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Abstract

In cross-domain few-shot named entity recognition tasks, although decomposition framework-
based methods have achieved certain successes, they still face challenges related to domain
adaptation bias. Fine-tuning with limited labeled samples has inherent limitations in adapting
to target domain feature distributions, and traditional pseudo-labeling methods, which mainly
rely on model confidence, have not yet fully leveraged the guiding value of the few-shot sam-
ples. To address this issue, we design a dual-stage pseudo-label filtering mechanism to enhance
the guiding capacity of few-shot samples. We first conduct preliminary selection using a con-
fidence threshold and then use a small set of labeled target domain data as a quality reference
to calculate semantic matching scores between pseudo-entities and annotated samples. A mini-
mum matching score standard is established to further filter the pseudo-labels. This mechanism
enhances the feature patterns of the limited labeled target domain data with high-quality pseudo-
labels, improving the guiding ability of few-shot samples and promoting model adaptation to the
target domain feature distribution. We evaluate our method on English public datasets and Chi-
nese agricultural datasets (wheat, cotton, and publicly available rice), conducting cross-domain
experiments with rice and wheat as source domains and cotton as the target to validate its effec-
tiveness in real-world transfer scenarios.Experimental results show that our method consistently
outperforms the best baseline approaches.

Keywords: Cross-domain few-shot; Named entity recognition; Decomposition framework;
Pseudo-label self-training; Agricultural pest and disease domain application;

1. Introduction

Named Entity Recognition (NER) is one of the fundamental tasks in natural language pro-
cessing, playing a critical role in applications such as information extraction and knowledge
graph construction [1]. Traditional NER methods typically rely on large amounts of annotated
data for training [2]. However, in specialized domains such as cotton pest and disease manage-
ment, obtaining sufficient labeled data is often costly and time-consuming. Cross-domain few-
shot learning in transfer learning emerges as a solution, aiming to leverage the rich knowledge
from the source domain and a few samples from the target domain to achieve effective entity
recognition [3].
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End-to-end metric learning-based approaches [4,5] have become mainstream for few-shot NER.
These methods require the simultaneous learning of complex structures composed of entity
boundaries and entity types. When the domain gap is large, it is challenging for models to
capture such complex structural information based only on a few domain-adaptive support sam-
ples, resulting in significant performance degradation. Consequently, these methods often suffer
from insufficient boundary learning and misclassify sequences of words into incorrect entity cat-
egories.

Recently, there has been a growing trend toward adopting decomposition frameworks for
named entity recognition [6,7], which decompose NER into two subtasks: entity span detection
and span classification, with each stage addressing a single task. Since decomposition methods
only handle the boundary detection task in the first phase, they can identify more precise entity
boundaries and better leverage source domain knowledge for target domain span type classifica-
tion compared to end-to-end methods, thereby achieving superior performance.

However, in the cross-domain few-shot NER setting, models constructed by such methods
still face the challenge of domain adaptation bias. When linguistic expressions and entity charac-
teristics differ between the source and target domains, fine-tuning with only a few target domain
samples results in limited model capability to understand the feature distribution of the target
domain, thereby restricting feature guidance capability. Specifically, the model tends to detect
many erroneous source domain entity spans and struggles to accurately capture the semantic
boundaries and type characteristics of target domain entities.

To address the above challenges, we propose a decomposition framework for named en-
tity recognition based on dual-stage pseudo-label filtering self-training, termed Pseudo-label Fil-
tering Self-Training for Decomposed Named Entity Recognition (PFSTDNER). The proposed
method extends the guidance capability of few-shot samples through two key steps: first, gener-
ating initial pseudo-labels on unlabeled target domain data using the few-shot fine-tuned model,
followed by preliminary filtering through a confidence threshold; second, using a few labeled
samples as quality reference standards to compute the semantic matching scores between pseudo-
entities and few-shot samples, establishing a minimum matching score threshold to further filter
out low-quality pseudo-labels. This mechanism effectively expands the coverage of target do-
main feature patterns, enhances the guidance capability of few-shot samples, and promotes the
model’s adaptation to the target domain feature distribution.

We evaluate our method on both English public datasets and on Chinese agricultural pest and
disease datasets, where we construct wheat and cotton datasets and incorporate a publicly avail-
able rice dataset. We design cross-domain experiments using rice and wheat as source domains
and cotton as the target domain, verifying the effectiveness and practical value of our approach in
real-world domain transfer scenarios.Experimental results demonstrate that the model incorpo-
rating this mechanism outperforms optimal baseline methods across various cross-domain few-
shot datasets, and validates the practical application value of the proposed model in the Chinese
agricultural pest and disease subdomain migration experiments.

2. Related Work

2.1. Few-Shot Named Entity Recognition

Few-shot NER methods can be broadly categorized into two paradigms: metric-based and
prompt-based approaches. Metric-based methods focus on learning a feature space with strong
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generalization capability and classify spans based on nearest prototypes or neighboring sam-
ples [8,9,10,11,5]. Prompt-based methods leverage pre-trained language models via prompt engi-
neering to better adapt to new entity types with minimal labeled data [12,13].

2.2. Decomposition Frameworks

Recent work decomposes NER into two subtasks: span detection and type classification,
improving boundary detection and leveraging source domain knowledge [14,15,16,10,6]. This two-
stage structure has shown superior performance in few-shot settings compared to end-to-end
methods.

2.3. Self-Training

Self-training, a classic semi-supervised learning technique [17], has been successfully applied
in vision [18,19] and NLP [20,21]. Recent work demonstrates that stronger data augmentation and
larger unlabeled corpora can boost generalization. Our work is the first to integrate pseudo-
label self-training into a decomposition-based few-shot NER framework, with targeted filtering
mechanisms to address domain adaptation bias.

3. Problem Formulation

3.1. Named Entity Recognition Task

Given a token sequence X = (x1, x2, . . . , xn) where xi ∈ V, the goal of NER is to predict
entity spans s = (b, e, c), where b and e are the start and end token positions and c is the entity
type from a set C.

3.2. Cross-Domain Few-Shot Setting

We assume access to:
• A large fully annotated source domain dataset Ds.
• A few labeled target domain examples Dℓt (k-shot, typically k = 1 or 5).
• A large set of unlabeled target domain data Du

t .
The goal is to learn a model Mϕ that accurately detects and classifies named entities in a

target domain test set Dtest
t , under two main challenges:

• Domain Shift: Ps(X,Y) , Pt(X,Y) due to differences in style and entity distribution.
• Annotation Scarcity: Only a very small number of labeled target examples are available.

To address these challenges, we propose a decomposition-based few-shot NER framework
augmented with dual-stage pseudo-label filtering self-training. The model first detects spans in
unlabeled data and then classifies them via a few-shot prototypical network, enhancing adaptation
to the target domain.

4. The Proposed Approach

As illustrated in Figure 1, the proposed PFSTDNER follows the idea of existing cross-domain
few-shot methods, decomposing the entity recognition process into two stages: entity span detec-
tion and entity type classification. The overall construction framework of PFSTDNER consists
of three main components: (a) source domain training phase (Figure 1(a)), (b) target domain
span detection phase (Figure 1(b)), and (c) target domain type classification phase (Figure 1(c)).
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Figure 1: Framework of PFSTDNER Model Construction

In the source domain training phase, the model is trained on the abundant source domain data
within a decomposition framework to learn an entity span detector and a contrastive learning
encoder. In the target domain span detection phase, the model expands the guiding capacity of
few-shot samples through a dual-stage pseudo-label filtering strategy. In the target domain type
classification phase, the model assigns types to detected entity spans based on a prototypical
network.

Compared with existing methods, the main characteristics of the proposed PFSTDNER are:
To address the limited guiding capability of few-shot samples, in the target domain span de-

tection phase, we first introduce a traditional pseudo-label self-training approach to augment the
training data. Furthermore, we innovatively design a dual-stage filtering mechanism within the
pseudo-label self-training process. This mechanism more effectively utilizes the limited labeled
target domain samples as a quality reference standard by computing matching scores between
candidate spans and few-shot entity span words, establishing a pseudo-label filtering mechanism
based on the minimum score criterion, thus further enhancing the guiding effect of few-shot
samples. Additionally, we design an iterative pseudo-label self-training strategy, allowing the
few labeled samples to continuously guide the model in gradually adapting to the target domain
feature distribution.

4.1. Source Domain Training

The source domain training for the decomposed NER framework involves two stages: span
detection and type classification. As shown in Figure 1(a), the objective is to use the source do-
main data to learn an entity span detector and an entity span classifier, providing two task-adapted
models for subsequent few-shot learning in the target domain. For model selection, we adopt dif-
ferent base encoders depending on the language and domain: in the English public domain, we
follow previous settings and use the bert-base-uncased model; in the Chinese agricultural pest
and disease domain, we use the chinese-roberta-wwm-ext model as the base encoder.

We pre-train a span detector and contrastive learning encoder on Ds. The encoder learns
type-aware representations [6].
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4.2. Target Domain Span Detection

4.2.1. Few-Shot Fine-Tuning on Target Domain
As shown in Figure 1(b), after fine-tuning with a small number of labeled target domain

samples, the model’s adaptability to the target domain is initially improved. However, due to
the limited number of labeled samples, the model’s understanding of the target domain feature
distribution remains incomplete, resulting in restricted feature-guiding capability. To alleviate
this issue, we introduce a pseudo-label self-training approach in the target domain span detection
phase to augment the training data and enhance the guidance capability of the few-shot samples.

4.2.2. Pseudo-Label Self-Training Framework
As illustrated in Figure 1(b), we adopt an iterative pseudo-label self-training framework,

where the model fine-tuned on a few target domain samples generates pseudo-labels for the un-
labeled data, thereby continuously optimizing model performance. In each iteration, the current
model serves as the teacher to predict pseudo-labels for the unlabeled target domain data. A spe-
cific filtering strategy is applied to select high-quality pseudo-labels, and a new student model
is then trained using the filtered pseudo-labels together with the few labeled samples. Upon
completion of training, the student model replaces the teacher model and proceeds to the next
iteration. The final trained student model is used to detect entity words in the target domain test
sentences, where consecutive entity words are grouped as candidate spans, forming a candidate
span set for subsequent type classification.

Formally, the iterative pseudo-label self-training framework is defined as follows:
Let:

• Ds: Labeled source domain data

• Dl
t: Labeled few-shot target domain data

• Du
t : Unlabeled target domain data

• Mϕ: Model with parameters ϕ

The iterative self-training process proceeds as:
Initialization: The initial modelMϕ0 is trained on Ds and fine-tuned on Dl

t to obtainMϕ1 .
Iteration: For each iteration k:

1. UseMϕk to generate pseudo-labels for Du
t

2. Apply the pseudo-label filtering strategy to select high-quality pseudo-labels

3. Train a new modelMϕk+1 using Dl
t and the filtered pseudo-label data

4. Repeat the above steps until the preset number of iterations is reached

4.2.3. Pseudo-Label Filtering Strategy
In cross-domain few-shot learning scenarios, even after fine-tuning on a few target domain

samples, models tend to recognize entity patterns from the source domain, which introduces
source domain noise into pseudo-label self-training and hinders target domain adaptation. To
address this, we design a dual-stage filtering mechanism to select high-quality pseudo-labels,
consisting of token confidence filtering and span minimum score filtering.
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Figure 2: Token Confidence Filtering Module

First Stage: Token Confidence Filtering
In the first stage, we use token-level confidence scores for preliminary filtering. For each to-

ken, the model computes the probability distribution over possible labels, and the highest proba-
bility value is taken as the token’s confidence. Tokens with confidence values exceeding a preset
threshold are retained for further processing. This ensures that only tokens with highly confident
predictions are preserved, filtering out uncertain ones.

Figure 2 shows the token confidence filtering module, which compares each token’s predicted
confidence against a preset threshold to select high-confidence tokens.

Formally, for each token ti in the input sequence, the confidence is defined as:

C(ti) = max
j∈Y

P(yi = j|ti) (1)

The token retention condition is:

Retain(ti) = ⊮[C(ti) > τ] (2)

where τ is the preset confidence threshold, and ⊮[·] denotes the indicator function.
After token confidence filtering, tokens labeled as entities are extracted and consecutive entity

tokens are grouped into spans to form the candidate span set.
Second Stage: Span Minimum Score Filtering
In the second stage, we further filter the candidate spans composed of consecutive entity

tokens from the first stage. Considering that single-stage confidence filtering may not suffi-
ciently address semantic shifts caused by domain differences, we perform few-shot matching-
based pseudo-label filtering during this phase.

Figure 3 illustrates the workflow of the span minimum matching score filtering module. This
module leverages a small number of labeled target domain samples as a quality reference stan-
dard to further select high-quality pseudo-labels. Specifically, the module first uses the fine-tuned
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Figure 3: Span Minimum Matching Score Filtering Module

target domain encoder to process all entity spans and their corresponding ground-truth types from
the few-shot samples, calculating their semantic matching scores.

Formally, the matching score for each entity span and its true label is calculated as:

scoretrue(e) = sim( fθ(e), fθ(ctrue(e))) (3)

where e denotes the entity span, ctrue(e) is its corresponding true label, fθ(·) represents the
target domain encoder, and sim(·, ·) denotes the semantic similarity function calculated via dot
product.

The minimum matching score among these spans is determined as the quality threshold:

θmin = min
e∈E

scoretrue(e) (4)

For each candidate span s ∈ Ŝ u
t obtained from the first stage, we compute its semantic simi-

larity scores with all possible type labels. The predicted matching score is defined as:

scorepred(s) = max
c∈C

fθ(s)⊤ fθ(c) (5)

where fθ(s) and fθ(c) denote the encoded representations of the span s and the type label c,
respectively, obtained from the target domain encoder. Here, the similarity function sim(·, ·) is
defined as the dot product between the two vector representations.

Spans are retained based on the following condition: a candidate span is preserved only if its
matching score is greater than or equal to θmin:

Ŝ u,filtered
t = {s ∈ Ŝ u

t | scorepred(s) ≥ θmin} (6)
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where Ŝ u
t is the set of candidate spans after the first stage, and Ŝ u,filtered

t is the set of high-
quality candidate spans after the second stage.

The final high-quality pseudo-label set is composed of the O-label tokens filtered in the first
stage and the candidate entity spans filtered in the second stage:

Ŝ final
t = TO ∪ Ŝ u,filtered

t (7)

where TO denotes the set of high-confidence O-label tokens.
Finally, the filtered high-quality pseudo-label data, combined with the labeled few-shot target

domain data, is used to train the student model:

ϕk+1 = arg min
ϕ
L(Mϕ; Dl

t ∪ Ŝ final
t ) (8)

Through this dual-stage filtering mechanism and iterative self-training framework, the model
can continuously enhance its adaptability to the target domain features, thereby improving the
guidance effect of the few-shot samples.

4.3. Target Domain Type Classification

Few-Shot Labeled 

Data in Target 

Domain

token1 

token5 token6 

span2

span1

sentence1

sentence2

sentence3

span2 class1

span1 class1

span3 class2

span4 class2

span5 class3

span6 class3

span

class1

class2

class3

class4

class5

class6

Target Domain 

Encoder

Figure 4: Few-Shot Prototypical Network Classification

As shown in Figure 4, PFSTDNER follows TadNER [6] to perform type classification using
a prototypical network. Each entity type is represented by a prototype vector, constructed by
aggregating span and label embeddings from few-shot samples.

During classification, candidate spans are matched against these prototypes based on simi-
larity scores, and the type with the highest score is assigned. This approach enables stable and
effective type prediction in few-shot settings.
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5. Experiment

We evaluate the effectiveness of PFSTDNER in addressing the domain adaptation bias prob-
lem in cross-domain few-shot named entity recognition through three groups of experiments:
(1) cross-domain few-shot experiments on English public datasets; (2) ablation experiments to
assess the contributions of our proposed method; and (3) cross-domain few-shot experiments in
the Chinese agricultural pest and disease subdomain.

The experiments aim to verify the effectiveness of the proposed method and the designed
dual-stage pseudo-label filtering strategy in enhancing the guidance capability of few-shot sam-
ples and improving the model’s adaptation to the target domain feature distribution.

5.1. Datasets and Experimental Setup
5.1.1. Cross-Domain Few-Shot Experimental

Following the setup proposed by Li et al. [6], we conduct domain transfer experiments us-
ing data collected from different textual domains. We use OntoNotes [22] as the source domain
and evaluate few-shot performance on CoNLL [23], WNUT [24], and GUM [25] datasets.The base-
line methods include one-stage methods (ProtoBERT [8], NNShot [11], StructShot [11], FSLS [26],
CONTaiNER [5]) and two-stage methods (DecomposedMetaNER [10], TadNER [6]).

Additionally, to further validate the practical value of cross-domain few-shot methods, we
conduct cross-domain few-shot experiments within Chinese agricultural pest and disease subdo-
mains. Considering the scarcity of publicly available annotated data in the agricultural pest and
disease domain, researchers often focus on a single crop, leading to practical cross-domain few-
shot scenarios. We collect and clean unstructured textual data from the Internet to construct the
Agricultural Pest and Disease Corpus (APDCorpus), sourced from online encyclopedic knowl-
edge bases and agricultural protection information websites, covering crops such as cotton, rice,
wheat, and corn. The corpus currently includes 65,292 sentences and approximately 2.08 million
characters. We manually annotate the relevant wheat and cotton pest and disease texts from the
corpus to construct datasets and additionally obtain a public dataset for rice pests and diseases.
We use the wheat and rice datasets as source domains and the cotton dataset as the target domain
for Chinese agricultural pest and disease subdomain transfer experiments. Dataset details are as
follows:

• Rice Pest and Disease Dataset [27]: Focused on typical pest and disease issues in rice
production, this dataset is collected from publicly available data curated by researchers. It
includes annotations for seven types of entities such as rice disease names, rice pest names,
and rice varieties, comprising approximately 60,000 characters and 2,064 sentence-level
annotations.

• Wheat Pest and Disease Dataset: Focused on typical pest and disease issues in wheat
production, this dataset is manually annotated from the APDCorpus using wheat-related
pest and disease texts. It includes annotations for five types of entities: wheat disease
names, wheat pest names, pesticides for wheat pest and disease control, affected regions,
and wheat variety names, totaling approximately 170,000 characters and 3,610 sentence-
level annotations.

• Cotton Pest and Disease Dataset: Focused on typical pest and disease issues in cotton
production, this dataset is manually annotated from the APDCorpus using cotton-related
pest and disease texts. Additionally, we incorporate text materials from a specialized
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book. [28] The final dataset includes annotations for five types of entities: cotton disease
names, cotton pest names, pesticides for cotton pest and disease control, affected regions,
and cotton variety names, totaling approximately 200,000 characters and 5,306 sentence-
level annotations.

We adopt the k-shot sampling method proposed by Ding et al. [29] to sample 1-shot and 5-
shot training sets for the few-shot pest and disease NER task. For each experimental setting, we
sample five different training sets.

5.1.2. Experimental Parameter Setup
We focus primarily on the experimental parameter settings for the pseudo-label self-training

phase. Table 1 details the parameters and their search spaces during pseudo-label training. Other
hyperparameter settings are consistent with those used in TadNER [6] for reproducibility.

Table 1: Pseudo-Label Training Experimental Parameter Settings

Parameter Category Parameter Name Search Space

Optimizer Settings Learning Rate 1e-4, 1e-5, 3e-4, 3e-5
Optimizer Type AdamW

Learning Rate Scheduler Scheduler Type Linear Decay
Warmup Steps Ratio 0.0, 0.05, 0.1

Training Settings
Token Filtering Threshold 0.9, 0.95, 0.99

Batch Size 8, 16, 32
Pseudo-Label Iterations 1, 2, 3

5.2. Results Analysis

Table 2: Cross-Domain Few-Shot F1 Results on English Public Datasets, † Results reported from TadNER, ∗ Our repro-
duction results.

Paradigms Models 1-shot 5-shot

CoNLL WNUT GUM Avg. CoNLL WNUT GUM Avg.

One-stage
ProtoBERT† 49.9±8.6 17.4±4.9 17.8±3.5 28.3 61.3±9.1 22.8±4.5 19.5±3.4 34.5
NNShot† 61.2±10.4 22.7±7.4 10.5±2.9 31.5 74.1±2.3 27.3±5.4 15.9±1.8 39.1
StructShot† 62.4±10.5 24.2±8.0 7.8±2.1 31.5 74.8±2.4 30.4±6.5 13.3±1.3 39.5
FSLS† 50.9±6.5 14.3±5.5 12.6±2.8 25.9 63.9±3.3 24.0±3.2 18.8 ±2.2 35.6
CONTaiNER† 61.2±10.7 27.5±1.9 18.5±4.9 35.7 75.8±2.7 32.5±3.8 25.2±2.7 44.5

Two-stage
DecomposedMetaNER† 61.2±9.2 27.7±5.3 20.3±4.2 36.4 75.2±5.8 29.8±3.9 33.5±2.4 46.2
TadNER∗ 72.8±10.3 32.6±3.1 24.8±3.2 43.4 80.6±2.3 33.2±3.1 35.5±1.5 49.8
PFSTDNER 75.2±9.7 33.8±4.6 26.0±3.2 45 81.4±2.4 33.7±3.4 35.9±1.5 50.3

Table 2 compares PFSTDNER with baseline methods on English cross-domain few-shot
tasks. PFSTDNER achieves the best performance across CoNLL, WNUT, and GUM datasets.
Under the 1-shot setting, PFSTDNER attains an average F1 of 45.0%, outperforming TadNER
(43.4%) by 1.6 points. In 5-shot, PFSTDNER reaches 50.3%, surpassing TadNER (49.8%) by
0.5 points. All models perform best on CoNLL, likely due to its similarity to the source domain
OntoNotes, while WNUT’s domain shift challenges cross-domain generalization.
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Table 3: Ablation Study Results for Span Detection F1 Scores in PFSTDNER

CoNLL WNUT GUM

PFSTDNER 84.6 51.7 53.1
w/o token-filter 82.9 51.4 51.5
w/o score-filter 83.6 49.0 52.0

w/o token-score-filter 81.0 47.1 50.6
w/o self-training 80.5 47.3 49.0

To analyze module contributions, we conduct ablation studies (Table 3). Removing token or
span filtering individually causes noticeable F1 drops, particularly on WNUT (up to 2.7 points),
highlighting the necessity of both filtering stages. Eliminating both filters leads to the most se-
vere degradation (up to 4.6 points). Removing self-training entirely further reduces F1 by over 4
points across datasets, confirming its critical role in mitigating domain adaptation bias.Notably,
when applying self-training without filtering, performance slightly drops on WNUT, further em-
phasizing the necessity of proper filtering in cross-domain few-shot scenarios.

Table 4: Cross-Domain Few-Shot F1 Results on Chinese Agricultural Pest and Disease Subdomain

Models 1-shot 5-shot

TadNER 61.0 65.0
PFSTDNER 62.8 66.5

Table 4 presents our experimental results on the Chinese agricultural pest and disease subdo-
main cross-domain task. The results reveal:

PFSTDNER outperforms TadNER under both sample size conditions. Under the 1-shot set-
ting, PFSTDNER achieves an F1 score of 62.8%, improving by 1.8 percentage points over Tad-
NER’s 61.0%. Under the 5-shot setting, PFSTDNER achieves 66.5%, 1.5 points higher than
TadNER’s 65.0%. This demonstrates that our designed dual-stage pseudo-label filtering self-
training framework is also effective in Chinese agricultural pest and disease subdomain transfer
tasks, validating the practical value of cross-domain few-shot methods.

Overall, the three groups of experiments lead to the following conclusions: (1) the dual-
stage pseudo-label filtering strategy effectively identifies and removes pseudo-labels with source
domain bias, helping the model better capture semantic boundaries and type characteristics of
target domain entities; (2) the pseudo-label self-training framework expands the guiding capacity
of few-shot samples and effectively mitigates domain adaptation bias in cross-domain few-shot
NER.

6. Conclusion

To address the domain adaptation bias problem in cross-domain few-shot named entity recog-
nition, we propose the PFSTDNER model, constructed based on a dual-stage pseudo-label fil-
tering self-training decomposition framework. The proposed improvements, through token-level
confidence filtering and few-shot minimum score filtering, effectively remove pseudo-labels with
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source domain bias, thereby enhancing the model’s ability to adapt to target domain features. Ex-
perimental results demonstrate that PFSTDNER outperforms baseline methods across multiple
cross-domain few-shot tasks and validate the effectiveness of the dual-stage filtering mechanism
through ablation studies. Furthermore, the practical value of the proposed model is verified in
cross-domain transfer experiments within the Chinese agricultural pest and disease subdomain.

7. Acknowledgments

This work was supported by the Major Science and Technology Projects in Xinjiang Uygur
Autonomous Region (Grant No. 2022A02012-1).

References

[1] Z. Wang, Z. Zhao, Z. Chen, P. Ren, M. de Rijke, Z. Ren, Generalizing few-shot named entity recognizers to unseen
domains with type-related features, in: Findings of the Association for Computational Linguistics: EMNLP 2023,
2023, pp. 2228–2240.

[2] T. T. H. Hanh, A. Doucet, N. Sidere, J. G. Moreno, S. Pollak, Named entity recognition architecture combining
contextual and global features, in: International Conference on Asian Digital Libraries, Springer, 2021, pp. 264–
276.

[3] J. Zheng, H. Chen, Q. Ma, Cross-domain named entity recognition via graph matching, in: Findings of the Associ-
ation for Computational Linguistics: ACL 2022, 2022, pp. 2670–2680.

[4] Y. Chen, Y. Zheng, Z. Yang, Prompt-based metric learning for few-shot ner, in: Findings of the Association for
Computational Linguistics: ACL 2023, 2023, pp. 7199–7212.

[5] S. S. S. Das, A. Katiyar, R. Passonneau, R. Zhang, CONTaiNER: Few-shot named entity recognition via con-
trastive learning, in: Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), Association for Computational Linguistics, Dublin, Ireland, 2022, pp. 6338–6353.
doi:10.18653/v1/2022.acl-long.439.
URL https://aclanthology.org/2022.acl-long.439

[6] Y. Li, Y. Yu, T. Qian, Type-aware decomposed framework for few-shot named entity recognition, in: H. Bouamor,
J. Pino, K. Bali (Eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, Singapore,
December 6-10, 2023, Association for Computational Linguistics, 2023, pp. 8911–8927.

[7] T. Ma, H. Jiang, Q. Wu, T. Zhao, C.-Y. Lin, Decomposed meta-learning for few-shot named entity recognition, in:
Findings of the Association for Computational Linguistics: ACL 2022, 2022, pp. 1584–1596.

[8] J. Snell, K. Swersky, R. Zemel, Prototypical Networks for Few-shot Learning, in: I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (Eds.), Advances in Neural Information Processing
Systems, Vol. 30, Curran Associates, Inc., 2017.
URL https://proceedings.neurips.cc/paper/2017/file/cb8da6767461f2812ae4290eac7cbc42-Paper.

pdf

[9] A. Fritzler, V. Logacheva, M. Kretov, Few-shot classification in named entity recognition task, in: Proceedings
of the 34th ACM/SIGAPP Symposium on Applied Computing, SAC ’19, Association for Computing Machinery,
New York, NY, USA, 2019, p. 993–1000. doi:10.1145/3297280.3297378.
URL https://doi.org/10.1145/3297280.3297378

[10] T. Ma, H. Jiang, Q. Wu, T. Zhao, C.-Y. Lin, Decomposed meta-learning for few-shot named entity recognition, in:
Findings of the Association for Computational Linguistics: ACL 2022, Association for Computational Linguistics,
Dublin, Ireland, 2022, pp. 1584–1596. doi:10.18653/v1/2022.findings-acl.124.
URL https://aclanthology.org/2022.findings-acl.124

[11] Y. Yang, A. Katiyar, Simple and effective few-shot named entity recognition with structured nearest neighbor
learning, in: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),
Association for Computational Linguistics, Online, 2020, pp. 6365–6375. doi:10.18653/v1/2020.emnlp-main.516.
URL https://aclanthology.org/2020.emnlp-main.516

[12] G. Jiang, Z. Luo, Y. Shi, D. Wang, J. Liang, D. Yang, Toner: Type-oriented named entity recognition with gener-
ative language model, in: Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), 2024, pp. 16251–16262.

12 DataIntelligence



Cross-Domain Few-Shot Agricultural Pest and Disease Named Entity Recognition Based on a
Pseudo-Label Filtering Self-Training Decomposition Framework

[13] D. Li, B. Hu, Q. Chen, Prompt-based text entailment for low-resource named entity recognition, in: N. Calzolari,
C.-R. Huang, H. Kim, J. Pustejovsky, L. Wanner, K.-S. Choi, P.-M. Ryu, H.-H. Chen, L. Donatelli, H. Ji, S. Kuro-
hashi, P. Paggio, N. Xue, S. Kim, Y. Hahm, Z. He, T. K. Lee, E. Santus, F. Bond, S.-H. Na (Eds.), Proceedings of
the 29th International Conference on Computational Linguistics, International Committee on Computational Lin-
guistics, Gyeongju, Republic of Korea, 2022, pp. 1896–1903.
URL https://aclanthology.org/2022.coling-1.164/

[14] Y. Shen, X. Ma, Z. Tan, S. Zhang, W. Wang, W. Lu, Locate and label: A two-stage identifier for nested named
entity recognition, in: Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association
for Computational Linguistics, Online, 2021, pp. 2782–2794. doi:10.18653/v1/2021.acl-long.216.
URL https://aclanthology.org/2021.acl-long.216

[15] Y. Wang, H. Chu, C. Zhang, J. Gao, Learning from language description: Low-shot named entity recog-
nition via decomposed framework, in: Findings of the Association for Computational Linguistics: EMNLP
2021, Association for Computational Linguistics, Punta Cana, Dominican Republic, 2021, pp. 1618–1630.
doi:10.18653/v1/2021.findings-emnlp.139.
URL https://aclanthology.org/2021.findings-emnlp.139

[16] X. Zhang, B. Yu, Y. Wang, T. Liu, T. Su, H. Xu, Exploring modular task decomposition in cross-domain named
entity recognition, in: Proceedings of the 45th International ACM SIGIR Conference on Research and Development
in Information Retrieval, 2022, pp. 301–311.

[17] Probability of error of some adaptive pattern-recognition machines, IEEE Transactions on Information Theory
11 (3) (1965) 363–371.

[18] Q. Xie, M.-T. Luong, E. Hovy, Q. V. Le, Self-training with noisy student improves imagenet classification, in:
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2020, pp. 10687–10698.

[19] B. Zoph, G. Ghiasi, T.-Y. Lin, Y. Cui, H. Liu, E. D. Cubuk, Q. Le, Rethinking pre-training and self-training,
Advances in neural information processing systems 33 (2020) 3833–3845.

[20] S. Mukherjee, A. Awadallah, Uncertainty-aware self-training for few-shot text classification, Advances in Neural
Information Processing Systems 33 (2020) 21199–21212.
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