加工工艺

肉冻类产品的加工技术

齐晓辉(中国肉类食品综合研究中心,北京 100075)

肉冻类产品是以煮猪皮或食用明胶为基物 制成的特色肉制品,胶冻对这类产品的质量有 决定性的影响,胶冻的强度取决于明胶的勃卢 姆值、明胶浓度、冷却速度、pH值和温度。肉 冻类产品具有低脂肪、低热量和高蛋白的特点, 是一种很有发展前途的肉制品。

肉冻类产品由预煮的肉块和肉冻制成,具 有制作简单、造型美观、色泽绚丽、清爽味美 等特点,在一些大中城市已逐渐受到消费者欢 迎。

一、分类

(一) 肉冻类产品大体上可分为两类

A. 用浓皮冻和肉冻将肉块包围在一起的 产品,如水晶肚、猪头奶酪,家庭制作的猪皮 冻即是最简单的例子。

B. 用预煮的通常切块的肉与透明的有时 着色的明胶冻制成,有时还加入一些蔬菜成份, 如蘑菇、洋葱和胡萝卜等。

目前国内对这类产品还没有规定具体的等 级标准,在德国肉冻类产品称为布朗产品 (Brawn product),在"德国肉与肉制品指南"一 书中按产品的固形物与胶冻的比例、固形物中 肉的数量和种类分为三个等级。

(二) 各种肉冻类产品主要区别

- ——肉的数量和种类(牛肉、猪肉、禽肉、 内脏、头肉);
 - ——肉块的大小;
 - ——肉冻的类型(皮冻/胶冻);
 - —调味料和香辛料:
 - ——造型(容器/肠衣);
 - ——是否需进一步煮制。

二、加工技术

由于肉冻类产品质地的形成很大程度上取 决于肉冻的制备,下面详述这种特殊的工艺。

(一)少量制备肉冻

原料采用胴体的富含胶原部分,如头肉、蹄 和猪皮。将原料洗净,放入煮锅内烧开,然后 在50℃ 煨5-6小时。在此期间胶原(明胶)逐 渐溶入肉汤中, 此胶样肉汤冷却后的硬度可以 调节, 肉冻太硬可用水或清肉汤稀释, 硬度不 够可于90℃进一步浓缩。肉汤浑浊可加鸡蛋清 澄清,用量是每升肉汤一只鸡蛋的蛋清。澄清 后将肉汤放凉,去掉上层脂肪和底层浑浊物。这 就是家庭和小作坊制作常用的方法。目前西式 肉冻肠多趋向于用工业化生产的食用明胶制 作。

(二) 食用明胶

1. 明胶是一种胶体,由动物的皮、骨、软 骨、韧带、肌膜等含有的胶原蛋白经部分水解 后得到。用酸法和碱法生成浓胶液,然后经几 个工序精制和干燥,最后粉碎、过筛和混合。粒 度为 0.1, 0.5, 0.8, 260 和 10mm 不等。

食用明胶的主要成分是:蛋白质 82%以 上,水分16%以下,灰分2%以下。它含有多 种氨基酸,其中包括除色氨酸以外的全部必需 氨基酸,将明胶与鸡蛋、鸡肉、猪肉等色氨酸 含量较高的食物制成肉冻类产品,可大大提高 明胶的营养价值。

明胶不溶于冷水,但能缓慢地吸水膨胀,它 能吸收 5-10 倍甚至更多的水分,在 49℃ 以上 热水中溶解,溶液冷却时粘度不断增大直到凝 结胶冻。胶冻的弹性随时间不断增加,这时分

在明胶溶液中,蛋白质分子的空间结构是 由许多简单的柔韧的具有不规则形状的蛇形链 构成(图1)。搅拌,使一些链和另一些链脱开, 溶液粘度降低;静置,使内部结构的刚性逐渐 增长,即有更多的链搭牢,溶液粘度将增大。温 度是影响粘度的重要因素,一般说来,在35℃ 以下, 温度越低, 粘度增长越大。

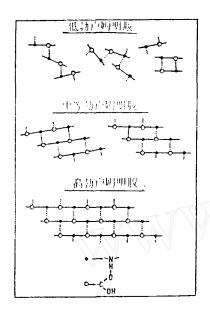


图 1. 明胶的结构模式

当各种蛋白质链借助于侧链互相缔台时, 会形成一个不溶性的固体点阵,这就是胶冻。胶 冻强度是明胶在食品制造上得到广泛应用的重 要性能指标之一,胶冻强度可用勃卢姆冻力仪 客观地测定而得到勃卢姆值 (bloom value),单 位为克。方法是先在冻胶瓶内将浓度 6.67%的 明胶溶液于 10±1℃ 保持 16-18 小时,测定时 将直径 1/2 英寸的圆柱塞压陷入胶冻 4mm。勃 卢姆值常作为食用明胶按质论价的依据。

2. 明胶溶液的制备

先把明胶在冷水中浸泡 10-15 分钟,以防 止产生难于溶解的明胶颗粒团, 浸泡时需要的 水量为明胶重量的 2 倍, 然后加入剩下的水分 在 60-70℃ 溶解, 其间不断轻轻地搅动。粉末 状明胶的溶解可采用下述办法: 将明胶加入到 65℃ 水中,同时以每分钟 40-50 转的转速搅 拌, 直至明胶完全溶解。

明胶溶液是微生物的良好培养基,要想达 到较长时间保存, 必须具备足以破坏或抑制微 生物繁殖的很热或很冷的条件, 最好不要制备 多于当日生产所需的胶液, 万一需留作次日使 用要迅速冷却储存,再次使用前重新加热,盛 放明胶溶液的器具要严格用热水洗刷、消毒,以 免细菌繁殖。

胶冻的形成是一个缓慢的过程,并不是产 品一冷却即完成。最终产品的强度在16小时之 后才达到。如图 2 所示,加工后 5 小时内强度 很快地增加,之后继续增加。在此期间摇晃或 移动产品会干扰胶冻结构的形成,导致最终强 度低。所以胶冻类产品应在固化作用完成之后 再运输和分销。

急速冷却明胶溶液会使胶冻的强度比逐渐 冷却低得多。冷却过快则粘度增加过快, 明胶 分子不能适当地搭牢,产品即达到应有的强度。

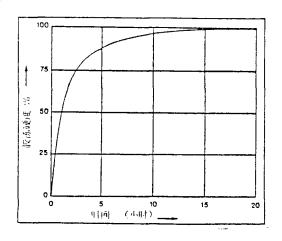
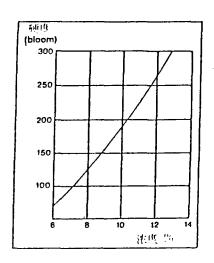



图 2 明胶溶液硬度形成与时间的关系,硬度 值以占最终胶冻硬度的百分数表示。 (6.67% 明胶溶液,10℃)

(三) 胶冻强度

胶冻的强度由多种因素决定,如勃卢姆值、 明胶浓度、冷却速度、pH和温度。

图 3 表明勃卢姆值主要取决于明胶的浓 度。在明胶浓度 6.67%下测定勃卢姆值,明胶 勃卢姆值为 80。提高明胶浓度,勃卢姆值也增 加,因而勃卢姆值80的明胶在浓度12%时与 勃卢姆值 260 (浓度 6.67%) 的明胶一样硬。

图 3. 胶冻硬度与浓度的关系

(在10°C测定,以勃卢姆值表示)

因此,中等强度的胶冻既可以用高浓度的 低勃卢姆值明胶, 也可用低浓度的高勃卢姆值 明胶来加工。

明胶的勃卢姆值一般为90-300克,使用 高勃卢姆值的明胶通常不是最经济的。从降低 产品的成本考虑,宜选用较高浓度而勃卢姆值 低的明胶。因为明胶的刚性与其浓度的平方成 正比,并且凝胶强度近似地随浓度的 1.7 次方 而变化。

图 4 表明温度对两种不同胶冻强度的影 响。两者在10℃时强度相等,随着温度提高,低 勃卢姆值的胶冻强度下降,在20℃时,勃卢姆 值 250 胶冻强度降低 50%, 勃卢姆值 90 的胶 **冻降低 75%, 勃卢姆值 250 胶冻在 25℃ 的强** 度与勃卢姆值 90 胶冻在 20℃ 时的强度相等。 这个例子表明温度对胶冻强度的影响程度。

由于胶冻的强度随保存温度升高而降低, 所以产品应尽可能在冷藏温度保存, 加入琼脂 (1%) 或皮及含大量结缔组织的内含物可提高 产品的强度。

pH 是另一个重要的影响因素,加入酸大 大降低胶冻的强度。如图 5 所示, 当 pH 从 5.0 下降到 4.0 时,胶冻的强度下降 10%,pH 从 5.0 下降到 3.0 胶冻强度几乎下降 20%。胶冻

强度在 pH5.0 时随反应时间只稍有下降,而在 pH3.0 时下降很显著。所以在制备胶液时,酷 酸应加得越晚越好,胶液也不要在热态保持过 长时间。

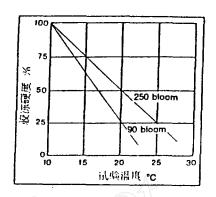


图 4. 不同勃卢姆值胶冻的硬度和温度之间的 关系

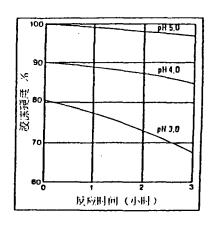


图 5. 胶冻硬度与 60℃ 下反应时间和 pH 值之 间的关系

(四) 混合和灌装

腌制和煮过的肉块按所需大小预切成均匀 的方块, 为使肉块更均匀和最大限度地减少最 初煮肉块时的损失,常把煮火腿切做肉块。肉 块和脂肪应用热水冲洗,去掉会使胶冻浑浊的 脂肪和蛋白质碎片。冲洗后将肉块冷却, 有利 于提高最终产品的强度和切片性。

新鲜蔬菜和蔬菜罐头常用作蔬菜内含物,

在混合或切碎蔬菜时,应尽量减少机械应力,使 软的蔬菜块不被破坏。新鲜蔬菜切碎后要用热 水抄熟、放凉。

常用的香辛料和调味料有胡椒、灯笼椒、甘 牛至、姜、丁香、枯名、芹菜、月桂叶、醋酸 和白葡萄酒。

肉块、蔬菜和香辛料均匀混合后, 装入杀 南过的肠衣或容器中,然后灌入胶液。明胶在 胶液中的浓度依后续加热的程度而定,以使冷 却后的胶冻足够硬为准。对不同的加热程度推 荐下列胶冻成份:

- ——不需进一步加热 勃卢姆值 220 的明胶 3.5%
- 勃卢姆值 240 的明胶 12%
- ---后续加热 110--120℃ 勃卢姆值 260 的明胶 18%

上述数据依配方、所需酸含量和强度而变。 出于微生物学上考虑,最好将明胶置于相对高 的温度下,以杀死存在于内含物表面的营养型 微生物。

(五) 加热

图 6 为消毒或杀菌过程对胶冻强度的影 响。在 60°C2 小时的反应时间内, 疑胶强度只稍 有降低,在80℃下,则下降显著。从图中也可 以看到, pH 值也是一个决定性因素, 图 5 和图 6 清楚地表明, 明胶溶液的加热时间越短越好。 在 110℃ 和 120℃,胶冻强度降低很大。

(六) 感官接受度

Klettner (1990) 结合仪器和感官对含 45.1%火腿块、15.8%蘑菇、1.5%碎洋葱、 3.9%胡椒和 33.6%胶冻的肉冻肠的接受度进 行了评价,结果表明,用勃卢姆值 270 的 15% 明胶溶液制成产品的硬度最受欢迎。从风味上 看,加入0.3-0.6%醋酸使产品pH值在5.4 一4.8时风味最受欢迎。

由于我国消费者不大喜欢过酸的肉品,可 把 pH 值调高些。

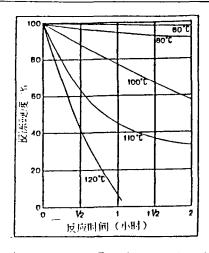


图 6. 在pH5.5和不同温度下,胶冻硬度和反 应时间的关系

(七) 浑浊

尽管使用透明度很好的明胶,有时肉冻类 产品中也会出现浑浊。

原因之一是生产使用的水特别硬,水中的 钙盐与明胶中的盐分发生反应使胶液浑浊。

肉中释出的脂肪是造成浑浊的另一个常见 原因,由于明胶乳化性好,把脂肪包围在胶液 中。所以肉和胶液不要在高温下混合,最好先 将肉块装入杀菌过的肠衣中,再加入胶液。

肉蛋白引起蛋白质浑浊时, 可在产品中看 到细的脉络状物,这种缺陷可通过调整 pH 值 或用蛋清澄清来避免。加热后蛋清凝絮,将浑 浊物包围并沉到底部。

(八) 低热量食品

肉冻类产品是一种很有意义的低脂肪、低 热量和高蛋白肉制品,特别是用牛肉和禽肉制 作的肉冻产品脂肪含量极低, 并且含有高比例 的有价值的肉蛋白。表 1 表明在几种常见香肠 中肉冻肠的热量值最低。

表 1. 几种常见香肠制品的热量值比较

产品名称	卡/100g 产品
法兰克福型香肠	300
肝肠	400
血肠	350
干香肠	450
肉冻肠	250

三、产品举例

三、产品举例

(一) 水晶肚

1. 原料、调味料

100kg 瘦猪肉 50kg 猪皮 80kg 水 2.5kg 食盐 3kg 大葱末 2kg 姜粉 2kg 香油 200g 味精 200g 五香粉

- 2. 肠衣: 猪肚
- 3. 加工要点:

200g

①把瘦猪肉切成长 40mm、宽 30mm、厚 20mm 薄片。

桂皮粉

- ②将洗净无毛的猪皮在清水锅内煮至半 熟,捞出,切成(绞成)黄豆粒大小,投入盛 有 80kg 清水的锅内熬成浓稠状的胶液。
- ③把食盐、大葱末、姜末、香油、味精、五 香粉、桂皮粉连同肉片倒入冷却至40-50℃的 胶液中, 搅拌均匀。
- ④把猪肚洗净, 控干水分, 装入 80-90% 的肉馅,用线绳扎紧。
- ⑤沸水下锅,大肚煮3-3.5小时,小肚煮 2 小时。
- ⑥煮好的肚以3:1的糖、锯末比在熏炉内 熏制 6-7 分钟, 即为成品。

(二) 德国冷切肉冻

1. 原料、调味料、添加剂

55kg 猪肉 (80/20)

5kg 蔬菜混合物

40kg 水

30kg 热水, 10kg 冷水

5kg 明胶

750g 食盐

200g 香辛料

150g 醋酸

- 2. 推荐使用模子或大口径透明塑料肠衣, 肠衣在灌装前于热水中浸一下。
 - 3. 操作要点:

A. 前一天

- ①用 20%的盐和腌制剂盐水注射肉
- ②将注射过的肉和剩下的盐水在冷却间腌 制过夜,并盖严防止退色。
 - B. 加工日
- ③将肉从盐水中取出,在74℃水煮或蒸煮 至中心温度 62-64℃。
- ①在蒸煮的同时,配制明胶溶液:将明胶 加入冷水中, 使之在无搅拌下吸水 10-15 分 钟,然后加入剩下的热水,搅拌至明胶和调味 料完全溶解。
- ⑤肉煮好后取出,切成 20×20mm 或更小 的方块

⑥在模子中制作

将一薄层胶液倒入模子底部,加入蔬菜混 合物或其他装饰性成份,如切片的煮鸡蛋或切 片的黄瓜于明胶薄层中, 待其冷却至稠厚但不 凝固时,将明胶和肉块的混合物倒入模子,不 **需进一步煮制,使产品在空气中冷却,待完全** 变硬后脱模。脱模前先把一把餐刀浸入热水中, 然后用刀尖沿模周边将胶冻弄松,将模子浸入 热水约10秒钟,接着倒过来轻轻振动,使产品 从模子中滑出。也可在装模前将油涂在模子里 面,这样脱模容易些。为达到较长的货架期,采 用真空包装和冷藏。

⑦在肠衣中加工

将肉块和蔬菜混合物倒入明胶溶液中,在 明胶液仍在液态时灌入肠衣,然后在72℃蒸煮 1小时,之后,使产品在冷水或空气中冷却或者 在模子中成型。

参考文献

Klettner P. G.: Fleischwirtsch. 70 (12), 1440-1443, 1990

PAPS & Co. Old World Sausage Recipe 齐晓辉:中国食品工艺和配方大全,河北 科学技术出版社,1990 (下转31页)

肉制品	蛋白质	氨基酸①	必要氨基酸②	2/1
莎夫羊肉	61. 2	57.50	29. 43	51. 20
南京板鸭	21. 4	18. 44	7. 28	39. 48
叉烧肉	25.0	23. 46	8. 61	36. 71
广式香肠	27.5	23. 80	9. 21	38. 71
符禺集烧鸡	29. 7	26. 21	9. 85	37. 58
酱牛肉	36. 1	34.50	14. 34	41.60
火腿肠	15. 4	13. 31	5. 72	42. 87
甜牛肉松	28. 3	27.30	9. 27	33. 80

表 2. 莎夫羊肉蛋白质、氨基酸总量同其他肉制品比较 (%)

结语

提高产品质量是肉制品加工面临的重要任务。我们对莎夫羊肉的开发表明,在传统肉制品加工中,以保持传统特点为前题,采用现代工艺技术和设备,对其加工方法进行改进,以提高质量,是完全可行的。羊肉加工与其它畜肉比较相对耗工费时。在加工中应针对原料生产特点,加强生产管理,严格工艺要求,综合利用原料,提高产品档次,以获取较佳的经济效益。

参考文献

- 1. 邹国兴等: 牛肉脯的生产工艺及设备, 食品科学, 1988 年第 12 期, P54-56
- 2. 魏培德等: 肉制品加工中的嫩化技术及 嫩化机理,食品科学,1988年第8期,P95-98
- 3. 张婉燕等:几种名优肉制品氨基酸测定,食品科学,1989年,第11期,P41—43
 - 4. 王卫:现代工艺条件下传统羊肉制品加

工改进,第37届国际肉类科学技术大会论文集(英文),第1卷991—994页,1991年9月

- 5. 孟宪敏: 一种无膻羊肉制品的简单加工 法, 肉类研究, 1991 年第2期, P36-38
- 6. 王卫等: HACCP 管理法在肉制品加工中的应用, 肉类研究, 1992 年第3期, P27-30
- 7. GALL C. (1981): Goat Production, Academic Press. Germany.
- 8. LEISTRER L. (1985): Hurdle Technology applied to meat products of the Shelf—stable product and Intermediate moisture Food types. In: Properties of water in Foods. SIMATDS.D. and MULTON.J. L. (Ed) Martinus Nijhoff publishers, Dordrecht, The Netherland, 309—329
- 9. PINKERTAN F. (1987): Goat meat sausage making, Dairy Goat Journal, Vol. 65 No. 12, 42-43

天津轻工业学院食品工业表研室:食品添加 1987 剂 (修订版),轻工业出版社,1985

Schmdit G. R.: In "Meat Science, Milk Sci- 国食品出版社, 1988 ence" 沈钟和王果庭: B

王远亮编译:明胶食品,中国食品出版社,

徐润和梁庆华: 明殷的生产及应用技术, 中

沈钟和王果庭:胶体和表面化学,化学工业 出版社,1991