DOI: 10.12096/j.2096-4528.pgt.24123

中图分类号: TK 01; TL 62

核聚变堆极向场线圈氦冷却管结构设计与优化

邹春龙^{1,2},杜双松^{1,2*},江峰^{1,2},陆坤¹,卫靖¹,沈光¹,Peter Readman³ (1. 中国科学院等离子体物理研究所,安徽省 合肥市 230031; 2. 合肥中科离子医学技术 装备有限公司,安徽省 合肥市 230061; 3. 欧洲聚变能研究中心,西班牙 巴塞罗那 08001)

Structure Design and Optimization of Helium Cooling Tube for Nuclear Fusion Poloidal Coil

ZOU Chunlong^{1,2}, DU Shuangsong^{1,2*}, JIANG Feng^{1,2}, LU Kun¹, WEI Jing¹, SHEN Guang¹, Peter Readman³ (1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, Anhui Province, China; 2. Hefei CAS Ion Medical and Technical Device Co., LTD., Hefei 230061, Anhui Province, China; 3. Fusion for Energy, Barcelona 08001, Spain)

摘要:【目的】氦冷却管是聚变超导磁体系统的核心部件, 承担着超导磁体冷却通道与低温系统的连接, 直接关系着 超导磁体系统的运行稳定。由于氦冷却管需在装置现场进 行焊接, 因此氦管结构设计需从功能实现和现场工艺可操 作性等多角度综合考虑,提出合理解决方案。【方法】通 过综合分析聚变堆极向场结构,开展了低温氦冷却管结构 优化及压损评估研究, 并从结构力学角度对氦孔尺寸和焊 缝倒角优化设计方面进行了全面的对比分析,提出聚变堆 磁体氦冷却管设计准则一般要求。结合氦冷却管结构力学 分析、压损分析,并综合考虑现场可操作性,提出氦冷却 管设计方案,以满足聚变堆磁体氦冷却管要求。【结果】 短跑道氦冷却管虽然会导致局部压损增大,局部压损相当 于2.7 m长的导体,但与线圈总长相比,其所带来的压损 基本可忽略。【结论】采用短跑道型氦管设计方案不仅可 以满足功能需求,还可极大提高现场工艺可操作性,可满 足聚变堆超导磁体氦冷却管要求。

关键词: 热核聚变; 聚变装置; 极向场线圈; 氦冷却管; 结构设计; 超导磁体; 强磁场; 等离子体

ABSTRACT: [Objectives] The helium cooling tube is the core component of the fusion superconducting magnet system. It connects the superconducting magnet cooling channel and the cryogenic system, and is directly related to the operation stability of the superconducting magnet system. Since helium cooling pipes need to be welded on site, the structural design of helium pipes needs to be comprehensively considered from multiple aspects such as

reasonable solutions need to be proposed. [Methods] Through comprehensive analysis of the polar field structure of the fusion reactor, the structural optimization and pressure loss assessment of the cryogenic helium cooling tube were carried out. A comprehensive comparative analysis of the helium hole size and the optimal design of weld chamfer was carried out from the perspective of structural mechanics. The general requirements for the design criteria of the fusion reactor magnet helium cooling tube were proposed. Based on the structural mechanical analysis and pressure loss analysis of helium cooling tubes, and the comprehensive consideration of field operability, a helium cooling tube design scheme was proposed to meet the requirements of helium cooling tubes for fusion reactor magnets. [Results] Although short running helium cooling pipes will cause an increase in local pressure loss, which is equivalent to a conductor of 2.7 meters long, the pressure loss caused by them is basically negligible compared with the total length of the coil. [Conclusions] The adoption of the short track helium tube design scheme can not only meet the functional requirements, but also greatly improve the operability of the field process and meet the requirements of helium cooling tubes for superconducting magnets in fusion reactors.

functional realization and on-site process operability, and

KEY WORDS: thermonuclear fusion; fusion device; poloidal field coil; helium cooling tube; structural design; superconducting magnet; strong magnetic field; plasma

0 引言

超导线圈是磁约束核聚变装置重要的子系统 之一,其主要通过产生具有特定位形的强磁场实

基金项目: 中欧国际合作项目(Y35QT21611))。

Project Supported by China-EU International Cooperation Projects (Y35QT21611).

现对等离子体的约束,使等离子体运动状态满足 托卡马克装置运行要求。高磁场约束性能是磁约 束聚变装置获得高参数等离子体的必备条件,因 此线圈的运行安全稳定是聚变装置稳定运行的 基础[1-4]。

聚变装置超导线圈运行在大电流、强磁场和 超低温环境下,线圈在运行过程中需承受巨大的 电磁负载,如国际热核聚变试验堆(international thermonuclear experimental reactor, ITER)装置超 导线圈承受的电磁力约为800 kN/m, 中国聚变工 程实验堆(China fusion engineering test reactor, CFETR)装置中线圈在4.2 K低温运行过程中将产 生约1500 kN/m的电磁力,因此在这些线圈系统 中, 对线圈结构的力学性能方面提出了较高的要 求。一般来说, 铠装管内电缆导体(cable-inconduit conductor, CICC)是国际上磁约束聚变装 置中绕制超导线圈的首选导体, 其内部由导体多 级绕制而成,其独特的叠层结构可为冷却介质(一 般为液氦)提供所需的流通通道,导体外部整体封 装在不锈钢铠甲中, 提升超导线缆的力学性能。 由此可以看出铠甲是CICC 导体的关键结构之一, 其不仅起到支撑保护内部超导电缆的作用, 还为 超导电缆提供了运输冷却介质的通道[5-6]。

在聚变线圈系统中,氦冷却管的功能是实现线圈导体与低温液氦冷却管路连接的过渡,其主要采用在导体铠甲上钻孔,再通过氩弧焊接方式将氦冷却管与导体进行连接。与线圈导体相比,氦冷却管结构更为复杂且为现场焊接,焊缝可检难度大,长期运行在低温、强电磁力环境下,因此氦冷却管成为聚变线圈中最薄弱的结构之一。如实验性先进超导托卡马克(experimental advanced superconducting tokamak,EAST)装置,在稳定运行12年后,其中一个极向场线圈(PF8)发生氦泄漏,最终检测发现,泄漏处为氦冷却管焊缝处[7-9]。

本文以聚变装置极向场超导线圈为研究对象, 对氦冷却管结构设计进行了详细描述,并采用有 限元方法对焊缝倒角尺寸和氦冷却孔尺寸进行了 分析研究,最后对氦冷却管进行了压降验证测试, 最终完成氦冷却管的结构优化和功能验证,为聚 变装置超导线圈氦冷却管的设计提供了完整的分 析依据。

1 极向场超导线圈氦冷却管设计准则

极向场超导线圈运行在强磁场、大电流和超 低温(4.5 K)环境下,线圈一般由多个双饼线圈堆 叠组合而成,由NbTi CICC超导导体绕制而成, 通过液氦实现冷却。极向场线圈氦冷却管设计在 线圈内侧区域,冷却管路通过氦冷却管将冷却介 质液氦传输至线圈导体内部, 实现线圈从常温至 4.5 K的降温,确保线圈进入工作超导态。氦冷却 管布局在内侧的主要原因则是从线圈运行安全角 度出发,由于内侧线圈所在区域磁场强度更高, 而氦进管路的温度相比于氦出管更低, 此设计可 确保高场线圈冷却效果最佳,从而提升线圈的运 行安全性[10-12]。但是,由于高场区磁场高,导体也 将承受更大的电磁力, 氦冷却管处也将承受更大 的应力, 因此对极向场导体上的氦孔、氦进管以 及氦进管与铠甲焊缝的强度提出了更高的要求。 总体而言, 氦冷却管结构设计需在力学性能上满 足强度要求, 在局部压力损失上满足功能需求, 在工艺上需满足在线开孔、焊接及无损检测要求。 具体如下:

- 1) 力学性能要求。首先在铠甲上加工氦孔,并与氦进管采用焊缝连接。由于氦孔的存在,导致铠甲的结构存在不连续性,另外,焊缝以及焊接残余应力会对氦进管的强度设计提出很大的挑战。此外,氦进管在线圈运行过程中,氦孔和氦进管焊缝会受到热应力、液氦压力以及超导线圈通电时的电磁载荷。因此,必须针对氦进管开展结构强度的分析研究,以保证氦进管的安全性、稳定性和可靠性。
- 2) 功能需求。氦进管为液氦冷却管道与导体连接的过渡段,会存在液氦局部压力损失。根据ITER PF超导线圈设计要求,氦进管局部压力损失要求不大于5m导体长度产生的等效压力损失。因此氦进管除需满足强度要求外,还要具备合理的结构,以降低氦进管的局部压力损失。
- 3) 工艺要求。PF 导体铠甲氦进孔的加工和 氦进管与铠甲氦孔的定位、安装、焊接、无损检

测均属于在线作业,在设计阶段就要考虑在线作业的可行性。同时,焊接时需控制焊接温度,要求超导线侧焊接时温度不超过250℃,目的是防止持续的焊接热输入量导致超导线表面感受温度过高,进而影响到超导线的超导电学性能。

2 极向场超导线圈氦冷却管结构设计

2.1 载荷类型

由于极向场线圈氦冷却管通过氩弧焊接与线圈铠甲相连,因此氦进管所受载荷与线圈所受载荷相同,主要包括如下3类:

- 1) 热应力载荷。超导线圈由常温(~293 K)降温至工作温度(~4.5 K)过程中,由于不同材料间线膨胀系数的不同产生的热应力。
- 2)压力载荷。超导线圈运行在正常态时,氦 冷却管内压力为0.6 MPa,但当线圈发生故障时, 管内液氦会从液态向气态转变,导致管内气压增 大,根据评估,最大氦气压力将高达3 MPa。
- 3)循环电磁载荷。在完成冷却后,超导线圈 将进行通电测试,在装置励磁过程中,极向场氦 冷却管区域将在极向场自身磁场及其他磁场共同 作用下,产生较大的洛伦兹力。由于极向场线圈 运行在交变电流下,导致氦进管将遭受交变电磁 载荷的作用。

2.2 结构设计

氦冷却管的设计是综合优化的结果,除满足力学性能要求和功能需求外,必须充分考虑其工艺性。在设计之初,氦冷却管拟采用长跑道结构设计,此设计可最大程度上降低应力对氦冷却管结构造成的应变影响,降低氦冷却管焊接力学性能要求,但由于氦冷却管需在装配现场进行焊接,受制于装配现场的在线复杂空间环境,长跑道氦冷却管的氦孔加工难度大,氦孔的清根工作量大且风险高,易对超导线缆造成损伤,因此,应重视焊缝长度大导致变形难以控制等工艺难题。基于上述工艺难题,在完成长跑道氦冷却管设计的基础上,开展了氦冷却管结构优化,最终提出短跑道氦冷却管结构设计方案,如图1所示。与长跑道氦冷却管相比,短跑道氦冷却管具有如下优点:

- 1) 氦孔尺寸更小,可有效降低在线加工难度,同时还可降低手动清根损伤到超导线的风险,对线圈安全更有益。
- 2) 焊缝全焊透可实现性更大,且焊缝长度更短,焊接变形更易控,焊接后导体无需再次矫形。
- 3) 焊接后,焊缝更容易进行渗透和射线无损 检测,更有效地保证焊缝焊接质量。

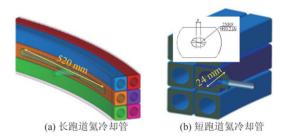


图1 氦冷却管结构设计示意图

Fig. 1 Structural design diagram of helium cooling tube

3 极向场超导线圈氦冷却管结构分析

3.1 氦冷却结构

氮冷却管整体结构比较复杂,从结构力学评估角度来看,相比氮冷却管本体,焊缝是整个氮冷却管的薄弱处,因此,为了更为高效地实现氦冷却管的力学分析,在建模过程中,采用1/4直氮冷却管建模,同时对焊缝结构进行详细建模,焊缝区有限元节点与铠甲节点采用一一对应,其他接触非焊接区则采用标准接触建模,不锈钢接触面摩擦因数根据经验设置为0.25,电磁载荷力以ITER装置为例进行评估。根据ITER提供的等离子体电流波形,可计算得出其极向场线圈最大环向应力发生在PF5线圈上,最大应力为271 MPa;在交变电磁载荷下,极向场线圈环向静态最大应力同样发生在PF5线圈上,最大疲劳应力载荷为183 MPa^[13-14]。

除上述电磁载荷外,氦冷却管还可能承受氦压,氦冷却管正常工作时压力为0.6 MPa,故障态时氦气压力上升至3 MPa,在进行力学加载时,将其对称施加于管路边界。短跑道型氦冷却管载荷和边界约束如图2所示。

氦冷却管弯曲段是应力集中区,该处焊接的 焊缝应力直接关系着氦冷却管的安全,氦冷却管 倒角尺寸会直接影响焊缝区的应力集中系数,为 了获得合理的焊缝倒角尺寸,需对不同倒角下的 氦冷却管焊缝区和氦孔侧应力进行分析,获得最 优倒角尺寸。对氦冷却管氦孔及焊接倒角定义如 图 3 所示,短半边长度定义为A,长半边长度定义为B,焊缝倒角定义为R。

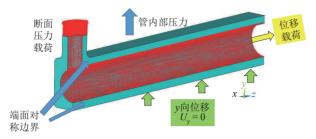


图2 短跑道型氦冷却管载荷和边界约束

Fig. 2 Load and boundary constraints for short runway helium cooling pipes

图3 氦孔及焊缝倒角定义

Fig. 3 Definition of helium holes and weld chamfers

3.2 焊接倒角尺寸设计与分析

氮冷却管倒角尺寸分别按 3、5、6.3 mm 进行计算,得到不同 R 下的氮进管焊缝区和氦孔内侧区的应力分布关系曲线,结果如图 4 所示,氦孔尺寸初步设计为 A=8 mm,B=14.5 mm,即 B/A=1.667 保持不变。

根据分析计算结果可知,焊缝倒角尺寸与焊缝处最大应力成反比关系,焊缝倒角越大,焊缝处最大应力越低,焊缝处的应力集中系数越小。与此同时,焊缝倒角尺寸对氦孔区的最大应力影响较小,当倒角从 R=3.0 mm增加到 R=6.3 mm 后,氦孔区应力只增加了约5%,影响较小。当焊缝倒角 R=3.0 mm时,焊缝处最高应力为658 MPa;当焊缝倒角 R=6.3 mm时,焊缝处最高应力降低至477 MPa,应力降低了27.5%。聚变装置超导导体铠甲一般采用316L材料,其在低温4 K下的许用应力为467 MPa,根据设计标准,最大应力小于屈服应力,故此,焊缝处的应力应小于700 MPa,因此当焊缝倒角达到6.3 mm时,最高应力为



图4 不同 R 下的 **S**进管焊缝区和 **S**孔内侧区的应力分布 关系曲线

Fig. 4 Stress distribution curves of helium inlet tube weld zone and helium hole inner zone under different R

477 MPa,满足力学性能设计指标要求。在实际倒角尺寸确定过程中,还需充分考虑导体铠甲截面尺寸,需避免氦冷却管倒角与导体自身倒角干涉,因此倒角不可能无限增大,具体设计时,首先需满足力学性能指标要求,其次需满足工程设计要求。

3.3 氦孔尺寸设计与分析

氦孔开孔的尺寸设计是氦冷却管设计中的关键步骤,除对现场工艺造成影响外,还直接关系到线圈冷却用液氦流量的压损,进而对低温系统功率、超导线圈热稳定和装置安全造成影响。根据上述氦冷却管焊缝倒角分析结果,针对焊缝倒角尺寸*R*=6.3 mm,开展不同氦孔尺寸下的氦冷却管力学分析研究。氦冷却管开孔尺寸分类如表1所示。

根据上述开孔尺寸,对焊缝区和氦孔区的应 力进行分析,结果如表2所示。

由分析结果可知,尺寸类型1和6焊缝周长都

表1 氦冷却管开孔尺寸分类

Tab. 1 Type of hole size for helium cooling tubes

尺寸类型	A/mm	B/mm	B/A
1	6	10.0	1.666 67
2	8	13.3	1.666 67
3	10	16.7	1.666 67
4	8	12.0	1.5
5	8	14.4	1.8
6	8	8.0	1.0

表2 氦孔尺寸对焊缝区和氦孔区应力分析

Tab. 2 Analysis of stress in the weld and helium hole zones affected by different type of helium hole

尺寸类型	氦进管焊缝区	氦孔内侧	焊缝区应力	氦孔内侧应力
	应力/MPa	应力/MPa	集中系数	集中系数
1	529	517	1.95	1.91
2	478	521	1.76	1.92
3	470	538	1.73	1.99
4	469	542	1.73	2.00
5	482	511	1.78	1.89
6	454	652	1.68	2.41

较小,但类型1氮进管焊缝区应力较大,类型6氮孔内侧应力集中系数较高,从结构分析上并非优选。尺寸类型2、3和4结构分析力学性能差异不大,但考虑到周长对焊接加工量的影响,最终选择类型4尺寸作为氦冷却孔的开槽尺寸,最大可能降低现场焊接难度,确保工艺的稳定性。因此,氦管最终尺寸设计为 $A=8~\mathrm{mm}$, $B=12~\mathrm{mm}$, 焊缝倒角 $R=6.3~\mathrm{mm}$ 。

3.4 氦冷却管疲劳力学性能分析

基于上述的氦冷却管结构设计,对焊缝区进行疲劳力学加载,评估在疲劳力学下,焊缝区能否满足结构强度要求。疲劳分析采用 S-N 方法进行,在疲劳寿命评估时,应力幅值采用GOOAMAN Law进行修正。由于最大应力发生在焊缝区域,采用公式(1)进行修正处理,将焊接残余应力也计入其中,焊缝残余应力按照 250 MPa计算。

$$S_{\text{eq}} = \frac{S_{\text{alt}}}{1 - \frac{S_{\text{mean}} + S_{\text{res}}}{S}} \tag{1}$$

式中: S_{eq} 为等效应力幅值; S_{alt} 为应力幅值; S_{mean} 为平均应力幅值; S_{res} 为残余应力幅值; S_{u} 为极限应力幅值。

由式(1)计算得到等效应力幅值 S_{co} =310 MPa,

参考文献[15-16]所述的评估标准,要求疲劳寿命60000次对应的许用应力幅值为410MPa,高于等效应力幅值,说明焊缝可满足疲劳要求。

4 极向场超导线圈氦冷却管压降验证

由于氦进管是用来连接氦冷却管路与导体的 过渡段,氦进管位置存在液氦局部流阻,导致局 部压力损失,因此为了进一步验证压损的准确性 能,在完成线圈结构设计和力学性能分析后,进 行了氦冷却管压损归一化分析研究。

氦进管的局部压降计算公式为:

$$\Delta P = K \frac{\rho V^2}{2} \tag{2}$$

$$Re = \frac{\rho V D_{\rm h}}{u} \tag{3}$$

式中: K为压降系数; ρ 为流体密度; V为流体流速; $D_{\rm h}$ 为流体流过的等效直径; μ 为流体的动力黏度; Re 为雷诺数。

为了便于氦管的压损测试,对氦冷却管的压损采用数据归一化处理。与氦管不同,导体内部存在超导线缆,因此首先需建立导体等效阻力系数与等效雷诺数,再根据Katheder定律完成导体的雷诺数、流量等流体参数的确定。最终在进行氦进管局部压损等效评估时,通过导体液氦质量流量和压降参数,计算对应的等效阻力系数和等效雷诺数,如下式所示:

$$K^* = \frac{\rho \Delta P}{Q_c^2} \tag{4}$$

$$Re^* = \frac{Q_c}{\mu} \tag{5}$$

根据式(2)、(3),可得:

$$K^* = \frac{K}{2A_c^2} \tag{6}$$

$$Re^* = \frac{A_c}{D_h} Re \tag{7}$$

式中:Q。为质量流量;A。为管路横截面积。

根据式(6)和(7),计算导体在氮气介质对应工作点下的等效雷诺数 $Re^*=2368 \text{ m}$,等效阻力系数 $K^*=228 \text{ m}^{-4}$ 。针对 1 m长导体和短跑道型氦冷却管,通过调整不同氮气的质量流量,记录质量流量和压损,再建立等效雷诺数与等效阻力系数的关系,如图 5 所示。

根据图 5,完成 1 m长度导体和短氦冷却管在不同氮气流量下的压损对比评估,结果如图 6 所示。可以得出,1 m长导体和短跑道型氦冷却管测试的体积流量和压损基本呈线性关系。短跑道型氦进管在同压力损失下,氦气流量与导体相比有较为明显的降低,说明短跑道氦冷却管局部压损明显高于导体,通过换算得到,短跑道型氦进管产生的局部压损相当于 2.7 m 导体长度产生的压损。但与线圈整体导体相比(如 ITER PF6 超导线圈,双饼线圈导体总长为 359 m),短跑道结构的局部压降损失基本可以忽略,因此短跑道氦进管压损在可接受范围内,不会对低温系统和线圈冷却造成较大影响。

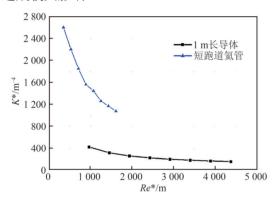


图5 等效流量系数关系图

Fig. 5 Equivalent flow coefficient diagram

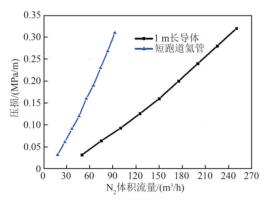


图 6 氮气流量与压损关系图

Fig. 6 Relationship between nitrogen flow and pressure loss

5 结论

氮冷却管是聚变超导线圈冷却的关键部件, 由于其需在线进行工艺焊接,因此在结构设计上 除了满足功能需求外,还应特别重视工艺的可行 性。针对聚变装置极向场超导线圈氦冷却管设计进行了详细介绍,从氦冷却管设计准则到结构优化及力学性能分析,最后到压损计算,全面总结了聚变装置线圈氦冷却管设计,特别在氦孔、焊缝倒角和压损比较方面提出了新的设计准则,具体结论如下:

- 1) 针对氦孔尺寸设计,提出了分析氦孔应力 集中系数的简化方法,该分析方法具有普遍性, 可应用到其他结构部件应力集中系数的计算及结 构优化。
- 2) 从工艺角度否定了结构上最优的长跑道氦 冷却管结构设计,提出短跑道设计方案,并进一 步完成了焊缝倒角的结构优化,可为相关氦冷却 管的设计提供工程参考。
- 3)提出类比归一法压损评估方法,对短跑道型氦冷却管压损进行评估,结果表明,短跑道氦冷却管虽然会导致局部压损增大,局部压损相当于2.7 m长的导体,但与线圈总长相比,其所带来的压损基本可忽略。

参考文献

- [1] MITCHELL N, BESSETTE D, GALLIX R, et al. The ITER magnet system[J]. Fusion Engineering & Design, 1997, 36(1): 23-32.
- [2] MARTOVETSKY N N, HATFIELD D R, MILLER J R, et al. Qualification of the US made conductors for ITER TF magnet system[J]. Hinyokika Kiyo Acta Urologica Japonica, 2010, 20(3): 466-469.
- [3] HAO Q, HUSSAIN M T, DAI C, et al. Conductor design and performance analysis for CFETR magnet[J]. Fusion Engineering and Design, 2022, 182: 113224.
- [4] 张彪,郑金星,王琳,等. ITER校正场磁体超导接 头的设计与测试[J]. 核聚变与等离子体物理,2022, 42(2): 206-209.
 - ZHANG B, ZHENG J X, WANG L, et al. Design and test of superconducting joint for ITER calibration field magnet[J]. Nuclear Fusion and Plasma Physics, 2022, 42(2): 206-209.
- [5] 高翔,万元熙.磁约束聚变能源的发展机遇与挑战[J]. 科技导报,2023,41(19):59-65.
 - GAO X, WAN Y X. Opportunities and challenges for the development of magnetic confinement fusion energy[J]. Science & Technology Review, 2023,

41(19): 59-65.

- [6] 吴向阳. CICC 导体测试装置的设计及性能研究[D]. 合肥:中国科学技术大学,2018.
 - WU X Y. Design and performance research of CICC conductor testing device[D]. Hefei: University of Science and Technology of China, 2018.
- [7] BRUZZONE P. Pressure drop and helium inlet in ITER CS1 conductor[J]. Fusion Engineering & Design, 2001, 58: 211-215.
- [8] 方有为,胡献国,杜双松,等. EAST PF8 线圈氦管 结构分析和疲劳试验[J]. 核聚变与等离子体物理, 2020, 40(4): 357-363.
 - FANG Y W, HU X G, DU S S, et al. Structural analysis and fatigue test of helium inlet for EAST PF8 coil[J]. Nuclear Fusion and Plasma Physics, 2020, 40(4): 357-363.
- [9] 张之荣,吕刚,鲁翠萍,等. CFETR 极向场线圈氦进管低温疲劳性能研究[J]. 江西理工大学学报,2021,42(4):97-102.
 - ZHANG Z R, LÜ G, LU C P, et al. Research on fatigue performance of CFETR PF coil helium inlet at low temperature[J]. Journal of Jiangxi University of Science and Technology, 2021, 42(4): 97-102.
- [10] 回屹,马冲,易泽川.焊接疲劳分析方法研究进展[J].中国金属通报,2022(13): 156-158.
 - HUI Y, MAC, YI Z C. Research progress of welding fatigue analysis methods[J]. China Metal Bulletin, 2022(13): 156-158.
- [11] 李宁,杨庆喜,宋云涛,等. CFETR 外真空杜瓦结构分析与疲劳寿命评估[J/OL]. 真空科学与技术学报, 1-8[2024-11-06]. http://kns.cnki.net/kcms/detail/11.5177.tb.20230901.0925.002.html.
 - LI N, YANG Q X, SONG Y T, et al. Structural analysis and fatigue life assessment of CFETR external vacuum dewar[J/OL]. Chinese Journal of Vacuum Science and Technology, 1-8[2024-11-06]. http://kns.cnki.net/kcms/detail/11.5177. tb. 20230901.0925.002.

html.

- [12] DECOOL P, CLOEZ H, NICOLLET S, et al.

 Design and qualification of ITER CS and TF cooling inlets[J]. IEEE Transactions on Applied Superconductivity, 2006, 16(2): 876-879.
- [13] ITER. Pressure drop measurements of ITER CC conductor and their helium inlets_V1.3[R]. Cadarashe, France: ITER, 2018.
- [14] ITER. System requriment document (SRD) for magnet[R]. Cadarashe, France: ITER, 2009.
- [15] ITER. Design description document (DDD) DDD11-7: conductor[R]. Cadarashe, France: ITER, 2019.
- [16] BESSETTE D, BOTTURA L, DEVRED A, et al.

 Test results from the PF conductor insert coil and implications for the ITER PF system[J]. IEEE

 Transactions on Applied Superconductivity, 2009, 19(3): 1525-1531.

收稿日期: 2024-07-01。 **修回日期:** 2024-10-18。

作者简介:

邹春龙(1989), 男, 博士, 副研究员, 主要研究方向为聚变超导电物理装置, clzou@ipp.ac.cn;

邹春龙

杜双松(1980), 男, 博士, 高级工程师, 主要研究方向为聚变超导磁体技术, 本文通信作者, ssdu@ipp.ac.cn。

杜双松

(责任编辑 辛培裕)