In-situ Formation of MgAl₂O₄: A Method of Tailoring Microstructure and Properties for Development of High-performance Refractories

LIU Guoqi¹, WANG Minghui², LI Hongxia^{1*}, YU Jianbin¹, GAN Feifang³, GU Qiang¹, MA Weikui¹

- 1 State Key Laboratory of Advanced Refractories, Sinosteel Luoyang Institute of Refractories Research Co, Ltd., Luoyang 471039, China
- 2 Zhengzhou University, Zhengzhou 450052, China
- 3 Baoshan Iron & Steel Co., Ltd., Shanghai 201900, China

Liu Guoqi, born in 1975, received his doctor's degree in materials science from University of Science and Technology Beijing in 2006. He is mainly engaged in functional refractories for basic and applied research. He has published more than 70 articles in China and oversea scientific journals, among which more than 20 papers have been indexed by EI or SCI. He has applied for more than 30 patents and obtained 20 authorized invention patents.

Abstract

The *in-situ* formation mechanism of $MgAl_2O_4$ was introduced, focusing on the formation process by solid phase reaction and gas phase reaction as well as the phenomenon of secondary spinelization. The influencing factors of the *in-situ* $MgAl_2O_4$ formation and its effect on the microstructure and the properties of materials were systematically summarized for the Al_2O_3 – $MgO-MgAl_2O_4$ system and the carbon–containing refractories systems. It was pointed out that the *in-situ* formation of $MgAl_2O_4$, including secondary spinelization, can regulate the microstructure and the service performance of materials. Its expansion effect can not only offset the shrinkage caused by sintering to improve the corrosion resistance of refractories, but also seriously restrict the reliability of functional refractories. The composition, the particle size, the atmosphere, and the temperature are important factors affecting the *in-situ* formation of $MgAl_2O_4$. In the carbon-containing materials systems, the solid–solid reaction and the gas–solid reaction coexist to produce $MgAl_2O_4$, which provides an effective way to further regulate the microstructure and the properties of materials through the reaction process.

Key words: MgAl₂O₄; *in-situ*; spinalization; gas phase; secondary spinalization; high temperature

1 Introduction

MgAl $_2$ O $_4$ is the only binary compound in the MgO-Al $_2$ O $_3$ system with cubic crystal system structure, which is widely used as refractories because of its high melting point (2 135 °C), stable chemical properties, low thermal expansion coefficient, low thermal conductivity, good thermal shock resistance and good slag corrosion resistance, such as MgO-Al $_2$ O $_3$ bricks, MgO spinel bricks, Al $_2$ O $_3$ -MgO castables, MgO-Al $_2$ O $_3$ -C bricks, and MgAl $_2$ O $_4$ -C stoppers $_1^{[1-3]}$. In addition to its inherent properties, the *in-situ* formation of MgAl $_2$ O $_4$ from MgO and Al $_2$ O $_3$ during service can regulate the microstructure and the service performance of materials $_1^{[3]}$. The spinelization at the composite interfaces of MgO-C materials and Al $_2$ O $_3$ -C materials also affects the quality stability of

functional products for continuous casting during service^[4]. In this paper, the *in-situ* formation mechanism of MgAl₂O₄ was introduced first, and then the influencing factors of *in-situ* formation and its influence on the microstructure and the properties of materials were analyzed based on the Al_2O_3 –MgO–MgAl₂O₄ system and carboncontaining refractories system.

2 *In-situ* Formation Mechanism of MgAl₂O₄

2.1 Solid Phase Reaction

In general, $MgAl_2O_4$ is mainly *in-situ* formed by the solid phase reaction of Al_2O_3 and $MgO^{[5-6]}$. According to the Wargner

*Corresponding e-mail: lihongx0622@126.com

China's Refractories

mechanism, as shown in Fig. 1. A MgAl $_2$ O $_4$ layer is first formed in the region where Al $_2$ O $_3$ and MgO contact, and then Al $^{3+}$ and Mg $^{2+}$ diffuse through the layer to the MgO–MgAl $_2$ O $_4$ interface and Al $_2$ O $_3$ –MgAl $_2$ O $_4$ interface, respectively. To maintain the electrovalent equilibrium, two Al $^{3+}$ ions diffuse to the MgO–MgAl $_2$ O $_4$ interface and three Mg $^{2+}$ ions diffuse to the Al $_2$ O $_3$ –MgAl $_2$ O $_4$ interface, forming one and three MgAl $_2$ O $_4$ mdecules at the two interfaces. Thereby, as the reaction proceeds, MgAl $_2$ O $_4$ is gradually generated at the sites of Al $_2$ O $_3$ and MgO. However, due to the inconsistent diffusion rate of the two kinds of ions, a certain number of pores form (Kirkendall effect). The density of MgAl $_2$ O $_4$ differs from that of Al $_2$ O $_3$ and MgO, leading to a volume expansion of 8.1% and 16.7% or even 56% (calculated by different models) $^{[6-7]}$, which can increase the porosity, reduce the strength, deteriorate the corrosion resistance and affect the

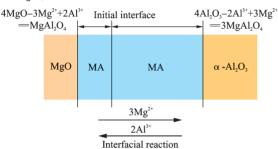


Fig. 1 Formation mechanism diagram of MgAl₂O₄ by solid phase reaction

stability of materials. Nevertheless, the expansion of refractories can integrate the refractory lining of high-temperature devices such as ladles into a whole, reducing the possibility of penetration and corrosion by molten steel/slag through the brick joints^[8–10].

2.2 Gas Phase Reaction

In carbon-containing refractories, carbon hinders the contact between MgO and Al₂O₃ and limits the in-situ formation of MgAl₂O₄ by the Wargner mechanism. However, the partial pressure of Mg gas phase in the non-oxidizing atmosphere is high, which provides an alternative pathway for the *in-situ* production of MgAl₂O₄^[11]. Firstly, MgO decomposes to generate Mg gas, and then it undergoes gas-solid reaction with Al₂O₃ or gas-gas reaction with aluminumcontaining gas phase to produce MgAl₂O₄, as shown in equations 1-3. When both gas-gas and gas-solid reactions exist, more MgAl₂O₄ forms^[12]. In addition, MgAl₂O₄ can also *in-situ* form in the gas phase in MgO-C materials added with metallic Al^[13]. Yamaguchi^[14] suggested that MgAl₂O₄ *in-situ* formed from Al gas, CO and MgO. Zhu, et al. [15] analyzed the formation process of hollow MgAl₂O₄ whiskers, as shown in Fig. 2, and concluded that Mg gas phase played an important role in the formation of hollow MgAl₂O₄ whiskers.

$$MgO(s) + C(s) = Mg(g) + CO(g)$$
(1)

$$Mg(g) + Al_2O_3(s) + CO(g) = MgAl_2O_4(s) + C(s)$$
 (2)

$$Al_2O(g) + Mg(g) + 3CO(g) = MgAl_2O_4(s) + 3C(s)$$
 (3)

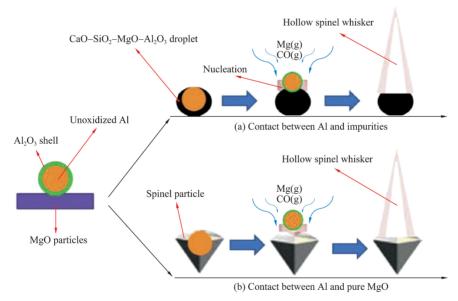


Fig. 2 Formation mechanism diagram of hollow MgAl₂O₄ whiskers [19]

2.3 Secondary Spinelization

There is a wide solid solution range for $MgAl_2O_4$ in the Al_2O_3-MgO system, and the solid solution amount of Al_2O_3 or MgO in $MgAl_2O_4$ gradually increases with the increase of the temperature. Therefore, solid solution occurs between $MgAl_2O_4$ with the theoretical composition and Al_2O_3 or MgO at high temperatures, which is known as secondary spinelization^[16]. The solid solution of periclase in $MgAl_2O_4$ starts at 1 500 °C, reaching the maximum amount of 10 mass% at 1 995 °C. As the temperature decreases, the solid

solution degree decreases, resulting in the complete desolution of MgO from MgAl $_2$ O $_4$ at below 1 500 °C. The solid solution amount of Al $_2$ O $_3$ in MgAl $_2$ O $_4$ can be more than 20 mass%, which is more than that of MgO in MgAl $_2$ O $_4$. After solid solution of Al $_2$ O $_3$, MgAl $_2$ O $_4$ has cationic lattice defects, which increase with the increase of the solid solution degree of Al $_2$ O $_3$, thus affecting the activity and the reaction with slag. In addition, as Al $_2$ O $_3$ -rich spinel is thermodynamically unstable, corundum phase precipitates again after high temperature calcination, whose amount gradually increases with the number of

treatments^[17-19], until it reaches the equilibrium state described in the phase diagram.

3 Al₂O₃-MgO-MgAl₂O₄ System

With two or three components of Al₂O₃, MgO or MgAl₂O₄, spinelization or secondary spinelization occurs at high temperatures, thus affecting the microstructure and the performance of refractories. With Al₂O₃ as the main component and an appropriate amount of MgO, Al₂O₃-MgO castables produce volume expansion during service, offsetting the shrinkage caused by sintering and other factors, which improves the slag penetration resistance of castables. The studies on the in-situ formation of MgAl₂O₄ in Al₂O₃-MgO castables showed that in addition to the temperature, the particle size, the purity, the crystalline morphology, and the Al₂O₂/MgO mass ratio are all important factors^[8, 20–22] affecting the microstructure and the properties of materials. The smaller the particle size of MgO, the higher the reactivity of MgO and the more the in-situ formed MgAl₂O₄[9]. Coarse MgO brings cracks and large pores, which is beneficial to the thermal shock resistance, but not conducive to the improvement of the slag resistance. With different morphologies of Al₂O₃ and MgO, the spinalization degree of the fused MgO-tabular Al_2O_3 is the lightest, producing the smallest expansion; the spinalization degree of the sintered MgO-sintered Al₂O₃ is the most serious, producing the largest expansion^[10]; and sintered MgO presents better effect than MgCO₃. The binders and the additives of Al₂O₃-MgO castables also affect the in-situ formation of MgAl₂O₄. For example, the addition of silica powder or the composites of silica powder and TiO₂ can balance the expansion^[23] and improve the workability of castables. The in-situ formation of MgAl₂O₄ starts at 1 000–1 300 °C, which is closely related to the above influencing factors.

Generally, it is believed that the formation of MgAl₂O₄ is proportional to the square root of time under normal pressure; however, the effect of the pressure on the formation is rarely studied. Watson, et al. [24] investigated the growth rate of MgAl₂O₄ at the Al₂O₃-MgO interface under the condition of 1 200-2 000 °C and 1.0–4.0 GPa using a solid state piston cylinder apparatus and found that the reaction rate was log-linearly related to the temperature and the pressure. The higher the temperature and the lower the pressure, the higher the reaction rate. So, the external constraint condition imposes a great influence on the performance of Al₂O₃-MgO castables. Compared with those under the condition without external constraint, the number of pores and the permanent linear change of castables produced by spinelization decrease by 21.9% and 70.4%, respectively, and the slag penetration resistance index decreases from 18.2% to 9.2%, with an improvement close to 50%, under the condition with external constraint to simulate the actual service condition^[25]. Most laboratory studies were conducted under unconstrained conditions where materials were free to expand and more pores formed due to the Kirkendall effect^[6], which deteriorated the key service performance of materials, such as the corrosion resistance. Although the laboratory results of materials were poor, they presented good practical applications. Therefore, a proper

evaluation method will yield twice the result with half the effort.

In the Al_2O_3 –MgO–MgAl $_2O_4$ system, secondary spinelization also has an important effect on the microstructure and the properties of materials. In the Al_2O_3 –MgAl $_2O_4$ system, the expansion caused by the solid solution of Al_2O_3 into MgAl $_2O_4$ at high temperatures can offset the shrinkage caused by sintering. The more the amount of MgAl $_2O_4$ and the smaller the particle size $^{[27]}$, the more obvious the spinelization effect. In addition, the solid solution of Al_2O_3 into MgAl $_2O_4$ can enhance the bonding degree of the matrix of Al_2O_3 –MgAl $_2O_4$ castables, thus improving the creep resistance $^{[26]}$, the hot strength, the thermal shock resistance, etc. $^{[28]}$ In the MgO–MgAl $_2O_4$ system, the solid solution of MgO into MgAl $_2O_4$ at high temperatures is limited and the effect of secondary spinelization on the microstructure and the properties of materials is rarely reported.

4 Carbon-containing Refractories System

 Al_2O_3 –MgO–C refractories present good corrosion resistance and high mechanical strength, which are commonly used on the side walls and the bottom of ladles. Due to the formation of $MgAl_2O_4$, a continuous slight volume expansion occurs at the working surface of Al_2O_3 –MgO–C bricks, counteracting the gaps created at the brick joints because of thermal cycling, which ensures the corrosion resistance of refractories. In addition, the formed $MgAl_2O_4$ has a high refractoriness and good corrosion resistance, which contributes to the corrosion resistance of furnace linings. However, for the refractories on the the sidewalls and at the bottom of ladles, it is proven that the expansion behavior is more important compared with the corrosion resistance. Unstable or excessive expansion can lead to spalling or accelerate corrosion^[29].

It is also generally believed that the particle size, the purity, and the crystalline form of raw materials affect the *in-situ* formation of MgAl₂O₄ in Al₂O₃–MgO–C materials. Due to its higher sintering activity, sintered Al₂O₃ is more conducive to the *in-situ* formation of MgAl₂O₄ than fused Al₂O₃^[30], and corundum with uniform impurity distribution is more likely to form MgAl₂O₄ than regular brown fused alumina^[31]. The smaller the particle size of MgO, the higher the degree of spinelization, the more the amount of MgAl₂O₄, and the higher the Al₂O₃-rich degree of MgAl₂O₄. However, with a too large particle size, MgO cannot be completely converted into MgAl₂O₄ after high temperature heat-treatment^[32–33]. For carbon-containing materials, the *in-situ* formation of MgAl₂O₄ starts at 950–1 300 °C, showing little difference with Al₂O₃–MgO castables.

The formation of $MgAl_2O_4$ can improve the ceramic bonding of MgO-C materials, increasing their corrosion resistance^[14]. The temperature, the atmosphere and the carbon content are important factors affecting the microstructure of *in-situ* formed $MgAl_2O_4$ by gas phase reaction. In MgO-C materials with AI, the $MgAl_2O_4$ morphology is highly dependent on the heat treatment temperature. Octahedral $MgAl_2O_4$ particles form at lower heat treatment temperatures^[15, 34], $MgAl_2O_4$ fibers and hollow $MgAl_2O_4$ fibers form at about 1 500 °C, and octahedral $MgAl_2O_4$ particles also form at 1 600 °C. N_2 is more favorable than Ar for the formation of $MgAl_2O_4$ fibers^[35].

China's Refractories

Hollow $MgAl_2O_4$ fibers form more easily in lower carbon-containing materials because of the larger contact area of Al and $MgO_1^{[15]}$.

To satisfy the requirement of clean steel production, low carbon refractories are one of the current hot spots for research^[36], but they perform poor thermal shock resistance and slag penetration resistance. In terms of improving the slag resistance of low carbon MgO-C materials, certain attempts have been made based on the perspective of in-situ spinelization reaction. A certain amount of fine Al₂O₃ powder was introduced, so that the microstructure and the slag resistance of the materials were improved by the expansion characteristics of *in-situ* spinelization during service^[13, 37]. MgAl₂O₄ can be in-situ formed in carbon-containing refractories not only by solid phase reaction of Al₂O₃ and MgO, but also by gas phase reaction. Changing the path of MgAl₂O₄ formation can regulate the microstructure and the properties of materials. Zheng Han^[33] and Shang Xinlian^[38] prepared carbon-coated Al₂O₃ powders by physical granulation and chemical deposition, and then added the powders into MgO-C materials to control the MgAl₂O₄ formation through gas-solid reaction, showing that the carbon-coated Al₂O₃ powder addition increased the formation temperature of MgAl₂O₄, reduced the volume expansion effect from spinelization, and effectively

improved the bonding of aggregates and matrix, which provided an innovative method for the property and structural modulation of carbon-containing refractories.

Because of their good resistance to CaO corrosion, MgO-C refractories are often used as the key parts of functional refractories for continuous casting to cast calcium-treated steel, such as the head of monoblock stoppers and the wrist of submerged entry nozzles. Due to their poor thermal shock resistance, MgO-C refractories are generally used in combination with Al₂O₃-C refractories. During service, monoblock stoppers or submerged entry nozzles are prone to fracture, thus interrupting casting process and leading to production accidents^[36]. Through analyzing the microstructure of the used materials, it is found that Mg near the interface between MgO-C and Al₂O₃-C refractories diffuses to Al₂O₃–C materials *in-situ* forming MgAl₂O₄, as shown in Fig. 3. The expansion effect from spinelization weakens the interface bonding. therefore, the functional refractories are easy to fail under the action of external forces^[4]. To reduce the spinelization effect, MgAl₂O₄ powder was introduced into MgO-C materials, but it did not affect the diffusion of Mg gas phase to Al₂O₃-C materials, which still weakened the interface bonding^[4].

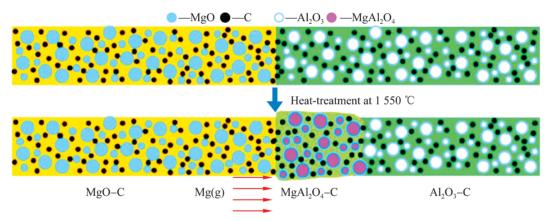


Fig. 3 Mechanism of in-situ spinelization at interface between Al₂O₃–C and MgO–C materials^[4]

After spinelization is completed, with the increase of the temperature, Al_2O_3 further solidifies into MgAl $_2\text{O}_4$ forming secondary spinalization. Figure 4 shows the XRD patterns of $\text{Al}_2\text{O}_3-\text{C}-\text{MgO}$ samples heat-treated at different temperatures and the lattice constant of in-situ formed MgAl $_2\text{O}_4$. It can be seen that the peak

of MgAl₂O₄ shifts in the direction of high 2θ value and the lattice constant of MgAl₂O₄ decreases. An appropriate addition of Al₂O₃ increases the hot strength of MgAl₂O₄–C materials, but excessive alumina deteriorates the hot service performance^[32]. For Al₂O₃–C materials added with MgO heat treated at 1 650 °C, the Al₂O₃

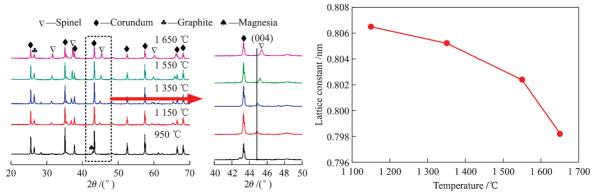


Fig. 4 XRD patterns of Al₂O₃-C-MgO samples heat-treated at different temperatures and lattice constant of in-situ formed MgAl₂O₄^[39]

content in $MgAl_2O_4$ can reach 91 *mass*%, which can enhance the ceramic bonding in the matrix, and improve the strength of materials. Secondary spinelization also creates a certain volume expansion of Al_2O_3 —C materials, thus increasing the apparent porosity, decreasing the bulk density, and increasing the permanent linear change, which should be considered for materials design^[33].

5 Conclusions

The *in-situ* formation and secondary spinelization of MgAl $_2$ O $_4$ is an important mean of regulating the microstructure and the service performance of refractories. Although the expansion effect can offset the shrinkage produced by sintering and improve the corrosion resistance of furnace lining materials, such as Al $_2$ O $_3$ -MgO castables, low-carbon MgO-C refractories, and Al $_2$ O $_3$ -MgO-C materials, it severely limits the reliability of functional refractories. The composition, the particle size, the atmosphere, and the temperature are important factors affecting the *in-situ* formation of MgAl $_2$ O $_4$, whose morphology and amount have an important effect on the properties of materials. In the carbon-containing materials systems, the solid–solid reaction and the gas–solid reaction coexist to produce MgAl $_2$ O $_4$, which provides an effective way to further regulate the microstructure and the properties of materials through the reaction process.

However, in the current studies, it is difficult to precisely regulate the *in-situ* formation of $MgAl_2O_4$ in carbon-containing materials. At the same time, laboratory studies rarely consider practical applications. In addition, there are few reports on the effects of secondary spinelization on the properties and the microstructure of refractories. Therefore, effectively utilizing the *in-situ* formation of $MgAl_2O_4$ to produce refractories with low pollution, good corrosion resistance and high reliability will be an important way for future research and development.

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (2021YFB3701400), the Natural Science Foundation of China (51932008) and Central Plains Science and Technology Innovation Leader (204200510011).

References

- [1] Li Hongxia. Refractory Handbook (in Chinese). Metallurgical Industry Press, 2021.
- [2] Jing Guihua, Xiao Guoqing. Recent research development of magnesia—alumina spinel refractories. Naihuo Cailiao (Refractories, in Chinese), 2004, 38(5): 347–349.
- [3] I.Ganesh. A review on magnesium aluminate (MgAl $_2$ O $_4$) spinel: synthesis, processing and applications. International Materials Reviews, 2013, 58(2): 63–112.
- [4] Qiang Gu, Yanxiang Zhang, Weikui Ma, Guoqi Liu, Xinhong Liu, Hongxia Li. Interfacial spinalization of Mg0–C/Al₂O₃–C composite functional refractory component at high temperature. Ceramics International, 2020,

- 47(2): 2705-2714.
- [5] Braulio M., Rigaud M., Buhr A., Parr C., Pandolfelli V. C. Spinel-containing alumina-based refractory castables. Ceramics International, 2011, 37(6): 1705–1724.
- [6] Sako E. Y., Braulio M., Zinngrebe E., Laan S., Pandolfelli V. C. Fundamentals and applications on *in-situ* spinel formation mechanisms in Al_2O_3 —MgO refractory castables. Ceramics International, 2012, 38(3): 2243–2251.
- [7] Kyiota Y. Reduction of permanent linear change of Al_2O_3 –MgO castable. Proceedings of the Unified International Conference on Refractories, Aachen, German, 2007: 546–549.
- [8] Luz A. P., Martinez A., Braulio M., Pandolfelli V. C. Thermodynamic evaluation of spinel containing refractory castables corrosion by secondary metallurgy slag. Ceramics International, 2011, 37(4): 1191–1201.
- [9] Souza T. M., Luz A. P., Brito M. A. M., Pandolfelli V. C. *In-situ* elastic modulus evaluation of Al_2O_3 –MgO refractory castables. Ceramics International, 2014, 40(1): 1699–1707.
- [10] Tripathi H S, Ghosh A. Spinelization and properties of Al_2O_3 – $MgAl_2O_4$ –C refractory: Effect of MgO and Al_2O_3 reactants. Ceramics International, 2010, 36(4): 1189–1192.
- [11] Bavand-Vandchali M., Sarpoolaky H., Golestani-Fard F., Rezaie H. R. Atmosphere and carbon effects on microstructure and phase analysis of *insitu* spinel formation in Mg0–C refractories matrix. Ceramics International, 2009, 35(2): 861–868.
- [12] Zhang Yanxiang, Li Hongxia, Yang Wengang, Liu Guoqi, Zhang Liping, Tian Xiangyu, Shang Xinlian. Preparation and formation mechanism of magnesium aluminate spinel whiskers by carbothermal reduction method. Materials Review (in Chinese), 2018, 32(8): 1352–1356.
- [13] Bavand-Vandchali M., Golestani-Fard F., Sarpoolaky H., Rezaie H. R., Aneziris C. G. The influence of *in-situ* spinel formation on microstructure and phase evolution of MgO–C refractories. Journal of the European Ceramic Society, 2008, 28(3): 563–569.
- [14] Yamaguchi A. Thermochemical analysis for reaction processes of aluminium and aluminium–compounds in carbon-containing refractories. Taikabutsu Overseas, 1987, 7(2): 4–13.
- [15] Tianbin Zhu, Yawei Li, Shaobai Sang. Formation of hollow MgO-rich spinel whiskers in low carbon MgO–C refractories with Al additives. Journal of the European Ceramic Society, 2014, 34(16): 4425–4432.
- [16] Cao Zhenxing, Zhang Wei, Shi Gan. Effect of secondary spinelization reaction on sintering of $MA-Al_2O_3$ materials. Naihuo Cailiao (Refractories, in Chinese), 2011, 45(6): 417–419, 423.
- [17] Pei Chunqiu, Shi Gan. Influence of the composition on MA spinel properties. Journal of Wuhan University of Science and Technology (in Chinese), 2012, 35(3): 207–210.
- [18] Cao Zhenxing. Development of lightweight MgAl₂O₄ castables for secondary spinalization [Dissertation (in Chinese)]. Luoyang: Sinosteel Luoyang Institute of Refractories Research, 2011.
- [19] Shi Gan, Zhang Wei. Solid solution and precipitation of corundum in alumina-rich spinel. Naihuo Cailiao (Refractories, in Chinese), 2012, 46(6): 414–416.
- [20] Yung-Chao Ko. Role of spinel composition in the slag resistance of Al_2O_3 -spinel and Al_2O_3 -MgO castables. Ceramics International, 2002,

China's Refractories

28(7): 805-810.

- [21] Luz A. P., Braulio M., Martinez A., Pandolfelli V. C. Slag attack evaluation of *in-situ* spinel-containing refractory castables *via* experimental tests and thermodynamic simulations. Ceramics International, 2012, 38(2): 1497–1505.
- [22] Zhang Yankui, Han Bingqiang, Qiu Wendong, He Hengxing, Gong Liubai, Yan Wen, Li Nan. Corrosion resistance of magnesium aluminate spinels with different Al_2O_3 contents to ladle slag. Naihuo Cailiao (Refractories, in Chinese), 2013, 47(2): 92–96.
- [23] Yuan Wenjie, Zhu Qingyou, Deng Chenji, Zhu Hongxi. Modulation of thermal expansion of Al_2O_3 –MgO castables by adding TiO_2 . Proceedings of the 2015 Refractories Comprehensive Annual Academic Conference (in Chinese), Qingdao, Shandong, 2015: 50–51.
- [24] Watson E. B., Price J. D. Kinetics of the reaction $MgO + Al_2O_3 \rightarrow MgAl_2O_4$ and Al-Mg interdiffusion in spinel at 1 200 to 2 000 °C and 1.0 to 4.0 GPa. Geochimica Et Cosmochimica Acta, 2002, 66(12): 2123–2138.
- [25] Sako E. Y., Braulio M., Pandolfelli V. C. Al_2O_3 –MgO castables performance in an expansion constrained environment. Ceramics International, 2012, 38(4): 3513–3518.
- [26] Hou Xiaojing, Huang Zhilin, Li Zhigang. Effect of spinel addition on properties of Al_2O_3 –MgAl $_2O_4$ castables. Naihuo Cailiao (Refractories, in Chinese), 2017, 51(6): 449–451.
- [27] Qin Yan, Wang Yajuan, Wang Yitao, Zhang Pujie. Effect of spinel addition on properties of corundum spinel castable. Bulletin of the Chinese Ceramic Society (in Chinese), 2020(6): 1960–1964.
- [28] Gao Mei, Li Zhaoyun, Wang Tuanshou, Ren Lin, Liu Li, Zhang Sheng. Influence of sintered spinel fines on properties of corundum–spinel castables. Naihuo Cailiao (Refractories, in Chinese), 2018, 52(1): 56–59.
- [29] Muñoz V., Martinez AGT. Thermal evolution of Al_2O_3 –MgO–C refractories. Procedia Materials Science, 2012, 1: 410–417.
- [30] Vanesa Muñoz, Analía Gladys Tomba Martinez. Thermomechanical behavior of Al_2O_3 –MgO–C refractories under non-oxidizing atmosphere. Ceramics International, 2015, 41(3): 3438–3448.

- [31] Marcus Emmel, Christos G. Aneziris, Francesco Sponza, Steffen Dudczig, Paolo Colombo. *In-situ* spinel formation in Al₂O₃–MgO–C filter materials for steel melt filtration. Ceramics International, 2014, 40(8): 13507–13513.
- [32] Zheng Wei. Study of the influence of the composition of $MgAl_2O_4$ –C material for monolithic plug bars on structure and performance [Dissertation (in Chinese)]. Luoyang: Sinosteel Luoyang Institute of Refractories Research, 2016.
- [33] Zheng Han. The regulation of $MgO-Al_2O_3$ formation and its influence on the high-temperature structural stability of carbon-containing materials [Dissertation (in Chinese)]. Luoyang: Sinosteel Luoyang Institute of Refractories Research, 2020.
- [34] Yi Jingguang. Influence of atmosphere on the microstructure and properties of MgO–C refractories [Dissertation (in Chinese)]. Wuhan: Wuhan University of Science and Technology, 2014.
- [35] Duan Hongjuan, Zhu Hongxi, Deng Chengji, Yuan Wenjie. Influence of temperature and atmosphere on the synthesis of $MgAl_2O_4$ spinel fiber. Journal of Synthetic Crystals (in Chinese), 2013, 42(11): 2380–2383, 2395.
- [36] Li Hongxia. Development overview of refractory materials. Journal of Inorganic Materials (in Chinese), 2018, 33(2): 198–205.
- [37] Xie Zhaohui, Ye Fangbao. Influence of alumina micropowder on properties of low carbon MgO–C brick. Naihuo Cailiao (Refractories, in Chinese), 2010, 44(2): 89–91, 99.
- [38] Shang Xinlian, Tian Xiangyu, Li Hongxia, Wang Xinfu, Liu Guoqi, Yang Wengang. Effect of *in-situ* spinel reaction on structure and properties of low-carbon MgO–Al₂O₃–C refractories. Journal of the Chinese Ceramic Society (in Chinese), 2019, 47(3): 412–418.
- [39] Guoqi Liu, Hongxia Li, Han Zheng, Fan Qian, Weikui Ma, Wengang Yang. Mechanism of *in-situ* formation of spinel and its effect on the mechanical properties of Al_2O_3 —C refractories. Ceramics International, 2023, 49(6): 9231–9238.

Received in March, 2023