%$ ,其中主要是酪蛋白和乳清蛋白,还有少量脂肪球蛋白。酪蛋白是由多种蛋白质组成的混合物,其含量约占乳蛋白质的  $80\% \sim 82\%$ 。酪蛋白富含磷,与钙结合能使微粒结构稳定,在乳中以胶体粒子形式存在。酪蛋白含有多种人体所必需的氨基酸,适合使用在新型食品、新时代营养补充品和生物医学等方面 [1-3]。  $\alpha_s$ - 酪蛋白比  $\beta$ - 酪蛋白具有更多的磷酸丝氨酸基团,在碱性条件下,带有更多的净负电荷,因此  $\alpha_s$ - 酪蛋白对  $Ca^{2+}$ 的亲和性比  $\beta$ - 酪蛋白更高。而  $\beta$ - 酪蛋白被认为疏水性最强,低温条件下易游离。在酸性  $\beta$ - 酪蛋白对  $\beta$ - 酪蛋白可溶,而  $\alpha_s$ - 酪蛋白不溶,利用此性质对  $\alpha_s$ 、  $\beta$ - 酪蛋白进行分离纯化。纯化的酪蛋白组分有着鲜明的特性,并具有广泛的用途。  $\beta$ - 酪蛋白适于制备婴幼儿配方奶粉,  $\alpha$ - 酪蛋白适于制备代谢障碍

(如苯丙酮尿症(PKU))患者的专用食品,以及制造可食性薄膜和生物降解塑料[4]。

## 1 材料与方法

# 1.1 材料与试剂

新鲜牛奶 天津海河乳业有限公司。

α<sub>s</sub>- 酪蛋白标准品(百分含量 $\geqslant$  70%,电泳级)、β- 酪蛋白标准品(质量分数 90%,电泳级)、Tris-Base、甘 氨酸、十二烷基磺酸钠 SDS Sigma 公司;磷酸氢二钠、磷酸二氢钠、丙烯酰胺、N,N'-亚甲基双丙烯酰胺、甘油、2-巯基乙醇、考马斯亮兰 R-250、过硫酸铵、溴酚蓝、盐酸、氯化钙、氢氧化钠、甲醇、冰乙酸均为分析纯;四甲基乙二胺(TEMED) Fluka 公司。

1.2 仪器与设备

收稿日期: 2008-10-20

基金项目: 天津市重点科技支撑计划项目(07ZCKFNC00200)

作者简介: 张艳(1982-), 女,硕士研究生,主要从事专用功能性食品研究。E-mail: zhangyandaphne@163.com \*通讯作者: 胡志和(1962-),男,教授,主要从事专用功能食品研究与开发。E-mail: hzhihe@tjcu.edu.cn

高速冷冻离心机 科大创新股份有限公司中佳分公司;低温恒温槽 宁波新芝生物科技股份有限公司; pH 计 天津市盛邦科学仪器技术公司;恒温浴槽 成都 仪器厂;冷冻干燥机 北京四环科学仪器厂;DYY-2C 型电泳仪、DYCZ-24DN型电泳槽 北京市六一仪器厂; XRS型凝胶成像仪。

### 1.3 方法

#### 1.3.1 α<sub>s</sub>-、β-酪蛋白分离工艺流程

牛奶→脱脂→加热→调节pH11.0→加入CaCl<sub>2</sub>溶液→调节pH7.0→产物 ①

产物②→ 离心→ 
$$\alpha_s$$
- 酪蛋白沉淀→反复溶解、冷却、沉淀→  $\beta_s$ - 高纯度  $\alpha_s$ - 酪蛋白→干燥→  $\alpha_s$ - 酪蛋白组分上清液→加热→调节  $\beta_s$ - 酪蛋白组分 蛋白沉淀→干燥→  $\beta_s$ - 酪蛋白组分

#### 1.3.2 α<sub>ε</sub>、β-酪蛋白分离工艺处理方法

1.3.2.1 CaCl<sub>2</sub> 浓度对 α<sub>s</sub>- 、 β - 酪蛋白分离效果的影响

分别将 0.5mol/L CaCl<sub>2</sub> 溶液 133 、 150ml 加入 1000ml pH11.0、温度 30℃的脱脂牛奶中,CaCl<sub>2</sub> 溶液终浓度分别为 0.059、0.065mol/L。按 1.3.1 节工艺流程进行操作,获得纯度较高的 β- 酪蛋白组分。2 ℃条件下,反复溶解于 20℃水中、沉淀 2 次获得纯度较高的  $\alpha_s$ - 酪蛋白沉淀。将沉淀分别冷冻干燥后称重,分别计算其酪蛋白得率,并用 SDS-PAGE 法测定其纯度。

1.3.2.2 冷却温度对 α<sub>s</sub>-、β-酪蛋白分离效果的影响

在 CaCl<sub>2</sub> 溶液浓度 0.065mol/L 条件下,按 1.3.1 节工 艺流程进行操作,将产物①离心所得沉淀溶解于 20℃水中,调节 pH 值至 7.0,分别在 2 、 4℃条件下进行冷却,调节 pH 值至 4.5 沉淀,获得富含  $\alpha_s$ - 酪蛋白的沉淀,即产物②。加热产物②离心所得上清液至 35℃,调节 pH 值至 4.6,离心得到富含  $\beta$ - 酪蛋白的沉淀。将产物②离心得到的  $\alpha_s$ - 酪蛋白沉淀重新悬浮于 pH7.0 的水中,剧烈搅拌使其分散后,分别冷却到 2 、4℃,搅拌下加入 1.0mol/L 的 HCl,调 pH 值至 4.5,继续搅拌 15min 后离心。反复溶解、沉淀 2 次以获得纯度较高的  $\alpha_s$ - 酪蛋白沉淀。将沉淀分别冷冻干燥后称重,分别计算其酪蛋白得率,并用 SDS-PAGE 法分别测定其纯度。

1.3.2.3 反复溶解、沉淀次数对 α<sub>s</sub>- 酪蛋白纯度的影响 按 1.3.1 节工艺流程进行操作,反复溶解、沉淀次数分别为 1、2、3 次以获得纯度较高的 α<sub>s</sub>- 酪蛋白沉淀。将沉淀分别冷冻干燥后称量,计算酪蛋白得率,并用 SDS-PAGE 法分别测定其纯度。

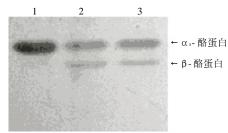
#### 1.3.3 酪蛋白得率计算

# 1.3.4 SDS-PAGE 法测定 α<sub>s</sub>- 、 β - 酪蛋白纯度

#### 1.3.4.1 样品处理

称取一定量待分析的样品于 1.5ml 的 Eppendorf 管中,加入 0.3ml 含有 35% 甘油、10% 十二烷基磺酸钠 (SDS)、1.0mol/L Tris-HCl (pH6.8)的样品处理液,并添加蒸馏水至总体积为 0.6ml,使溶液中蛋白质浓度为 0.2%~0.5%。然后添加 20μl 的 2- 巯基乙醇(2-ME)和 15μl 的饱和溴酚蓝溶液,充分混合均匀,在沸水浴中煮沸 3~10min 后进行电泳。

#### 1.3.4.2 电泳[5]


凝胶贮液浓度为 30%,交联度为 4%。浓缩胶和分离胶分别用 1.5mol/L Tris-HCl (pH6.8)和 1.0mol/L Tris-HCl (pH8.8)配制,并且均含有 10% SDS。浓缩胶质量分数为 5%,分离胶质量分数为 12%。电泳缓冲液中含有 24.8mmol/L Tris,0.19mol/L 甘氨酸,0.1% SDS。样品在厚度为 1mm 的垂直电泳板上进行不连续电泳。电泳结束后,将胶片用考马斯亮兰(CBB)R-250 染色液染色 (1.21mmol/L CBB R-250,0.8mol/L 冰乙酸,3.0mol/L 甲醇)2h。染色结束后,用脱色液(0.8mol/L 冰乙酸,3.0mol/L 甲醇)对胶片进行洗脱,直至底色基本脱除为止。

#### 1.3.4.3 光密度扫描

用凝胶成像仪对电泳图片进行扫描,然后用 Quantity One 软件对图像进行处理和分析,根据下式计算出 酪蛋白的纯度。

## 2 结果与分析

- 2.1 CaCl<sub>2</sub> 浓度对 α<sub>s</sub>-、β- 酪蛋白分离效果的影响
- 2.1.1 CaCl<sub>2</sub> 浓度对 α<sub>s</sub>- 酪蛋白分离效果的影响



1. α<sub>s</sub>- 酪蛋白标准品; 2. CaCl<sub>2</sub> 0.059mol/L 的 α<sub>s</sub>-酪蛋白样品; 3. CaCl<sub>2</sub> 0.065mol/L 的 α<sub>s</sub>- 酪蛋白样品。

图 1 不同 CaCl<sub>2</sub> 浓度制得牛乳中 α<sub>5</sub> - 酪蛋白组分的 SDS-PAGE 电泳图谱 Fig.1 SDS-PAGE pattern of α<sub>5</sub> -casein standard and sample from milk obtained at different final concentrations of CaCl<sub>2</sub>

根据 1.3.2.1 节所述方法,研究  $CaCl_2$  浓度对  $\alpha_s$ -、  $\beta$ - 酪蛋白分离效果的影响,在不同  $CaCl_2$  浓度下制得的  $\alpha_s$ - 酪蛋白组分的 SDS-PAGE 电泳图谱如图 1 所示。

对图 1 中两样品的电泳图谱泳道 2、3 分别与  $\alpha_s$ - 酪蛋白标准品泳道 1 用 Quantity One 软件进行处理和分析得扫描图谱图 2、3。

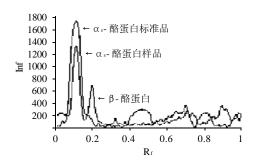



图 2 CaCl<sub>2</sub> 溶液终浓度为 0.059mol/L 制得的  $\alpha$ <sub>5</sub>- 酪蛋白样品与标准  $\alpha$ <sub>5</sub>- 酪蛋白的 SDS-PAGE 扫描图谱

Fig.2 Scanning profile of SDS-PAGE pattern of  $\alpha$  scasein standard and sample obtained at 0.059 mol/L of CaCl<sub>2</sub> on gel imaging system

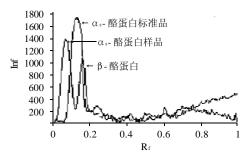




图 3 CaCl<sub>2</sub> 溶液终浓度为 0.065mol/L 的样品与标准 α<sub>6</sub>- 酪蛋白的 SDS-PAGE 扫描图谱

Fig.3 Scanning profile of SDS-PAGE pattern of  $\alpha_{\text{s}}$ -casein standard and sample obtained at 0.065 mol/L of CaCl<sub>2</sub> on gel imaging system

#### 2.1.2 CaCl<sub>2</sub> 浓度对 β - 酪蛋白分离效果的影响



1. CaCl<sub>2</sub> 0.059mol/L 的 β - 酪蛋白样品; 2. β - 酪蛋白标准品; 3. CaCl<sub>2</sub> 0.065mol/L 的 β - 酪蛋白样品。

图 4 不同 CaCl₂ 浓度制得牛乳中β-酪蛋白组分的 SDS-PAGE 电泳图谱

Fig.4 SDS-PAGE pattern of β-casein standard and sample from milk obtained at different final concentrations of CaCl<sub>2</sub>

根据 1.3.2.1 节所述方法,对  $CaCl_2$  浓度对  $\alpha_s$ -、  $\beta$ - 酪蛋白分离效果的影响进行研究,在不同  $CaCl_2$  浓度下制得的  $\beta$ - 酪蛋白组分的 SDS-PAGE 电泳图谱如图 4 所示。

对图 4 中两样品的电泳图谱泳道 1、3 分别与 β- 酪蛋白标准品泳道 2 用 Quantity One 软件进行处理和分析得扫描图谱图 5、6。

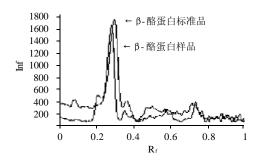



图 5 CaCl<sub>2</sub> 溶液终浓度为 0.059mol/L 制得的样品与标准 β - 酪蛋白的 SDS-PAGE 扫描图谱

Fig.5 Scanning profile of SDS-PAGE pattern of  $\beta$ -casein standard and sample obtained at 0.059 mol/L of CaCl<sub>2</sub> on gel imaging system

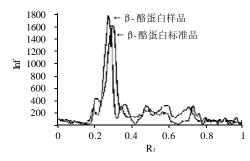


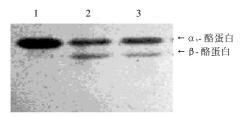

图 6  $CaCl_2$  溶液终浓度为 0.065mol/L 制得的样品与标准  $\beta$  - 酪蛋白的 SDS-PAGE 扫描图谱

Fig.6 Scanning profile of SDS-PAGE pattern of β-casein standard and sample obtained at 0.065 mol/L of CaCl₂ on gel imaging system

由图 2、3、5、6,根据各条带峰高大小,与标准样品条带对比,分别计算出酪蛋白的纯度,结果见表 1。

表 1 不同 CaCl₂ 终浓度条件下制得的 α₅-、 β-酪蛋白的纯度 Table 1 Purity of α₅- and β-caseins obtained at different final concentrations of CaCl₂ (the cooling temperature 2 ℃, and the dissolution-precipitation procedure repeated twice)

| CaCl <sub>2</sub> 溶液终浓度(mol/L) | 纯度(%)    |        |
|--------------------------------|----------|--------|
|                                | αs - 酪蛋白 | β-酪蛋白  |
| 0.059                          | 78.30    | 97.10  |
| 0.065                          | 80.11    | 109.53 |
|                                |          |        |


从表 1 可以看出,在 2  $\mathbb{C}$  ,反复溶解、沉淀 2 次后,  $CaCl_2$  溶液终浓度对  $\alpha_{s-}$  、  $\beta$  - 酪蛋白分离效果是有影响

的,在所测浓度下, $CaCl_2$ 溶液终浓度越大, $\alpha_{s-}$ 、 $\beta$ - 酪蛋白组分纯度越高,分离效果越好。

#### 2.2 冷却温度对 α<sub>s</sub>-、β-酪蛋白分离效果的影响

#### 2.2.1 冷却温度对 α<sub>s</sub>- 酪蛋白分离效果的影响

根据 1.3.2.2 节所述方法,对冷却温度对  $\alpha_{s-}$ 、  $\beta$  - 酪蛋白分离效果的影响进行研究,不同温度下制得  $\alpha_{s-}$  酪蛋白组分的 SDS-PAGE 电泳图谱如图 7 所示。



α ₅ 酪蛋白标准品; 2.2℃的α ₅ 酪蛋白样品; 3.4℃的α ₅ 酪蛋白样品。
 图 7 不同温度制得牛乳中α₅ 酪蛋白组分的 SDS-PAGE 电泳图谱
 Fig.7 SDS-PAGE pattern of α₅-casein standard and sample obtained from milk at different cooling temperatures

对图 7 中两样品电泳图谱泳道 2、3 分别与  $\alpha_s$ - 酪蛋白标准品泳道 1 用 Quantity One 软件进行处理和分析得扫描图谱图 8、9。

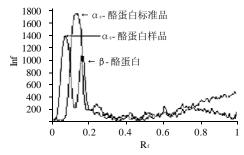



图 8 温度为  $2^{\circ}$ 的样品与标准  $\alpha_s$ - 酪蛋白的 SDS-PAGE 扫描图谱 Fig.8 Scanning profile of SDS-PAGE pattern of  $\alpha_s$ -casein standard and sample obtained when the cooling temperature was  $2^{\circ}$  on gel imaging system

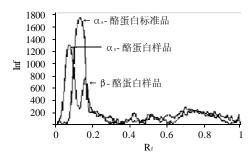
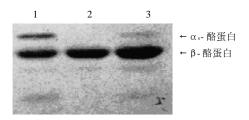




图 9 温度为 4  $\mathbb{C}$  的样品与标准  $\alpha_s$ - 酪蛋白的 SDS-PAGE 扫描图谱 Fig.9 Scanning profile of SDS-PAGE pattern of  $\alpha_s$ -casein standard and sample obtained when the cooling temperature was 4  $\mathbb{C}$  on gel imaging system

## 2.2.2 冷却温度对β-酪蛋白分离效果的影响



4℃,β-酪蛋白样品;2.β-酪蛋白标准品;3.2℃,β-酪蛋白样品。
 图 10 牛乳中β-酪蛋白组分的SDS-PAGE 电泳图谱
 Fig.10 SDS-PAGE pattern of β-casein standard and sample obtained from milk at different cooling temperatures

根据 1.3.2.2 节所述方法,冷却温度对  $\alpha_s$ -、 $\beta$ - 酪蛋白分离效果的影响进,不同温度下制得的  $\beta$ - 酪蛋白组分的 SDS-PAGE 电泳图谱如图 10 所示。

对图 10 中两样品电泳图谱泳道 1、3 分别与 β - 酪蛋白标准品泳道 2 用 Quantity One 软件进行处理和分析得扫描图谱图 11、12。

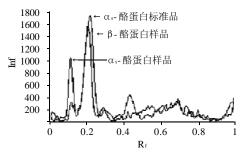



图 11 温度为 4  $\mathbb{C}$  的样品与标准  $\beta$ - 酪蛋白的 SDS-PAGE 扫描图谱 Fig.11 Scanning profile of SDS-PAGE pattern of  $\beta$ -casein standard and sample obtained when the cooling temperature was 4  $\mathbb{C}$  on gel imaging system

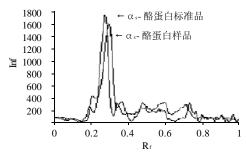



图 12 温度为 2℃的样品与标准 β - 酪蛋白的 SDS-PAGE 扫描图谱 Fig.12 Scanning profile of SDS-PAGE pattern of β-casein standard and sample obtained when the cooling temperature was 2 ℃ on gel imaging system

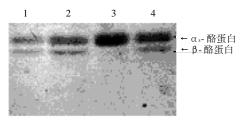

由图 8、9、11、12,根据各条带峰高大小,与标准样品条带对比,分别计算出酪蛋白的纯度,结果见表 2。

表 2 不同温度下制得的  $\alpha_{s^-}$ 、  $\beta$  - 酪蛋白的纯度 Table 2 Purity of  $\alpha_{s^-}$  and  $\beta$  -casein obtained at different cooling temperatures (the final concentration of CaCl $_2$  0.065 mol/L, and the dissolution-precipitation procedure repeated twice)

| 冷却温度(℃) | 纯度(    | 纯度(%)  |  |  |
|---------|--------|--------|--|--|
| 行和価度(し) | αs-酪蛋白 | β-酪蛋白  |  |  |
| 2       | 80.11  | 109.53 |  |  |
| 4       | 74.75  | 86.51  |  |  |

从表 2 可以看出,在  $CaCl_2$  溶液终浓度 0.065mol/L,反复溶解、沉淀 2 次条件下,冷却温度对  $\alpha_s$ 、  $\beta$  - 酪蛋白分离效果是有影响的,在所考察温度条件下,温度越低, $\alpha_s$ -、 $\beta$ - 酪蛋白组分纯度越高,分离效果越好。 2.3 反复溶解、沉淀次数对  $\alpha_s$ - 酪蛋白纯度的影响

根据 1.3.2.3 节所述方法,对反复溶解、沉淀次数对  $\alpha_{s-}$  酪蛋白纯度的影响进行研究,不同的反复溶解、沉淀次数,  $\alpha_{s-}$  酪蛋白组分的 SDS-PAGE 电泳图谱如图 13 所 示 。



1.反复 1 次的  $\alpha_s$ - 酪蛋白样品; 2. 反复 2 次的  $\alpha_s$ - 酪蛋白样品; 3.  $\alpha_s$ - 酪蛋白标准品; 4. 反复 3 次的  $\alpha_s$ - 酪蛋白样品。图 13 不同溶解、沉淀次数制得牛乳中  $\alpha_s$  - 酪蛋白组分的 SDS-PAGE 电泳图谱

Fig.13 SDS-PAGE pattern of  $\alpha_s$ -casein standard and sample obtained from milk when the dissolution-precipitation procedure was performed different times

对图 13 中三个样品的电泳图谱泳道 1、2 和 4 分别与  $\alpha_s$ - 酪蛋白标准品泳道 3 用 Quantity One 软件进行处理和分析得扫描图谱图  $14\sim16$ 。

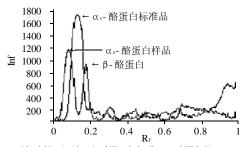



图 14 反复溶解、沉淀 1 次时样品与标准 α σ- 酪蛋白的 SDS-PAGE 扫描图谱 Fig.14 Scanning profile of SDS-PAGE pattern of ασ-casein standard and sample obtained when the dissolution-precipitation procedure performed only once

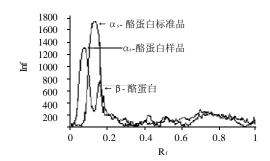



图 15 反复溶解、沉淀 2 次时样品与标准 α₅ 一酪蛋白的 SDS-PAGE 扫描图谱

Fig.15 Scanning profile of SDS-PAGE pattern of  $\alpha_s$ -casein standard and sample obtained when the dissolution-precipitation procedure performed twice

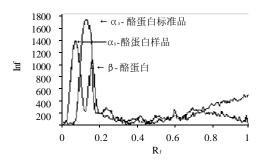
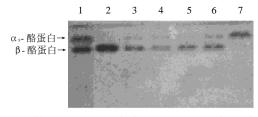



Fig.16 Scanning profile of SDS-PAGE pattern of  $\alpha_s$ -casein standard and sample obtained when the dissolution-precipitation procedure performed three times

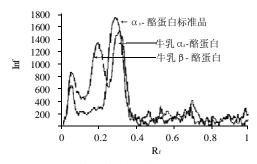
由图 14~16,根据各条带峰高大小,与标准样品条带对比,分别计算出酪蛋白的纯度,结果如表3。

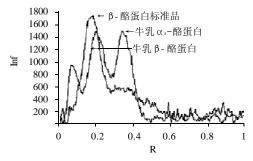
表 3 不同的反复溶解、沉淀次数下 α₅- 酪蛋白的纯度
Table 3 Purity of α₅-casein when the dissolution-precipitation procedure was performed different times (the final concentration of


CaCl<sub>2</sub> 0.065 mol/L, and the cooling temperature 2 °C)

| 反复溶解、沉淀次数(次) | 1     | 2     | 3     |
|--------------|-------|-------|-------|
| 纯度(%)        | 75.79 | 79.54 | 83.33 |

从表 3 可以看出,在温度为  $2^{\circ}$ 、CaCl<sub>2</sub>溶液终浓度 0.065 mol/L 条件下,反复溶解、沉淀次数越多,  $\alpha$ - 酪蛋白的纯度越高,但是纯度提高幅度不显著。


#### 2.4 α<sub>s</sub>-、β-酪蛋白得率研究


为了研究牛乳酪蛋白的得率,对牛乳及其分离后  $\alpha$ .-、 $\beta$ -酪蛋白组分样品及标准品进行了 SDS-PAGE 电 泳,电泳图谱如图 17 所示。



1.牛乳样品; 2.β-酪蛋白标准品; 3、5 分别为冷却温度 2、4 ℃, CaCl₂ 0.065mol/L, 反复溶解沉淀 2 次条件下的 α₅-酪蛋白样品; 4、6 分别为冷却温度 2、4 ℃, CaCl₂ 0.059mol/L, 反复溶解沉淀 2 次条件下的 α₅-酪蛋白样品; 7.α₅-酪蛋白标准品。图 17 牛乳及其 α₅-、β-酪蛋白组分的 SDS-PAGE 电泳图谱 Fig.17 SDS-PAGE pattern of α₅-casein and β-casein standards, milk and α₅-casein obtained under different conditions

对图 17 中 SDS-PAGE 电泳图谱泳道 1、2 和 7 用 Quantity One 软件进行处理和分析得扫描图谱图 18、19。





由图 18、19,根据牛乳样品 1 条带峰高大小,与标准样品条带对比,计算出每毫升牛乳样品中含 22.04mg  $\alpha_s$ - 酪蛋白, 20.52mg  $\beta$ - 酪蛋白。根据 1.3.3 节方法,对分离得到的  $\alpha_s$ -、 $\beta$ - 酪蛋白组分进行得率计算,结果如表 4。

将表 4 与表 1、2 进行比较可以得出:  $\alpha_s$ - 酪蛋白的得率随纯度的升高而下降,而  $\beta$ - 酪蛋白的得率没有显著变化。

表 4 反复溶解、沉淀次数为 2 次条件下  $\alpha_s$ -、 $\beta$ - 酪蛋白得率 Table 4 Yield of  $\alpha_s$  and  $\beta$ -caseins when the final concentration of CaCl<sub>2</sub> was 0.065 mol/L, the cooling temperature 2  $^{\circ}$ C, and the dissolution-precipitation procedure repeated twice.

| 分离条件 2℃,   | CaCl <sub>2</sub> 0.065mol/L | 4℃, CaCl <sub>2</sub> 0.065mol/L | 2℃, CaCl <sub>2</sub> 0.059mol/L |
|------------|------------------------------|----------------------------------|----------------------------------|
| α-酪蛋白得率(%) | 48.03                        | 58.48                            | 53.31                            |
| β-酪蛋白得率(%) | 31.04                        | 20.23                            | 25.94                            |

为了研究反复溶解、沉淀次数对  $\alpha_s$ - 酪蛋白得率的 影响,根据 1.3.3 节方法,对分离得到的  $\alpha_s$ - 酪蛋白组 分进行得率计算,结果如表 5。

表 5 不同反复溶解、沉淀次数下 α₅-酪蛋白得率

Table 5 Yield and purity of α₅-casein when the dissolution-precipitation procedure was performed different times

| 反复溶解、沉淀次数(次) | 1     | 2     | 3     |
|--------------|-------|-------|-------|
| 得率(%)        | 56.73 | 48.03 | 40.19 |
| αs-酪蛋自纯度(%)  | 75.79 | 79.54 | 83.33 |

从表 5 可以看出:  $\alpha_s$ - 酪蛋白反复溶解、沉淀次数越多, 纯度越高, 但是得率下降。但反复溶解、沉淀对  $\alpha_s$ - 酪蛋白纯度的提高不显著。因处理的样品量较少, 加之处理过程中工艺步骤多, 使得样品在处理过程中会有一定损失, 但从结果仍可得出得率与纯度的相关性, 纯度提高, 相对应的得率降低。

#### 3 结论

在实验所选的条件范围内, $CaCl_2$ 溶液终浓度越大,温度越低,反复溶解、沉淀次数越多, $\alpha_{s-}$ 、 $\beta$ - 酪蛋白组分纯度越高,分离效果越好。实验所得最优分离条件为:  $CaCl_2$ 溶液终浓度 0.065 mol/L,冷却温度 2  $\mathbb{C}$  ,反复溶解、沉淀次数 3 次条件下, $\alpha_{s-}$  、 $\beta$  - 酪蛋白组分分离效果最好,纯度分别为 83.33% 和 109.53% (相对标准品)。 $Ca^{2+}$  浓度越高,与 $\alpha_{s-}$  酪蛋白的亲和性越高,越易打破酪蛋白胶束使  $\alpha_{s-}$  酪蛋白沉淀。而低温条件下, $\beta$  - 酪蛋白往往是游离态的,温度越低也就越易分离到  $\beta$  - 酪蛋白。这表明只需改变物理条件,不需引入有毒的化学螯合剂即可提高分离效果,得到较高纯度的酪蛋白组分,这使得产品更安全、方法更适用于食品行业。

## 参考文献:

- [1] PLANK J, ANDRES P R, KRAUSE I, et al. Gram scale separation of casein proteins from whole casein on a source 30Q anion-exchange resin column utilizing fast protein liquid chromatography (FPLC)[J]. Protein Expression and Purification, 2008, 60: 176-181.
- [2] 郭成宇. 现代乳品工程技术[M]. 北京: 化学工业出版社, 2004: 19.
- [3] 张芳, 李红旭. 影响牛乳酪蛋白分离因素的研究[J]. 保鲜与加工, 2006, 6(3): 29-31.
- [4] ANDREW L, JEFF L. Methods of extracting casein fractions from milk and caseinates and production of novel products: USA, PCT/GB2002/ 003098[P]. 2003-01-16.
- [5] 郭尧君. 蛋白质电泳实验技术[M]. 2 版. 北京: 科学出版社, 2001: 74-82.