梅利尼科瓦煤矿综采面设备选型与配套

军亚攸

(天地科技股份有限公司,北京 100013)

[摘 要] 针对乌克兰梅利尼科瓦煤矿生产系统、采煤工艺和煤矿装备等存在的问题,以煤机装备为切入点,对该矿 L6 工作面综采成套设备进行了选型配套。成套设备成功地完成了地面联合试运转并进行了现场应用,效果良好。

[关键词] 综采工作面;设备选型;三机配套;联合试运转

[中图分类号] TD407 [文献标识码] B [文章编号] 1006-6225 (2013) 04-0050-02

Full-mechanized Mining Equipment Lectotype and Matching for Meilinikewa Colliery

乌克兰是一个贫气缺油富煤的国家,煤炭探明储量 34.153Gt,占全球煤炭总储量的 3.5%,居世界第 8 位,因此,煤炭产业成为乌克兰能源安全的支柱产业。然而,乌克兰现有的矿井开采普遍存在生产系统复杂,采煤工艺落后等问题,严重影响了矿井安全、生产问题。主要表现在以下几个方面:

- (1) 工作面增加 2 条超前掘进巷道,使名义上的后退式开采成为实质上的前进式开采,但又不完全是前进式开采,因为工作面两端留有煤柱,并非真正意义上的沿空留巷。
- (2) 工作面两端留有煤柱,使采煤机无法割透煤壁,不得不在工作面两端预开缺口,增加了工作面采煤工艺的复杂性,影响工作面推进速度。
- (3) 采煤机仍采用有链牵引,液压支架毫无根据地均采用了分体顶梁结构,且工作面内运输复杂。
- (4) 矿井回采工作面的布置呈现点多、面广、推进距离短以及实质上的前进式开采留设煤柱较多等原因,随着回采年限的延长导致矿井系统复杂,运输、通风线路过长。
- (5) 矿井均采用 "U"型钢拱形棚子支护, 支护和维护费用高。

综上,本文针对乌克兰煤矿现在的生产系统、采煤工艺和煤矿装备等存在的问题,根据乌克兰梅利尼科瓦煤矿 L6 煤层实际赋存条件,以煤机装备为切入点,为该矿选了一套综采设备,并成功地进行了地面联合试运转。

1 综采工作面设备选型原则

综采工作面设备选型配套应适应相应煤层地质

条件,并能够实现工作面的安全高效生产。应遵循 以下基本原则^[1-2]:

- (1) 采用技术先进、性能可靠成熟的设备。
- (2) 通过选型配套,确保生产系统与运输系统的匹配性与高可靠性。
- (3) 工作面向外各设备生产能力配套应逐渐加大,类似"喇叭口"形式,确保煤流畅通。
- (4) 开采缓倾斜煤层时,液压支架、刮板输送机以及整个"三机"系统要有防倒防滑和挡矸装置。

2 L6 综采工作面设备选型

梅利尼科瓦煤矿 L6 煤层埋深 $885\,\mathrm{m}$,采用单一走向长壁后退式综合机械化采煤法。综采工作面走向长度 $2300\,\mathrm{m}$,倾斜长度 $220\,\mathrm{m}$; 煤层平均厚度 $1.10\,\mathrm{m}$,倾角 $16\sim21\,^\circ$,煤的坚固性系数 $f=1.4\,^\circ$ 基本顶为粉砂岩,直接顶为泥质页岩,直接底为粉砂岩。工作面设备按 $300\,\mathrm{kt/a}$ 进行选型配套。

依据综采工作面设备选型原则并结合煤层赋存 条件,设备选型结果如表1所示。

3 工作面 "三机"配套

工作面 "三机"进行配套之前,必须了解工作面尺寸,包括工作面长度、倾角、两巷断面尺寸,各设备型号、数量、参数、外形尺寸、主要结构型式,工作面煤炭运输方向以及刮板输送机机头的布置方式[4-5]。工作面具体配套形式及设备布置方式为: 刮板输送机机头机尾动力部采用平行布置方式; 采煤机机面高度 708mm,过煤高度 230mm; 支架在最低采高(1.05m)时,顶梁与采煤机之间

[[]收稿日期] 2013-04-16

表1 工	作面设备型号与主要技术参数
------	---------------

设备名称	型号	装机功率。 kW	/ 能力/ (t•h ⁻¹)	数量
采煤机/台	MG150/346-WI	346. 5	250	1
基本支架/架	ZY4000/08/15			154
过渡支架/架	ZYG4000/08/15			6
刮板输送机/台	SGZ630/320	320	300	1
刮板转载机/台	SZZ630/160	160	350	1
转载机自移/套	MY800			1
胶带输送机/台	DSJ80/60/160	160	600	3
胶带机自移/套	DY800			1
乳化液泵站	BRW400/31.4X	250		2 泵 1 箱
喷雾泵站	BPW315/6.3	45		2 泵 1 箱
移动变电站/台 KBSGZY-1000/6			3	
工作面通讯/套	KJ161			1
工作面巷道胶 带机电控/套	KJ161			3
空压机/台	MLGF16/7-90G			2
组合开关/台	KJZ-1500/1140-	9		2

安全过机空间为 151mm。工作面采煤机与刮板输送机配套情况见图 1。

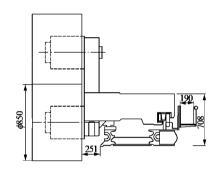


图 1 工作面采煤机与刮板输送机配套

工作面中部和工作面端头的"三机"配套情况见图 2 和图 3。

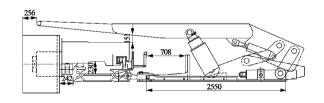


图 2 工作面中部 "三机" 配套

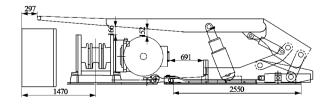


图 3 工作面端头"三机"配套

上述设备能够满足倾角 25°以下综采工作面的安全回采要求,可实现左右工作面互换。L6 综采工作面上下端头采用自动斜切进刀。设备列车布置在运输巷内,随工作面移动;工作面转载机和胶带输送机机尾采用自移系统前移。

4 地面联合试运转

综采工作面设备地面联合试运转主要包含以下 几个方面的内容^[6]:

- (1) 采煤机和输送机的空载运转。
- (2) 采煤机直线行走、垂直弯曲行走以及水平弯曲行走试验。
- (3) 不同高度情况下操作各支架进行各种动作,检查各支架之间、支架与刮板输送机机头(机尾) 电动机之间、支架与采煤机电缆架之间是否有干涉现象。
- (4) 在工作面的中部、机头和机尾分别做推 溜拉架试验,检查各部动作是否顺利,检查调架装 置是否合理。

地面联合试运转结果表明,各设备运转正常,配套尺寸合理,操作灵活、可靠。

5 应用效果分析

成套设备在乌克兰梅利尼科瓦煤矿现场运转表明,所选设备各项参数符合设计要求,达到了预期效果。

6 结束语

乌克兰梅利尼科瓦煤矿 L6 综采工作面成套设备地面试运转取得的成功,标志着乌克兰煤矿机械化改革迈出了关键性一步。下一步要通过工业性试验,继续验证成套装备的合理性。

[参考文献]

- [1] 王喜贵. 综采工作面 "三机"配套几何关系分析 [J]. 煤矿 开采,2011,16(4):78-80.
- [2] 孟二存. 塔山煤矿综放工作面设备配套及巷道尺寸确定 [J]. 煤矿开采, 2008, 13(3): 67-68.
- [3] 徐天彬. 特大型矿井超长综采面设备选型配套研究 [J]. 煤炭工程,2010(4): 2-4.
- [4] 王国法. 煤矿高效开采工作面成套装备技术创新与发展[J]. 煤炭科学技术, 2010, 38 (1): 63-68.
- [5] 张宏明. 塔山煤矿首采工作面设备地面联合试运转 [J]. 煤矿开采,2009,14(1):77-78.

[责任编辑:徐亚军]